首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Demonstration of natural attenuation of xenobiotic organic compounds (XOCs) in landfill leachate plumes is a difficult task and still an emerging discipline within groundwater remediation. One of the early studies was made at the Vejen Landfill in Denmark in the late 1980s, which suggested that natural attenuation of XOCs took place under strongly anaerobic conditions within the first 150 m of the leachate plume. This paper reports on a revisit to the same plume 10 years later. Within the strongly anaerobic part of the plume, 49 groundwater samples were characterized with respect to redox-sensitive species and XOCs. The analytical procedures have been developed further and more compounds and lower detection limits were observed this time. In addition, the samples were screened for degradation intermediates and for toxicity. The plume showed fairly stationary features over the 10-year period except that the XOC level as well as the level of chloride and nonvolatile organic carbon (NVOC) in the plume had decreased somewhat. Most of the compounds studied were subject to degradation in addition to dilution. Exceptions were benzene, the herbicide Mecoprop (MCPP), and NVOC. In the early study, NVOC seemed to degrade in the first part of the plume, but this was no longer the case. Benzyl succinic acid (BSA) was for the first time identified in a leachate plume as a direct indicator, and as the only intermediate of toluene degradation. Toxicity measurements on solid phase-extracted (SPE) samples revealed that toxic compounds not analytically identified were still present in the plume, suggesting that toxicity measurements could be helpful in assessing natural attenuation in leachate plumes.  相似文献   

2.
The distillation of acidified coal tars for up to 50 years has given rise to a phenol plume approximately 500 m long, 50 m deep and containing up to 15 g l(-1) dissolved organic carbon (DOC) in the Triassic Sandstones aquifer. A conceptual biogeochemical model based on chemical and microbiological analysis of groundwater samples has been developed as a preliminary to more detailed studies of the controls on natural attenuation. While the development of redox zones and the production of methane and carbon dioxide provide evidence of natural attenuation, it appears that degradation is slow. The existence of sulphate in the plume indicates that this electron acceptor has not been depleted and that consequently methanogenesis is probably limited. Based on a simple estimate of sulphate input concentration, a half-life of about 15 years has been estimated for sulphate reduction. Geochemical modelling predicts that increased alkalinity within the plume has not led to carbonate precipitation, and thus within the limits of accuracy of the measurement, alkalinity may reflect the degree of biodegradation. This implies a loss of around 18% of the DOC over a 30-year period. Despite limited degradation, microbial studies show that there are diverse microbial communities in the aquifer with the potential for both anaerobic and aerobic biodegradation. Microbial activity was found to be greatest at the leading edge of the plume where DOC concentrations are 60 mg l(-1) or less, but activity could still be observed in more contaminated samples even though cells could not be cultured. The study suggests that degradation may be limited by the high phenol concentrations within the core of the plume, but that once diluted by dispersion, natural attenuation may proceed. More detailed studies to confirm these initial findings are identified and form the basis of associated papers.  相似文献   

3.
A field investigation of a TCE plume in a surficial sand aquifer shows that groundwater-surface water interactions strongly influence apparent plume attenuation. At the site, a former industrial facility in Connecticut, depth-discrete monitoring along three cross-sections (transects) perpendicular to groundwater flow shows a persistent VOC plume extending 700 m from the DNAPL source zone to a mid-size river. Maximum TCE concentrations along a transect 280 m from the source were in the 1000s of microg/L with minimal degradation products. Beyond this, the land surface drops abruptly to a lower terrace where a shallow pond and small streams occur. Two transects along the lower terrace, one midway between the facility and river just downgradient of the pond and one along the edge of the river, give the appearance that the plume has strongly attenuated. At the river, maximum TCE concentrations in the 10s of microg/L and similar levels of its degradation product cis-DCE show direct plume discharge from groundwater to the river is negligible. Although degradation plays a role in the strong plume attenuation, the major attenuation factor is partial groundwater plume discharge to surface water (i.e. the pond and small streams), where some mass loss occurs via water-air exchange. Groundwater and stream mass discharge estimates show that more than half of the plume mass discharge crossing the first transect, before surface water interactions occur, reaches the river directly via streamflow, although river concentrations were below detection due to dilution. This study shows that groundwater and surface water concentration measurements together provide greater confidence in identifying and quantifying natural attenuation processes at this site, rather than groundwater measurements alone.  相似文献   

