首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examines the feasibility of coupling a Catalytic Wet Air Oxidation (CWAO), with activated carbon (AC) as catalyst, and an aerobic biological treatment to treat a high-strength o-cresol wastewater. Two goals are pursued: (a) To determine the effect of the main AC/CWAO intermediates on the activated sludge of a municipal WasteWater Treatment Plant (WWTP) and (b) To demonstrate the feasibility of coupling the AC/CWAO effluent as a part of the influent of a municipal WWTP. In a previous study, a high-strength o-cresol wastewater was treated by AC/CWAO aiming to establish the distribution of intermediates and the biodegradability enhancement. In this work, the biodegradability, toxicity and inhibition of the most relevant intermediates detected in the AC/CWAO effluent were determined by respirometry. Also, the results of a pilot scale municipal WWTP study for an integrated AC/CWAO-aerobic biological treatment of this effluent are presented. The biodegradation parameters (i.e. maximum oxygen uptake rate and oxygen consumption) of main AC/CWAO intermediates allowed the classification of the intermediates into readily biodegradable, inert or toxic/inhibitory compounds. This detailed study, allowed to understand the biodegradability enhancement exhibited by an AC/CWAO effluent and to achieve a successful strategy for coupling the AC/CWAO step with an aerobic biological treatment for a high-strength o-cresol wastewater. Using 30%, as COD, of AC/CWAO effluent in the inlet to the pilot scale WWTP, the integrated AC/CWAO-biological treatment achieved a 98% of total COD removal and, particularly, a 91% of AC/CWAO effluent COD removal without any undesirable effect on the biomass.  相似文献   

2.
In this study, advanced oxidation technologies, namely Fenton Process (FP), Fenton-Like Process (FLP), ozonation (O3) and O3/H2O2 processes, were applied to synthetic wastewater containing 3-indolebutyric acid (IBA). The effectiveness of each process was investigated at different pH values, Fe(+2), Fe(+3), O3 and H2O2 concentrations with respect to the removal efficiencies for chemical oxygen demand (COD) and total organic carbon (TOC). The best removal efficiencies were seen at pH 3 and 2 mM Fe concentration in both FP and FLP, in which the optimum H2O2 concentrations were 6 mM for FP and 10 mM for FLP. Optimum process conditions were pH 12 for the O3 process, pH 9 for the O3/H2O2 process and 1:1 O3/H2O2 molar ratio. The highest COD removal efficiency was 86 percent, obtained in the O3/H2O2 process and the highest TOC removal efficiency was obtained at 77 percent in the FP.  相似文献   

3.
Xu XR  Zhao ZY  Li XY  Gu JD 《Chemosphere》2004,55(1):73-79
Degradation of methyl tert-butyl ether (MTBE) in aqueous solution by Fenton's reagent (Fe2+ and H2O2) was investigated. Effects of reaction conditions on the oxidation efficiency of MTBE by Fenton's reagent were examined in batch experiments. Under optimum conditions, 15 mM H2O2, 2 mM Fe2+, pH 2.8 and room temperature, the initial 1 mM MTBE solution was reduced by 99% within 120 min. Results showed that MTBE was decomposed in a two-stage reaction. MTBE was first decomposed swiftly based on a Fe2+/H2O2 reaction and then decomposed somewhat less rapidly based on a Fe3+/H2O2 reaction. The detection of Fe2+ also supported the theory of the two-stage reaction for the oxidation of MTBE by Fenton's reagent. The dissolved oxygen in the solution decreased rapidly in the first stage reaction, but it showed a slow increase in the second stage with a zero-order kinetics. A reaction mechanism involving two different pathways for the decomposition of MTBE by Fenton's reagent was also proposed. Chemicals including tert-butyl formate, tert-butyl alcohol, methyl acetate and acetone were identified to be the primary intermediates and by-products of the degradation processes.  相似文献   

4.
Catalkaya EC  Kargi F 《Chemosphere》2007,69(3):485-492
Advanced oxidation of diuron in aqueous solution by Fenton's reagent using FeSO(4) as source of Fe(II) was investigated in the absence of light. Effects of operating parameters namely the concentrations of pesticide (diuron), H(2)O(2) and Fe(II) on oxidation of diuron was investigated by using Box-Behnken statistical experiment design and the surface response analysis. Diuron oxidation by the Fenton reagent was evaluated by determining the total organic carbon (TOC), diuron, and adsorbable organic halogen (AOX) removals. Concentration ranges of the reagents resulting in the highest level of diuron oxidation were determined. Diuron removal increased with increasing H(2)O(2) and Fe(II) concentrations up to a certain level. Diuron concentration had a more profound effect than H(2)O(2) and Fe(II) in removal of diuron, TOC and AOX from the aqueous solution. Nearly complete (98.5%) disappearance of diuron was achieved after 15min reaction period. However, only 58% of diuron was mineralized after 240min under optimal operating conditions indicating formation of some intermediate products. Optimal H(2)O(2)/Fe(II)/diuron ratio resulting in the maximum diuron removal (98.5%) was found to be 302/38/20 (mgl(-1)).  相似文献   

