首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lipid content and fatty acid composition of the small common wrasse Symphodus ocellatus was analysed within two populations located in very different biotopes on the French shore: a Caulerpa taxifolia meadow located in Cap Martin and a Posidonia oceanica bed located in Villefranche. Polar lipids represented 82–90% of the total lipid in adult female livers, gonads and in eggs. Cholesterol in gonads and eggs and triacylglycerols in livers were the dominant neutral lipids. Differences in lipid classes were found in livers between the two populations, but not in their gonads and eggs. Moreover, a quantitative difference in total lipid content was evident. Young fish living on the C. taxifolia meadow in winter had 21% less lipid than those living on the P. oceanica bed. The populations of S. ocellatus showed differences between triacylglycerol versus phospholipid fatty acid compositions and between gonad versus liver fatty acid compositions. Moreover, a significant difference was found between both populations in their liver triacylglycerol fatty acid compositions, suggesting a difference in diet. Gut content analysis supported this hypothesis as it showed important differences in the ingested preys between the two populations in January (planktonic vs. benthic, frequency of isopods) and in June (frequency of gastropods). Thus, we found that the fish populations from Villefranche and Cap Martin showed significant differences in body lipids due to different nutritional habits.Communicated by S.A. Poulet, Roscoff  相似文献   

2.
A 6-week feeding trial was conducted with 44-d-old European sea bass (Dicentrarchus labrax L.) in order to examine the effect of various dietary phospholipid (PL) sources on the incorporation of n-3 highly unsaturated fatty acids (HUFA) in tissue lipids. From weaning onwards the fish received diets prepared by coating different lipid fractions (7.5% diet) on an extruded basal diet (92.5% diet). The two PL-free control diets contained 0.5 and 2% of an emulsifier blend, respectively. Seven other diets contained 2% PL, differing by their purity and origin (vegetable or animal). All diets were rendered isolipidic by the addition of hydrogenated coconut oil. Feeding the PL-supplemented diets, except the diet containing hydrolyzed soybean PL (lyso PL), resulted in a higher survival and a 10 to 30% better growth as compared to the PL-free diets. No difference according to the PL origin was observed. The sea bass final lipid content increased with increasing body weight. Also the lipid class composition of the fish was clearly correlated with the final weight gain. Total neutral lipid increased from 51% of total lipid (initial fish) to 76% for fish fed the PL-free diets, and up to 88% for fish fed the sunflower PL. Weaning the fish on the experimental diets induced important changes in their fatty acid profiles characterized by a decrease in 18:3n-3, 20:5n-3 and 20:4n-6 and an increase in saturated fatty acids and 22:6n-3 (DHA). According to the fatty acid composition of both total and polar lipid, the weaned fish could be divided into three groups reflecting the dietary fatty acids: a group fed the vegetable PL, a group fed the animal PL and a PL-deprived group. An effect of dietary PL on the incorporation of dietary n-3 HUFA, more particularly DHA, was noticed. For a similar supply of DHA through the neutral lipids in the diet, fish fed PL-supplemented diets (except for the lyso PL diet) had 10 to 25% higher DHA levels in total and polar lipid than PL-deprived fish. This PL effect was already clear at the end of the weaning and was not related to the presence of n-3 HUFA in the PL source, as suspected in a previous study when feeding egg yolk PL. A better incorporation of DHA was not obtained by replacing the PL by an emulsifier or by lyso PL with higher emulsifying properties. Present results confirm a role of dietary PL in the absorption of dietary neutral lipids, by a mechanism other than emulsification. Received: 27 May 1997 / Accepted: 30 June 1997  相似文献   

3.
Fatty acid analyses are emerging as a powerful technique to probe trophic interactions between organisms. In this paper, the application of both this procedure and gonad index (GI) determination on two populations (intertidal and subtidal) of the echinoid Psammechinus miliaris is reported. The investigation spanned the 3-month spawning period of Scottish west coast populations. In both populations a progressive decrease in the GI was found, coupled with an increasing maturity stage (from mature to spent). Sexual maturation and decrease in GI was synchronous between the two populations. In conjunction, there were distinct changes in gonad biochemistry. Differences in the fatty acid composition of the gonad reflected the changes in sexual maturation. Mature males and females had significant differences in the fatty acid composition of their gonads, whereas post-spawned individuals showed no gender differences. Male urchins had higher levels of polyunsaturated fatty acids (PUFAs) compared to females, and there was a dramatic reduction in the fatty acids 22:6(n−3) and 20:5(n−3) with increasing maturity stage. Using multivariate statistical techniques, these changes in the fatty acid composition of the sea urchin gonad were linked to habitat related diet differences combined with gender differences. These changes in the fatty acid signatures clearly reflect the dual function of the gonad as both a nutrient store and a reproductive organ.  相似文献   