4.
Kao CM  Chen CY  Chen SC  Chien HY  Chen YL 《Chemosphere》2008,70(8):1492-1499
In this study, a full-scale biosparging investigation was conducted at a petroleum-hydrocarbon spill site. Field results reveal that natural attenuation was the main cause of the decrease in major contaminants [benzene, toluene, ethylbenzene, and xylenes (BTEX)] concentrations in groundwater before the operation of biosparging system. Evidence of the occurrence of natural attenuation within the BTEX plume includes: (1) decrease of DO, nitrate, sulfate, and redox potential, (2) production of dissolved ferrous iron, sulfide, methane, and CO(2), (3) decreased BTEX concentrations along the transport path, (4) increased microbial populations, and (5) limited spreading of the BTEX plume. Field results also reveal that the operation of biosparging caused the shifting of anaerobic conditions inside the plume to aerobic conditions. This variation can be confirmed by the following field observations inside the plume due to the biosparging process: (1) increase in DO, redox potential, nitrate, and sulfate, (2) decrease dissolved ferrous iron, sulfide, and methane, (3) increased total cultivable heterotrophs, and (4) decreased total cultivable anaerobes as well as methanogens. Results of polymerase chain reaction, denaturing gradient gel electrophoresis, and nucleotide sequence analysis reveal that three BTEX biodegraders (Candidauts magnetobacterium, Flavobacteriales bacterium, and Bacteroidetes bacterium) might exist at this site. Results show that more than 70% of BTEX has been removed through the biosparging system within a 10-month remedial period at an averaged groundwater temperature of 18 degrees C. This indicates that biosparging is a promising technology to remediate BTEX contaminated groundwater.  相似文献   

5.
Data from long-term groundwater sampling, limited coring, and associated studies are synthesised to assess the variability and intrinsic remediation/natural attenuation of a dissolved hydrocarbon plume in sulphate-rich anaerobic groundwater. Fine vertical scale (0.25- and 0.5-m depth intervals) and horizontal plume-scale (>400 m) characteristics of the plume were mapped over a 5-year period from 1991 to 1996. The plume of dissolved BTEX (benzene, toluene, ethylbenzene, xylene) and other organic compounds originated from leakage of gasoline from a subsurface fuel storage tank. The plume was up to 420 m long, less than 50 m wide and 3 m thick. In the first few years of monitoring, BTEX concentrations near the point of leakage were in approximate equilibrium with non-aqueous phase liquid (NAPL) gasoline. NAPL composition of core material and long-term trends in ratios of BTEX concentrations in groundwater indicated significant depletion (water washing, volatilisation and possibly biodegradation) of benzene from residual NAPL after 1992. Large fluctuations in BTEX concentrations in individual boreholes were shown to be largely attributable to seasonal groundwater flow variations. A combination of temporal and spatial groundwater quality data was required to adequately assess the stationarity of plumes, so as to allow inference of intrinsic remediation. Contoured concentration data for the period 1991 to 1996 indicated that plumes of toluene and o-xylene were, at best, only partially steady state (pseudo-steady state) due to seasonal groundwater flow changes. From this analysis, it was inferred that significant remediation by natural biodegradation was occurring for BTEX component plumes such as toluene and o-xylene, but provided no conclusive evidence of benzene biodegradation. Issues associated with field quantification of intrinsic remediation from groundwater sampling are highlighted. Preferential intrinsic biodegradation of selected organic compounds within the BTEX plume was shown to be occurring, in parallel with sulphate reduction and bicarbonate production. Ratios of average hydrocarbon concentrations to benzene for the period 1991 to 1992 were used to estimate degradation rates (half-lives) at various distances along the plume. The estimates varied with distance, the narrowest range being, for toluene, 110 to 260 days. These estimates were comparable to rates determined previously from an in situ tracer test and from plume-scale modelling.  相似文献   

6.
Numerical experiments and field results on the size of steady state plumes   总被引:1,自引:0,他引:1  
Contaminated groundwater poses a serious risk for drinking water supplies. Under certain conditions, however, groundwater contamination remains restricted to a tolerable extent because of natural attenuation processes. We present an innovative approach to evaluate the size of these so-called steady-state plumes by 2-D and 1-D modelling in homogeneous aquifers. If longitudinal mixing is negligible, scenarios can be modelled in a simplified way using a 1-D domain vertical to the direction of flow. We analysed the sensitivity of the plume length with respect to biodegradation kinetics, flow velocity, transverse vertical dispersivity alphat, the source and aquifer geometry and reaction stoichiometry. Our findings indicate that for many readily biodegradable compounds transverse-dispersive mixing rather than reaction kinetics is the limiting factor for natural attenuation. Therefore, if alphat, aquifer and source geometry and concentrations of electron acceptors and donors are known, the length of the steady state contaminant plume can be predicted. The approach is validated under field conditions for an ammonium plume at a former landfill site in SW Germany.  相似文献   