5.
Fenton's pre-treatment of mature landfill leachate   总被引:20,自引:0,他引:20  
Lopez A  Pagano M  Volpe A  Di Pinto AC 《Chemosphere》2004,54(7):1005-1010
The aim of this study was to check the effectiveness of the Fenton's reagent (Fe2+ + H2O2 + H+) for the pre-treatment of a municipal landfill leachate with the objective of improving its overall biodegradability, evaluated in terms of BOD5/COD ratio, up to a value compatible with biological treatment. The leachate came from a municipal sanitary landfill located in southern Italy and the average values of its main parameters were: pH=8.2; COD=10,540 mgl(-1); BOD5=2,300 mgl(-1); TOC=3,900 mgl(-1); NH4-N=5210 mgl(-1); conductivity=45,350 microScm(-1); alkalinity=21,470 mgl(-1) CaCO3. The effect of initial pH value on the pre-treatment effectiveness was evaluated by titrating the amount of acidic by-products formed. The extent of leachate oxidation was monitored and controlled by both pH and redox potential measurements. The best operational conditions for achieving the desired goal (i.e., BOD5/COD> or =0.5) resulted: Fe2+=275 mgl(-1); H2O2=3,300 mgl(-1); initial pH=3; reaction time=2 h. At the end of the Fenton's pre-treatment, in order to permit a subsequent biological treatment, residual ferric ions were removed increasing the pH up to 8.5 by adding 3 gl(-1) of Ca(OH)2 and 3 mgl(-1) of a cationic polyelectrolyte, the latter as an aid to coagulation. This final step also resulted in a further modest removal of residual COD due to co-precipitation phenomena.  相似文献   

6.
Fenton氧化/高浓度泥浆法处理矿山废水   总被引:2,自引:0,他引:2  
为了解决某大型铜矿废水COD不达标问题,采用Fenton氧化对原有高浓度泥浆(HDS)工艺进行改进。探讨了Fenton氧化矿山废水各指标的去除效果以及H2O2浓度对出水COD去除效果的影响,结果表明,Fenton氧化-电石乳中和絮凝沉淀工艺处理矿山废水是可行的,最优实验条件为:pH稳定在3.0~4.5,H2O2投加量0.5 mL/L,电石乳投加量8.5 g/L,PAM投加量1.5 mg/L;系统对废水COD的去除机理是加入的H2O2和矿山酸性废水中的Fe2+离子在低pH下形成Fenton试剂;系统对TFe、Zn2+、Cu2+ 的去除效果比Mn2+的去除效果更稳定。  相似文献   

7.
以某制浆造纸厂生化出水Fenton/絮凝深度处理工艺长期运行数据为依据,系统分析了H2O2、废酸液(FeSO4含量约8%)、硫酸铝、PAM及氧化钙等处理药剂用量与水量、进水负荷和COD去除量之间的关系。结果表明,H2O2、废酸液、硫酸铝、PAM及氧化钙的单位水量平均投加量分别为0.05、2.18、0.07、0.0075和0.27 kg/m3,而去除单位COD的药剂平均消耗量分别为0.20、8.48、0.27、0.029和1.06 kg/(kg COD);H2O2、废酸液、硫酸铝和氧化钙的用量随进水负荷的增大而增加,而PAM随进水负荷的变化较小。H2O2和FeSO4的投加摩尔比(MH2O2/Fe2+)主要集中在1.0-2.0之间,其中在1.0-1.6之间的累积频率达到93%。该工艺的出水COD和SS分别为65-100 mg/L和20-30 mg/L,达到《制浆造纸工业水污染物排放标准》(GB 3544-2008)排放要求。废水深度处理成本约为1.01元/m3,其中药剂费用约0.58元/m3,占56.98%。  相似文献   