4.
The lipid profiles of a few species of marine unicellular algae and yeast were studied with emphasis on fatty acids as part of a search for the nutritional value of plankton to the diet of marine fish larvae commonly used in marine hatcheries. The general proximate chemistry of rotifers was closely related to the proximate chemistry of the diet organism, exhibiting a higher content of protein and carbohydrate and a lower content of lipid. Major lipids in all algae, yeast and rotifers comprised mono-, di- and tri-glycerides and polar lipids. The algae Chaetoceros gracilis Schutt, Isochrysis galbana Parke and their respective algaefed rotifers exhibited higher amounts of neutral lipids, consisting mainly of cyclic and branched polyunsaturated components. Fatty acid composition of the algae was species-specific, with the highest ratio of polyethylenic to saturated and monoethylenic acid in I. galbana and Phaeodactylum tricornutum Bohlin, and the highest content (15%) of n-3 highly unsaturated fatty acids in Nannochloropsis salina and P. tricornutum. A closely mirrored distribution of the fatty acids, but with a lower amount of n-3 highly unsaturated fatty acids, was present in the respective algae-fed rotifers. Comparison of the fatty acid spectrum of Artemia sp. and Euterpina acutifrons grown in the laboratory on I. galbana with zooplankton samples of E. acutifrons and Oitona nana collected from the sea showed a higher concentration of docosahexaenoic acid (22:6 n-3) in the naturally collected sample. The results indicate that the efficacy of the food algae C. gracilis and I. galbana in increasing the survival of fish larvae in marine hatcheries is not obvious on the sole basis of fatty acid composition.  相似文献   

5.
The fatty acid and alcohol composition of the pelagic amphipod, Themisto libellula, was monitored during the 5 first months of its life cycle (4–20 mm length) in an Arctic fjord, Kongsfjorden, Svalbard. Fatty acids of the three major lipid classes, polar lipids (PL), triacylglycerol (TAG), and wax esters (WE), were analyzed to highlight ontogenic changes in their diet and metabolism. The PL composition of T. libellula did not show any strong variations along their growth except during the first month where an important increase of 20:5(n-3) (EPA) and 22:6(n-3) (DHA) was observed. The TAG composition revealed a clear gradient corresponding to a diet shift from omnivorous juveniles toward carnivorous sub-adults and adults. Indeed, fatty acid trophic markers of diatoms were dominant in the juveniles, whereas 20:1(n-9) and 22:1(n-11), the Calanus sp. trophic markers, overwhelmed in the older stages. The WE composition highlighted the same general trend, however, differences were found with the TAG and are discussed as a result of differences in turnover rates and assimilation pathways between the two lipid classes.  相似文献   

6.
The plasma nonesterified fatty acids (NEFA) of five species of temperate zone marine teleost fishes (Northwestern Atlantic), one Arctic marine teleost (Eastern Canadian Arctic), and four species of marine elasmobranchs (Northwestern Atlantic) are reported. Four fatty acids, 16:0, 18:1n9, 20:5n3 and 22:6n3, comprised 70 to 83% of total NEFA in the plasma of all temperate teleost species examined. With the sole exception of 18:1, these differed from the predominant fatty acids, 14:1, 16:1, 18:1 and 20:5n3, in the Arctic species. The predominant fatty acids in elasmobranch NEFA were 16:0, 22:6n3 and 18:1n9 in all species but saturated fatty acids (14:0, 16:0 and 18:0) accounted for 40% of all NEFA in all elasmobranchs examined. Monoenes represented a greater, and polyenes a smaller, percentage of the fatty acids in the Arctic sculpin compared to the temperate sculpin. Fatty acids of the n3 series were lower in the plasma of the Arctic sculpin compared to the temperate sculpin. Comparisons with published values for freshwater fish using the same method indicate the n3:n6 ratio is higher in the marine teleost fishes. Ratios of n3:n6 fatty acids ranged from 1.80 to 7.94 for the elasmobranchs and were on average lower than those for the marine teleosts. Total levels of NEFA for the elasmobranchs were between 193 and 399 nmol ml-1, lower than the values reported here for teleosts but within the range reported by others for some teleost fishes.  相似文献   