7.
A multi-dimensional and multi-species reactive transport model was developed to aid in the analysis of natural attenuation design at chlorinated solvent sites. The model can simulate several simultaneously occurring attenuation processes including aerobic and anaerobic biological degradation processes. The developed model was applied to analyze field-scale transport and biodegradation processes occurring at the Area-6 site in Dover Air Force Base, Delaware. The model was calibrated to field data collected at this site. The calibrated model reproduced the general groundwater flow patterns, and also, it successfully recreated the observed distribution of tetrachloroethene (PCE), trichloroethene (TCE), dichloroethylene (DCE), vinyl chloride (VC) and chloride plumes. Field-scale decay rates of these contaminant plumes were also estimated. The decay rates are within the range of values that were previously estimated based on lab-scale microcosm and field-scale transect analyses. Model simulation results indicated that the anaerobic degradation rate of TCE, source loading rate, and groundwater transport rate are the important model parameters. Sensitivity analysis of the model indicated that the shape and extent of the predicted TCE plume is most sensitive to transmissivity values. The total mass of the predicted TCE plume is most sensitive to TCE anaerobic degradation rates. The numerical model developed in this study is a useful engineering tool for integrating field-scale natural attenuation data within a rational modeling framework. The model results can be used for quantifying the relative importance of various simultaneously occurring natural attenuation processes.  相似文献   

8.
Investigation of a groundwater plume containing up to 24 g l(-1) phenolic compounds suggested that over a period of nearly 50 years, little degradation had occurred despite the presence of a microbial community and electron acceptors within the core of the plume. In order to study the effect of contaminant concentration on degradation behaviour, laboratory microcosm experiments were performed under aerobic and anaerobic conditions at four different concentrations obtained by diluting contaminated with uncontaminated groundwater. The microcosms contained groundwater with total phenols at ca. 200, 250, 660 and 5000 mg l(-1), and aquifer sediment that had been acclimatised within the plume for several months. The microcosms were operated for a period of 390-400 days along with sterile controls to ascertain whether degradation was microbially mediated or abiotic. Under aerobic conditions, degradation only occurred at concentrations up to 660 mg l(-1) total phenols. At phenol concentrations below 250 mg l(-1) a benzoquinone intermediate, thought to originate from the degradation of 2,5-dimethylphenol, was isolated and identified. This suggested an unusual degradative pathway for this compound; its aerobic degradation more commonly proceeding via catecholic intermediates. Under anaerobic conditions, degradation only occurred in the most dilute microcosm (total phenols 195 mg l(-1)) with a loss of p-cresol accompanied by a nonstoichiometric decrease in nitrate and sulphate. By inference, iron(III) from the sediment may also have been used as a terminal electron acceptor, in which case the amount of biologically available iron released was calculated as 1.07 mg Fe(III)/g of sediment. The study shows that natural attenuation is likely to be stimulated by dilution of the plume.  相似文献   

9.
A quantitative methodology is described for the field-scale performance assessment of natural attenuation using plume-scale electron and carbon balances. This provides a practical framework for the calculation of global mass balances for contaminant plumes, using mass inputs from the plume source, background groundwater and plume residuals in a simplified box model. Biodegradation processes and reactions included in the analysis are identified from electron acceptors, electron donors and degradation products present in these inputs. Parameter values used in the model are obtained from data acquired during typical site investigation and groundwater monitoring studies for natural attenuation schemes. The approach is evaluated for a UK Permo-Triassic Sandstone aquifer contaminated with a plume of phenolic compounds. Uncertainty in the model predictions and sensitivity to parameter values was assessed by probabilistic modelling using Monte Carlo methods. Sensitivity analyses were compared for different input parameter probability distributions and a base case using fixed parameter values, using an identical conceptual model and data set. Results show that consumption of oxidants by biodegradation is approximately balanced by the production of CH4 and total dissolved inorganic carbon (TDIC) which is conserved in the plume. Under this condition, either the plume electron or carbon balance can be used to determine contaminant mass loss, which is equivalent to only 4% of the estimated source term. This corresponds to a first order, plume-averaged, half-life of > 800 years. The electron balance is particularly sensitive to uncertainty in the source term and dispersive inputs. Reliable historical information on contaminant spillages and detailed site investigation are necessary to accurately characterise the source term. The dispersive influx is sensitive to variability in the plume mixing zone width. Consumption of aqueous oxidants greatly exceeds that of mineral oxidants in the plume, but electron acceptor supply is insufficient to meet the electron donor demand and the plume will grow. The aquifer potential for degradation of these contaminants is limited by high contaminant concentrations and the supply of bioavailable electron acceptors. Natural attenuation will increase only after increased transport and dilution.  相似文献   