8.
Eker S  Kargi F 《Chemosphere》2006,64(9):1609-1617
Biofilm processes offer considerable advantages for biological treatment of chlorophenol containing wastewaters since such industrial effluents are difficult to treat by conventional activated sludge processes. A rotating perforated tubes biofilm reactor (RTBR) was developed and used for treatment of 2,4-dichlorophenol (DCP) containing synthetic wastewater. Effects of COD and DCP loading rates on COD, DCP and toxicity removals were investigated. Percent COD removal decreased and effluent COD increased with increasing COD and DCP loading rates due to toxic effects of high DCP content in the feed. DCP and toxicity removals showed similar trends. As the DCP loading rate increased the effluent DCP content increased yielding high toxicity levels in the effluent. COD and DCP loading rates should be below 90gCODm(-2)d(-1) and 2.8gDCPm(-2)d(-1) in order to obtain more than 90% DCP and toxicity removals. However, DCP loading rates lower than 1gDCPm(-2)d(-1) are required to obtain more than 90% COD removal. Empirical equations were developed to estimate percent COD, DCP and toxicity removals as functions of COD and DCP loading rates. The coefficients of the empirical equations were determined by using the experimental data. Empirical model predictions for percent COD, DCP and toxicity removals were in good agreement with the experimental data.  相似文献   

9.
加热酸化-Fenton氧化处理乳化液废水   总被引:1,自引:0,他引:1  
采用加热酸化-Fenton氧化处理乳化液废水,在加酸量为1.0mL98%H2SO4/100mL乳化液、加热温度95℃、加热时间1h条件下,初始COD〉20万mg/L,浊度〉8000NTU的乳化液COD降低到46592mg/L,浊度降低到20NTU,加热和酸化的联合过程达到了良好的破乳效果;破乳后的出水在ρ(Fe2+)/ρ(H2O2)=1:30、ρ(H2O2)和(COD)=1.4、pH=4的条件下进行Fenton氧化,处理后的出水COD可降到18600mg/L,去除率达61.4%,其B/C可由破乳后的0.11提高到0.43,废水的可生化性大大提高,为后续处理创造了可能。  相似文献   

10.
In this paper, a comparison of various advanced oxidation processes (O3, O3/UV, H2O2/UV, O3/H2O2/UV, Fe2+/H2O2) and chemical treatment methods using Al2(SO4)3.18H2O, FeCl3 and FeSO4 for the chemical oxygen demand (COD) and color removal from a polyester and acetate fiber dyeing effluent is undertaken. Advanced oxidation processes (AOPs) showed a superior performance compared to conventional chemical treatment, which maximum achievable color and COD removal for the textile effluent used in this study was 50% and 60%, respectively. Although O3/H2O2/UV combination among other AOPs methods studied in this paper was found to give the best result (99% removal for COD and 96% removal for color), use of Fe2+/H2O2 seems to show a satisfactory COD and color removal performance and to be economically more viable choice for the acetate and polyester fiber dyeing effluent on the basis of 90% removal.  相似文献   

11.
Catalytic wet-air oxidation (CWAO) of wastewater (chemical oxygen demand [COD] = 1800 mg O2/dm3) from a fine chemicals plant was investigated in a fixed-bed reactor at T = 393-473 K under total pressure of 5.0 or 8.0 MPa. Catalysts containing 0.3% wt. of platinum deposited on two supports, mixed silica-titania (SM1) and carbon black composites (CBC) were used. The CBC-supported catalyst appeared to be more active than the SM1-supported one. A slow decrease of activity of the platinum on SM1 (Pt-SM1) during the long-term operation is attributed to recrystallization of titania and leaching of a support component, while the Pt-CBC catalyst is deteriorated, owing to combustion of the support component. The power-law-kinetic equations were used to describe the rate of COD removal at CWAO over the catalysts. The kinetic parameters of COD reduction for the wastewater were determined and compared with the kinetic parameters describing phenol oxidation over the same catalysts. Rates of COD removal for the wastewater were found higher than those for phenol oxidation over the same catalysts and under identical operating conditions.  相似文献   

12.
Chan KH  Chu W 《Chemosphere》2003,51(4):305-311
The degradation of pesticide, atrazine (ATZ), 2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine, by Fenton's reagent (FR) was investigated as a function of reagents' concentrations and ratios in a batch reactor. The degradation of ATZ was effectively achieved by hydroxyl radicals, which were generated in the FR process. The decay rates of ATZ and the oxidation capacities of FR were found to depend on the concentrations of hydrogen peroxide and ferrous ion. The removal kinetics of ATZ are initiated by a rapid decay and then followed by a much slower one. After an extended reaction time (5-10 min), the reactions ceased because the Fe(II) and H(2)O(2) were consumed and would be deactivated in the process. A mathematical model was successfully developed to describe the two-stage reaction kinetics by using two simple but critical parameters: the initial ATZ decay rate and the final oxidation capacity of Fenton's process. In general, higher [Fe(II)] or H(2)O(2) concentrations result in faster initial decay rate and higher oxidation capacity. However, the oxidation capacity is more sensitive to the initial [Fe(II)] due to the presence of side reactions as discussed in the paper.  相似文献   