7.
Wax esters, which function as reserve fuels, account for 25 to 40% of the lipid of the pelagic copepod Calanus helgolandicus (Copepoda, Calanoida). In laboratory experiments with these crustaceans, diatoms (Lauderia borealis, Chaetoceros curvisetus, and Skeletonema costatum) and dinoflagellates (Gymnodinium splendens), which contained no wax esters, were used as food. Changes in the food concentration affected both the amount of lipid and the composition of the wax esters. Since the fatty acids of the triglycerides and wax esters of C. helgolandicus resembled the dietary fatty acid composition, it appeared that copepods incorporated their dietary fatty acids largely unchanged into their wax esters. The polyunsaturated alcohols of the wax esters did not correspond in carbon numbers or degrees of unsaturation to the dietary fatty acids. We postulate two different metabolic pools to explain the origin of these long chain alcohols. The phospholipid fatty acids were not affected by changes in the amount or type of food, probably because of their structural function.  相似文献   

8.
Condition indices (CI), hepatosomatic indices (HSI) and proximate, lipid and fatty acid composition of wild and laboratory-reared yellowtail flounder (Limanda ferruginea) (Storer, 1839) were compared from data taken throughout spring and summer 1996–1998. Cluster analysis was performed on the fatty acid signatures of these two groups along with a commercial diet and several invertebrate species to determine possible feeding patterns in Conception Bay, Newfoundland. HSI and levels of storage fat were significantly higher in the muscle and liver of laboratory-reared yellowtail flounder, indicating an efficient absorption of dietary lipid and an increase in fat deposition. Fatty acid analysis of the liver showed that wild fish contained significantly higher proportions of the essential fatty acids 20:46, 20:53 and 22:63; whereas proportions of 18:1 and 18:26 were significantly higher in all fractions of lipid examined from laboratory-reared fish than they were from wild fish. Polar fractions of lipid were more similar than the neutral fraction of lipid when comparing wild and laboratory-reared fish. Taken together, the differences in CI, HSI, proximate and fatty acid composition suggest that feeding commercial diets to L. ferruginea can cause changes in patterns of lipid deposition and metabolism. Cluster analysis of marine plankton, sedimenting particulate matter, wild invertebrates, the commercial diet and fish tissues showed that the fatty acid signatures of both wild and laboratory-reared yellowtail flounder closely resembled their respective food items. Fatty acid signatures from wild fish were more closely related to plankton and settling particulate matter, suggesting relatively few steps in the food web leading to yellowtail flounder. In addition to the resemblance between fatty acids in the commercial diet and the tissues of laboratory-reared yellowtail flounder, these fish had similar fatty acid signatures to those of wild invertebrates.Communicated by J.P. Grassle, New Brunswick  相似文献   

9.
The membranes of elasmobranch liver mitochondria differ substantially from those of other marine fish. Although the proportions of the major phospholipids in elasmobranch mitochondria are similar to those of other marine fish, there are considerable differences in the fatty acid content of the phospholipids. Specifically, the percentage of saturated fatty acids is much higher, the polyunsaturated fatty acid content is much lower and the chain length is shorter than is typical of other non-urea retaining fishes. The tissues of elasmobranch fishes are unusual in that they contain the chaotropic agent urea at levels that are capable of disrupting the hydrophobic interactions responsible for membrane integrity. The mitochondrial membrane properties of the elasmobranch are consistent with those needed to maintain membrane integrity in the presence of physiological amounts of urea and indicate membrane adaptation to urea. Present address: INRS eau 2800 Rue Einstein, suite 105 Case Postale, 7500, Sainte Foy, Quebec G1V 4C7 Canada  相似文献   