10.
A volume of sand containing coal tar creosote was emplaced below the water table at CFB Borden to investigate natural attenuation processes for complex biodegradable mixtures. Coal tar creosote is a mixture of more than 200 polycyclic aromatic hydrocarbons, heterocyclic compounds and phenolic compounds. A representative group of seven compounds was selected for detailed study: phenol, m-xylene, naphthalene, phenanthrene, 1-methylnaphthalene, dibenzofuran and carbazole. Movement of groundwater through the source led to the development of a dissolved organic plume, which was studied over a 4-year period. Qualitative plume observations and mass balance calculations indicated two key conclusions: (1) compounds from the same source can display distinctly different patterns of plume development and (2) mass transformation was a major influence on plume behaviour for all observed compounds.  相似文献   

11.
A unique field experiment has been undertaken at the CFB Borden research site to investigate the development of dissolved chlorinated solvent plumes from a residual dense non-aqueous phase liquid (DNAPL) source. The "emplaced-source" tracer test methodology involved a controlled emplacement of a block-shaped source of sand containing chlorinated solvents below the water table. The gradual dissolution of this residual DNAPL solvent source under natural aquifer conditions caused dissolved solvent plumes of trichloromethane (TCM), trichloroethene (TCE) and perchloroethene (PCE) to continuously develop down gradient. Source dissolution and 3-D plume development were successfully monitored via 173 multilevel samplers over a 475-day tracer test period prior to site remediation research being initiated. Detailed groundwater level and hydraulic conductivity data were collected. Development of plumes with concentrations spanning 1-700,000 micrograms/1 is described and key processes controlling their migration identified. Plumes were observed to be narrow due to the weakness of transverse dispersion processes and long due to advection and significant longitudinal dispersion, very limited sorptive retardation and negligible, if any, attenuation due to biodegradation or abiotic reaction. TCM was shown to be essentially conservative, TCE very nearly conservative and PCE, consistent with its greater hydrophobicity, more retarded yet having a greater mobility than observed in previous Borden field tests. The absence of biodegradation was ascribed to the prevailing aerobic conditions and lack of any additional biodegradable carbon substrates. The transient groundwater flow regime caused significant transverse lateral plume movement, plume asymmetry and was likely responsible for most of the, albeit limited, transverse horizontal plume spreading. In agreement with the widespread incidence of extensive TCE and PCE plumes throughout the industrialized world, the experiment indicates such solvent plumes are likely to be highly mobile and persistent, at least in aquifers that are aerobic and have low sorption potential (low foc content).  相似文献   

12.
Despite a rapid expansion over the past decade in the reliance on intrinsic bioremediation to remediate petroleum hydrocarbon plumes in groundwater, significant research gaps remain. Although it has been demonstrated that bacterial sulfate reduction can be a key electron accepting process in many petroleum plumes, little is known about the rate of this reduction process in plumes derived from crude oil and gas condensates at cold-climate sites (mean temperature <10 degrees C), and in complex hydrogeological settings such as silt/clay aquitards. In this field study, sulfate was injected into groundwater contaminated by gas condensate plumes at two petroleum sites in Alberta, Canada to enhance in-situ bioremediation. In both cases the groundwater near the water table had low temperature (6-9 degrees C). Monitoring data had provided strong evidence that bacterial sulfate reduction was a key terminal electron accepting process (TEAP) in the natural attenuation of dissolved hydrocarbons at these sites. At each site, water with approximately 2000 mg/L sulfate and a bromide tracer was injected into a low-sulfate zone within a condensate-contaminant plume. Monitoring data collected over several months yielded conservative estimates for sulfate reduction rates based on zero-order kinetics (4-6 mg/L per day) or first-order kinetics (0.003 and 0.01 day(-1)). These results favor the applicability of in-situ bioremediation techniques in this region, under natural conditions or with enhancement via sulfate injection.  相似文献   