13.
针对神经节苷脂生产废水蛋白质含量高的特点,研究了等电点沉淀或混凝沉降预处理、厌氧好氧生物处理、化学沉淀和类Fenton氧化后处理组合工艺处理神经节苷脂生产废水的技术。结果表明,神经节苷脂生产废水的等电点在pH=2.2左右,通过等电点沉淀可去除30%以上的COD,但等电点时蛋白质的沉淀速度非常慢;用聚合硫酸铁对神经节苷脂生产废水进行混凝预处理的最适工艺条件是:pH=7~7.5,聚合硫酸铁用量=500~750 mg/L。在优化条件下,混凝预处理可以使神经节苷脂生产废水的COD从27 000 mg/L左右降到13 000 mg/L左右。混凝预处理后的神经节苷脂生产废水经48 h厌氧和84 h好氧生物处理,COD值进一步下降到600 mg/L左右。然后向每升生化出水中加入2~3 mmol Fe3+,通过化学沉淀作用除去其中的磷酸盐,过量的Fe3+作为后续类Fenton氧化的催化剂。当H2O2(30%)用量为2~3 mL/L时,最终出水的COD值可以达到国家一级排放标准。  相似文献   

14.
研究了Fe/C微电解和Fenton氧化处理印刷电路板废水的最佳条件和联合工艺的处理效果。结果表明,Fe/C微电解最佳工艺条件为:pH=2,Fe/C质量比为2∶1,投加药剂量为30 g/L,停留时间为30 min;Fenton氧化最佳工艺条件为:pH=3,H2O2投加量为6 mL/L,停留时间为2 h。将2种方法联用并进行中试实验,结果表明,对原水的COD去除率可达80%,而且Fenton反应可利用微电解产生的Fe2+,节约成本,运行稳定,效果良好。  相似文献   

15.
Meriç S  Kaptan D  Olmez T 《Chemosphere》2004,54(3):435-441
In this study, Reactive Black 5 (RB5) was removed from synthetic wastewater using Fenton's oxidation (FO) process. Experiments were conducted on the samples containing 100 and 200 mg l(-1) of RB5 to remove the dye toxicity. Seventy-five milligram per litre of RB5 caused 25% toxicity on 24-h born daphnids whereas 100 mg l(-1) of RB5 displayed 100% toxicity on Daphnia magna. The study was performed in a systematic approach searching optimum values of FeSO(4) and H(2)O(2) concentrations, pH and temperature. Optimum pH and temperature for 100 mg l(-1) of RB5 were observed as 3.0 and 40 degrees C, respectively, using 100 mg l(-1) of FeSO(4) and 400 mg l(-1) of H(2)O(2) resulted in 71% chemical oxygen demand (COD) and 99% color removal. For 200 mg l(-1) of RB5, 84% COD removal was obtained using 225 mg l(-1) of FeSO(4) and 1000 mg l(-1) of H(2)O(2) yielding 0.05 molar ratio at pH 3.0 and 40 degrees C. Color removal was also more than 99%. The optimum conditions determined in accordance with the literature data. The H(2)O(2) requirement seems to be related to initial COD of the sample. FeSO(4)/H(2)O(2) ratios found were not changed for both concentrations. The temperature affected the COD removal significantly at high degrees. Toxicity was completely removed for each concentration of RB5 at optimum removal conditions.  相似文献   

16.
Wastewaters containing chlorophenol compounds are difficult to treat by biological means because of the toxic effects of those compounds on microorganisms. To investigate the adverse effects of chlorophenols on microorganisms, synthetic wastewater containing 2,4 dichlorophenol (DCP) was biologically treated in an activated sludge unit at different hydraulic residence times (HRTs) between 5 and 40 hours, whereas the feed chemical oxygen demand (COD), DCP concentrations, and sludge age were kept constant at 2500 +/- 50 mg/L, 150 mg/L, and 20 days, respectively. The resazurin method based on dehydrogenase activity was used for assessment of the feed and effluent wastewater toxicity. Percent COD, DCP, and toxicity removals increased, and the effluent COD, DCP, and toxicity levels decreased with increasing HRT. Biomass concentration in the aeration tank increased with increasing HRT because of low levels of DCP at high HRT levels, resulting in high COD, DCP, and toxicity removals. The sludge volume index decreased with increasing HRT, yielding well-settling organisms as a result of low levels of toxicity and high concentrations of active cells. Percent DCP and COD removals decreased with increasing specific DCP loading rate. The rates of DCP and COD removals showed a maximum at a low DCP concentration of 6 mg/L in the aeration tank, corresponding to a 25-hour HRT.  相似文献   