10.
The saturated fatty acids in lipids of the mummichog Fundulus heteroclitus (L.) contain the characteristic bacterial cis-9,10-methylenehexadecanoic and cis-9,10-methyleneoctadecanoic acids in addition to straight-chain, iso, anteiso and multi-branched fatty acids. To ascertain whether the cyclopropanoid fatty acids (CFA) might be used as a marker for bacterial components in the mummichog diet, the saturated fatty acids of detritus were compared with those of fish intestines and their contents, and with those of eviscerated fish. The relative amounts of individual fatty acids in each sample indicated that microorganisms or invertebrate animals that consume microorganisms constitute a part of the mummichog's diet. A similar analysis of anterior and posterior sections of the fish intestines showed a higher concentration of CFA in the posterior section, suggesting that at least some of the cyclic acids might originate from the resident bacterial gut population. When a group of mummichogs was maintained on a beef-liver diet devoid of cyclic acids, carcass lipids were not depleted of CFA. Instead, an increase in concentration was observed. It was concluded that the intestinal microflora have a role in supplying CFA to mummichog lipids. Since the overall results indicate that these acids are derived from commensal bacteria as well as from bacteria associated with the diet, it is not possible to use such compounds as food-chain markers.  相似文献   

11.
Alterations in the levels of lipid metabolites, total lipids and free fatty acids, were studied in physiologically important tissues viz; liver, muscle, kidney and ovary of a freshwater edible fish Clarias batrachus. The fish was exposed to sublethal concentration (1/3 of LC50 value for 96?h) of a synthetic pyrethroid insecticide, cypermethrin for 1, 5 and 10 days. After 10 days of exposure, fish were released into fresh water and total lipids and free fatty acids were determined at intervals of 1, 5 and 10 days to assess fish recovery response after cessation of cypermethrin exposure. Fish showed an increased rate of lipogenesis in liver, muscle, kidney and ovary during the exposure period followed by a decrease after transfer of fish into fresh water. There was also an elevation in liver and kidney free fatty acids contents, while the muscle and ovary free fatty acid contents were reduced during exposure period. The alterations in free fatty acids were restored to near normal values after 10 days of cessation of exposure.  相似文献   

12.
Otolith microchemistry is widely used as a tool to track individual migration pathways of diadromous fish under the assumption that the elemental composition of fish otoliths is directly influenced by the physicochemical properties of the surrounding water. Nevertheless, several endogenous factors are reported to affect element incorporation into fish otoliths and might lead to misinterpretations of migration studies. This study experimentally examined the influence of eight different diets on the microchemical composition of European eel (Anguilla anguilla) otoliths using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Seven natural prey types and one artificial diet were fed during 8 weeks in freshwater circuits. Results show for the first time that food has no significant influence on the incorporation of Na, Sr, Ba, Mg, Mn, Cu and Y into European eel otoliths. This indicates that the incorporation of elements usually chosen for migration studies is not affected by diet and that individual feeding behaviour of A. anguilla will not lead to any misinterpretation of migration pathways.  相似文献   

13.
Larval growth rate and settlement of the European flat oyster Ostrea edulis were experimentally studied as a function of the composition of dietary fatty acids. Diets differing in fatty acid composition were composed by mixtures of the microalgae Isochrysis galbana, Pavlova lutheri and Chaetoceros calcitrans. Fatty acid content in the tissue of the feeding larvae, analyzed by gas chromatography and mass spectrometry, reflected the composition in the diet. Larval growth rate was significantly correlated to the three omega-3 polyunsaturated fatty acids (PUFA) C18:3, C18:4 and C22:6, with minor differences for neutral and polar lipids. No relation between growth rate and the omega-3 PUFA C20:5 was detected, a PUFA often implied as essential for bivalves. It is suggested that naturally occurring variability in fatty acid composition may constrain larval growth. In settlement experiments in both still water and flume flow little substrate selectivity was found for some contrasting substrates. It is concluded that differences in dietary fatty acids may explain as much of settlement success as the variability of substrates. Received: 12 October 1998 / Accepted: 6 April 1999  相似文献   