13.
A variety of naturally occurring bacteria produce enzymes that cometabolically degrade trichloroethene (TCE), including organisms with aerobic oxygenases. Groundwater contaminated with TCE was collected from the aerobic region of the Test Area North site of the Idaho National Laboratory. Samples were evaluated with enzyme activity probes, and resulted in measurable detection of toluene oxygenase activity (6-79% of the total microbial cells). Wells from both inside and outside contaminated plume showed activity. Toluene oxygenase-specific PCR primers determined that toluene-degrading genes were present in all groundwater samples evaluated. In addition, bacterial isolates were obtained and possessed toluene oxygenase enzymes, demonstrated activity, and were dominated by the phylotype Pseudomonas. This study demonstrated, through the use of enzymatic probes and oxygenase gene identification, that indigenous microorganisms at a contaminated site were cometabolically active. Documentation such as this can be used to substantiate observations of natural attenuation of TCE-contaminated groundwater plumes.  相似文献   

14.
Various redox reactions may occur at the fringe of a landfill leachate plume, involving oxidation of dissolved organic carbon (DOC), CH4, Fe(II), Mn(II), and NH4 from leachate and reduction of O2, NO3 and SO4 from pristine groundwater. Knowledge on the relevance of these processes is essential for the simulation and evaluation of natural attenuation (NA) of pollution plumes. The occurrence of such biogeochemical processes was investigated at the top fringe of a landfill leachate plume (Banisveld, the Netherlands). Hydrochemical depth profiles of the top fringe were captured via installation of a series of multi-level samplers at 18, 39 and 58 m downstream from the landfill. Ten-centimeter vertical resolution was necessary to study NA within a fringe as thin as 0.5 m. Bromide appeared an equally well-conservative tracer as chloride to calculate dilution of landfill leachate, and its ratio to chloride was high compared to other possible sources of salt in groundwater. The plume fringe rose steadily from a depth of around 5 m towards the surface with a few meters in the period 1998-2003. The plume uplift may be caused by enhanced exfiltration to a brook downstream from the landfill, due to increased precipitation over this period and an artificial lowering of the water level of the brook. This rise invoked cation exchange including proton buffering, and triggered degassing of methane. The hydrochemical depth profile was simulated in a 1D vertical reactive transport model using PHREEQC-2. Optimization using the nonlinear optimization program PEST brought forward that solid organic carbon and not clay minerals controlled retardation of cations. Cation exchange resulted in spatial separation of Fe(II), Mn(II) and NH4 fronts from the fringe, and thereby prevented possible oxidation of these secondary redox species. Degradation of DOC may happen in the fringe zone. Re-dissolution of methane escaped from the plume and subsequent oxidation is an explanation for absence of previously present nitrate and anaerobic conditions in pristine groundwater above the plume. Stable carbon isotope (delta13C) values of methane confirm anaerobic methane oxidation immediately below the fringe zone, presumably coupled to reduction of sulfate, desorbed from iron oxide. Methane must be the principle reductant consuming soluble electron-acceptors in pristine groundwater, thereby limiting NA for other solutes including organic micro-pollutants at the fringe of this landfill leachate plume.  相似文献   

15.
Methyl tert -butyl ether (MTBE) plume is controlled by many factors, primarily by groundwater flow velocity, dispersion, natural attenuation. This study employed an analytical model introduced by Domemico (1987, J. Hydrol 91 , 49-58.) to describe the MTBE concentration distribution horizontal pattern and estimated the MTBE plume length. The model was applied to 90 leaking underground storage tank cases in Los Angeles, CA, U.S.A. The analytical model was calibrated with field data for each ease using a Microsoft Excel spreadsheet program. Methyl tert -butyl ether concentrations in one source monitoring well and one to two downgradient centerline monitoring wells were used for each case study. When the centerline well is not available, the closest off-centerline wells were projected to the centerline using an ellipse trigonometry method. The model parameter values for longitudinal dispersivity, groundwater velocity, and degradation rate constant were calibrated using the field data and then used to estimate the maximum distance between source well and the plume edge. This study demonstrates that the Domenico model can be applied to MTBE plume investigation when adequate field data are available. The correlation coefficients calculated based on the results of the 90 case studies indicate that MTBE plume length has a poor correlation with MTBE concentration at the source well, and a moderate negative correlation with the degradation rate constant ( m 0.65) and u / v ratio (0.64). Furthermore, MTBE plume length has a poor correlation with the longitudinal dispersivity ( m 0.4), hydraulic gradient ( m 0.1), and groundwater velocity (0.17).  相似文献   