17.
Li YM  Gu GW  Zhao JF  Yu HQ  Qiu YL  Peng YZ 《Chemosphere》2003,52(6):997-1005
Coke-plant wastewater was treated by an anaerobic-anoxic-aerobic (A(1)-A(2)-O) biofilm system and an anoxic-aerobic (A/O) biofilm system, respectively. At same or similar levels of hydraulic retention time (HRT), the two systems had almost identical chemical oxygen demand (COD) and NH(3) removals, but a different organic-N removal. Set-up of an acidogenic stage benefited for the removal of organic-N and the A(1)-A(2)-O system was more useful for total nitrogen removal than the A-O system. HRT did not have a substantial effect on the COD and NH(3)-N removal efficiencies, but considerably influenced the organic-N removal and distribution of oxidized nitrogen in the final effluent. The GC/MS analysis demonstrated that some refractory compounds were decomposed at the acidogenic stage and resulted in the production of some intermediates, which were more readily degraded in the subsequent aerobic stage. Hence, the A(1)-A(2)-O system had better effluent quality than the A-O system in terms of effluent composition.  相似文献   

18.
Literature shows that full-scale pure-oxygen activated sludge (O2-AS) wastewater treatment plants (WWTPs) generate effluents with higher dissolved-organic carbon (DOC) concentrations and larger high-molecular-weight fractions compared to air-activated-sludge (Air-AS) WWTP effluents. The purpose of this paper was to evaluate how gas supplied (air vs. pure oxygen) to sequencing-batch reactors affected DOC transformations. The main conclusions of this paper are (a) O2-AS effluent DOC is more refractory than air-AS effluent DOC; and (b) O2-AS systems may have higher five-day biochemical oxygen demand removals than air-AS systems; however, in terms of COD and DOC removal, air-AS systems are better than O2-AS systems. Analysis of a database from side-by-side O2- and air-AS pilot tests from literature supported these observations.  相似文献   

19.
Three wastewater samples from a pharmaceutical plant formulating medical ointments were subjected to lab-scale treatment by a Fenton-like system in combination with lime coagulation. All samples were plant pre-treated by adsorption/flocculation/filtration processes with utilization of bentonite, but the quality of effluents did not comply with the regulations for wastewater discharged to local sewerage. The optimization of Fenton-like oxidation demonstrated the highest process efficacy at H(2)O(2)/COD weight ratio of 2:1, H(2)O(2)/Fe(2+) molar ratio of 10:1 and 2h of treatment time. The fast pH decrease to acidic values approximately 3 during first min of oxidation for all effluents suggested that pH adjustment was unnecessary. Combination of Fe(III) precipitation and lime coagulation proved feasible to improve considerably COD and residual iron concentration reduction in pharmaceutical effluents. Additionally, considerable BOD(7) reduction and BOD(7)/COD ratio improvement of pharmaceutical wastewater samples was achieved by combined treatment. The application of Fenton-like oxidation with subsequent iron (III)/lime coagulation did not only enhance the quality of pharmaceutical effluents with different chemical characteristics and help to meet the requirements for wastewater discharged to sewage, but also improve the biodegradability of pharmaceutical effluents.  相似文献   

20.
Zhao X  Zhang B  Liu H  Chen F  Li A  Qu J 《Chemosphere》2012,87(6):631-636
The treatment of the plugboard wastewater was performed by an optimal electrocoagulation and electro-Fenton. The organic components with suspended fractions accounting for 30% COD were preferably removed via electrocoagulation at initial 5 min. In contrast, the removal efficiency was increased to 76% with the addition of H(2)O(2). The electrogenerated Fe(2+) reacts with H(2)O(2) and leads to the generation of (·)OH, which is responsible for the higher COD removal. However, overdosage H(2)O(2) will consume (·)OH generated in the electro-Fenton process and lead to the low COD removal. The COD removal efficiency decreased with the increased pH. The concentration of Fe(2+) ions was dependent on the solution pH, H(2)O(2) dosage and current density. The changes of organic characteristics in coagulation and oxidation process were differenced and evaluated using gel permeation chromatography, fluorescence excitation-emission scans and Fourier transform infrared spectroscopy. The fraction of the wastewater with aromatic structure and large molecular weight was decomposed into aliphatic structure and small molecular weight fraction in the electro-Fenton process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号