16.
Processes controlling the distribution and natural attenuation (NA) of phenol, cresols and xylenols released from a former coal-tar distillation plant in a deep Triassic sandstone aquifer are evaluated from vertical profiles along the plume centerline at 130 and 350 m from the site. Up to four groups of contaminants (phenols, mineral acids, NaOH, NaCl) form discrete and overlapping plumes in the aquifer. Their distribution reflects changing source history with releases of contaminants from different locations. Organic contaminant distribution in the aquifer is determined more by site source history than degradation. Contaminant degradation at total organic carbon (TOC) concentrations up to 6500 mg l(-1) (7500 mg l(-1) total phenolics) is occurring by aerobic respiration NO3-reduction, Mn(IV)-/Fe(III)-reduction, SO4-reduction, methanogenesis and fermentation, with the accumulation of inorganic carbon, organic metabolites (4-hydroxybenzaldehyde, 4-hydroxybenzoic acid), acetate, Mn(II), Fe(II), S(-II), CH4 and H2 in the plume. Aerobic and NO3-reducing processes are restricted to a 2-m-thick plume fringe but Mn(IV)-/Fe(II)-reduction, SO4-reduction, methanogenesis and fermentation occur concomitantly in the plume. Dissolved H2 concentrations in the plume vary from 0.7 to 110 nM and acetate concentrations reach 200 mg l(-1). The occurrence of a mixed redox system and concomitant terminal electron accepting processes (TEAPs) could be explained with a partial equilibrium model based on the potential in situ free energy (deltaGr) yield for oxidation of H2 by specific TEAPs. Respiratory processes rather than fermentation are rate limiting in determining the distribution of H2 and TEAPs and H2 dynamics in this system. Most (min. 90%) contaminant degradation has occurred by aerobic and NO3-reducing processes at the plume fringe. This potential is determined by the supply of aqueous O2 and NO3 from uncontaminated groundwater, as controlled by transverse mixing, which is limited in this aquifer by low dispersion. Consumption to date of mineral oxides and SO4 is, respectively, <0.15% and 0.4% of the available aquifer capacity, and degradation using these oxidants is <10%. Fermentation is a significant process in contaminant turnover, accounting for 21% of degradation products present in the plume, and indicating that microbial respiration rates are slow in comparison with fermentation. Under present conditions, the potential for degradation in the plume is very low due to inhibitory effects of the contaminant matrix. Degradation products correspond to <22% mass loss over the life of the plume, providing a first-order plume scale half-life >140 years. The phenolic compounds are biodegradable under the range of redox conditions in the aquifer and the aquifer is not oxidant limited, but the plume is likely to be long-lived and to expand. Degradation is likely to increase only after contaminant concentrations are reduced and aqueous oxidant inputs are increased by dispersion of the plume. The results imply that transport processes may exert a greater control on the natural attenuation of this plume than aquifer oxidant availability.  相似文献   

17.
An anaerobic plume of process-affected groundwater was characterized in a shallow sand aquifer adjacent to an oil sands tailings impoundment. Based on biological oxygen demand measurements, the reductive capacity of the plume is considered minimal. Major dissolved components associated with the plume include HCO3, Na, Cl, SO4, and naphthenic acids (NAs). Quantitative and qualitative NA analyses were performed on groundwater samples to investigate NA fate and transport in the subsurface. Despite subsurface residence times exceeding 20 years, significant attenuation of NAs by biodegradation was not observed based on screening techniques developed at the time of the investigation. Relative to conservative tracers (i.e., Cl), overall NA attenuation in the subsurface is limited, which is consistent with batch sorption and microcosm studies performed by other authors. Insignificant biological oxygen demand and low concentrations of dissolved As (< 10 µg L− 1) in the plume suggest that the potential for secondary trace metal release, specifically As, via reductive dissolution reactions driven by ingress of process-affected water is minimal. It is also possible that readily leachable As is not present in significant quantities within the sediments of the study area. Thus, for similar plumes of process-affected groundwater in shallow sand aquifers which may occur as oil sands mining expands, a reasonable expectation is for NA persistence, but minimal trace metal mobilization.  相似文献   

18.
At a site with discontinuous permafrost in Fairbanks, Alaska, releases of trichloroethene (TCE), an industrial solvent, have caused contamination of the groundwater. The objective of this study was to investigate the relationship between the migration pathway of the TCE groundwater plume and the distribution of the discontinuous permafrost at the site. The TCE plume configuration is substantially different than what regional hydrology trends would predict. Using GIS, we conducted a geostatistical analysis of field data collected during soil-boring installations and groundwater monitoring well sampling. With the analysis results, we constructed maps of the permafrost-table elevation (top of permafrost) and of the groundwater gradients and TCE concentrations from multiyear groundwater sampling events. The plume concentrations and groundwater gradients were overlain on the permafrost map to correlate permafrost locations with groundwater movement and the spatial distribution of TCE moving with groundwater. Correlation of the overlay maps revealed converging and diverging groundwater flow in response to the permafrost-table distribution, the absence of groundwater contamination in areas with a high permafrost-table elevation, and channeling of contaminants and water between areas of permafrost. In addition, we measured groundwater elevations in nested wells to quantify vertical gradients affecting TCE migration. At one set of nested wells down gradient from an area of permafrost we measured an upward vertical gradient indicating recharge of groundwater from the subpermafrost region of the aquifer causing dilution of the plume. The study indicates that the variable distribution of the permafrost is affecting the way groundwater and TCE move through the aquifer. Consequently, changes to the permafrost configuration due to thawing would likely affect both groundwater movement and TCE migration, and areas that were contaminant-free may become susceptible to contamination.  相似文献   

19.
A range of bacteriological, geochemical process-related and molecular techniques have been used to assess the microbial biodegradative potential in groundwater contaminated with phenol and other tar acids. The contaminant plume has travelled 500 m from the pollutant source over several decades. Samples were obtained from the plume using a multi-level sampler (MLS) positioned in two boreholes (boreholes 59 and 60) which vertically transected two areas of the plume. Activity of the microbial community, as represented by phenol degradation potential and ability to utilise a range of substrates, was found to be influenced by the plume. Phenol degradation potential appeared to be influenced more by the concentration of the contaminants than the total bacterial cell numbers. However, in the areas of highest phenol concentration, the depression of cell numbers clearly had an effect. The types of bacteria present were assessed by culture and DNA amplification by polymerase chain reaction (PCR). Bacterial groups or processes associated with major geochemical processes, such as methanogenesis, sulphate reduction and denitrification, that have the potential to drive contaminant degradation, were detected at various borehole levels. A comparative molecular analysis of the microbial community between samples obtained from the MLS revealed the microbial community was diverse. The examination of microbial activity complemented those results obtained through chemical analysis, and when combined with hydrological data, showed that MLS samples provided a realistic profile of plume effects and could be related to the potential for natural attenuation of the site.  相似文献   

20.
At the Centre for Environmental Research Leipzig-Halle (UFZ) research site in Zeitz, Germany, benzene contaminates the lower of two aquifers with concentrations of up to 20 mg/l. Since the benzene plume has a minimum length of approximately 1 km, enhanced natural attenuation measures are being considered as a remediation strategy. This study describes the performance and evaluation of a multi-species reactive tracer test using the tracers fluorescein and bromide as conservative tracers and toluene as reactive tracer. Sampling was performed over a period of six months using a detailed network of multilevel sampling wells. Toluene was only slightly retarded in comparison to bromide, whereas fluorescein was retarded considerably stronger. Therefore, it was not possible to use fluorescein as an in situ tracer for the determination of groundwater velocities. The ionic nature of fluorescein is assumed to be the major reason for its retardation. The results show that the infiltration conditions were suitable to produce a wide spreading of the tracer front along the full thickness of the aquifer. Thus, a large aquifer volume can be treated in future enhanced bioremediation measures. The total quantity of infiltrated toluene (24 l) was degraded under sulfate-reducing conditions over a flow path of 50 m. Benzylsuccinate was identified as a metabolite of toluene degradation under sulfate-reducing conditions at this site. The modelling results show that toluene degradation was described more accurately using Monod kinetics than first-order kinetics. Since toluene was only slightly retarded in comparison to bromide, sorption and desorption processes were considered to be negligible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号