14.
The fatty-acid composition of lipids from ovulated eggs of wild and cultured turbot was investigated in order to estimate the nutritional requirements during embryonic and early larval development. Lipid comprised 13.8±0.5% (n=5) and 13.2±0.7% (n=7) of the egg dry weight in wild and cultured turbot, respectively. Polyunsaturated fatty acids (PUFA) of the (n-3) series accounted for 39% of total fatty acids in total lipid of both wild and cultured fish. The predominant (n-3) FUFA was docosahexaenoic acid (22:6 n-3), which also was the most abundant fatty acid in turbot eggs and comprised 24 and 23% of the total egg fatty acids in wild and cultured fish, respectively. Phospholipids, triacylglycerols and cholesterol-wax esters of turbot eggs all exhibited a specific fatty-acid profile distinctly different from that of total lipid. The general pattern of the fatty-acid distribution in lipids of eggs from wild and cultured turbot was similar, but the relative amount of 18:2(n-6) was considerably higher and 20:1(n-9) slightly higher in cultured fish. These differences were extended to all lipid classes and probably reflect the dietary intake of certain vegetable and marine fish oils. Calculations based on light microscopical studies showed that 55 to 60% of the total lipids in cultured turbot eggs are confined to the oil globule. The size of the oil globule remained constant during embryogenesis, and a reduction in size occurred first after hatching and mainly after yolk depletion. This implies that the total amount of lipids utilised during the embryonic development is considerably less than the total lipids present in ovulated turbot eggs. Comparison of the fatty-acid composition of total lipids from eggs and vitellogenin of wild turbot reveals that egg lipids contained a lower level of saturated and a higher level of monounsaturated fatty acids. Eggs also contained wax esters, which were not detected in vitellogenin, suggesting that vitellogenin is not the only source of lipids for turbot eggs.  相似文献   

15.
Fatty acid analysis is an alternative dietary investigation tool that complements the more traditional techniques of stomach content and faecal analysis that are often subject to a wide range of biases. In applying fatty acid analysis to ecosystem studies, it is important to have an understanding of the effect diet has on the fatty acid profile of the predator. A feeding experiment, using crustacean and fish as prey for the European cuttlefish Sepia officinalis, was conducted to evaluate the effect of prey fatty acids on the fatty acid profile of this marine predator. Cuttlefish were fed on a fish diet for the first 29 days, and then changed to a crustacean diet for a further 28 days. Another group of cuttlefish was fed on a crustacean diet for the first 29 days, and then changed to a fish diet for a further 28 days. An analysis of the cuttlefish digestive gland showed that the fatty acid profile reflected that of the prey, with cuttlefish on a crustacean diet being clearly distinguishable from the cuttlefish on a fish diet. Cuttlefish fed on a fish diet for 29 days prior to the switch in diet were comparatively higher in 16:0, AA, 20:1ω9, DPA6, DHA, 22:4ω6 and DPA3 than those fed on crustaceans. Cuttlefish fed on a crustacean diet for 29 days prior to the switch in diet were comparatively higher in 17:1ω8, 18:1ω9, 18:2ω6, 18:1ω7, EPA and 20:2ω6 than those fed on fish. Following a change in diet, the fatty acid profile of the cuttlefish digestive gland reflected that of the new diet within 14 days. The results confirm that the fatty acid profile of the cuttlefish digestive gland clearly reflects the profile of its recent diet. It also shows that the digestive gland may not be an organ that accumulates dietary lipids for long-term storage, but rather is an organ where lipids are rapidly being turned over and potentially excreted.  相似文献   

16.
R. F. Lee 《Marine Biology》1974,26(4):313-318
A build-up of reserve lipid, predominantly wax esters, occurred during the summer in the copepod Calanus hyperboreas, collected off an Arctic ice-island. This lipid storage was correlated with a phytoplankton bloom and was followed by a progressive decrease of lipid from 2.1 mg per individual in September to 0.4 mg in June. There was a rapid decrease in lipid utilization between October and December, followed by much slower decreases until June. Lowered respiration rates or the availability of different types or quantities of food in the winter and spring are possible explantions for the slower rate of lipid use. Laboratory starvation experiments for up to 90 days correlated with results from the field. Gas-liquid chromatographic studies of the lipids showed that both the alcohols and fatty acids of the wax esters were highly variable with season and depth, whereas the phospholipid fatty acids were not affected by changes in these parameters. Only summer samples bad wax esters with a phytoplankton-like fatty acid composition, and upper water winter copepods had wax esters with little polyunsaturation. The deep-water winter copepods had a very different wax-ester composition from the upper water samples, with a predominance of hexadecanol (all other copepod samples had 20:1 and 22:11 as the principal alcohols) and a high content of polyunsaturated acids. Deep-water C. hyperboreas may differ in food habits and life history from those in the upper water community.  相似文献   

17.
We tested the usefulness of the fatty acid signature-method in investigating the diet of seabirds in conjunction with the conventional technique of stomach-content analysis. We compared the fatty acid composition of subcutaneous white adipose tissue (SWAT) of king penguin chicks (Aptenodytes patagonicus) during fattening periods to that of total lipids from their food. In both spring and autumn, the fatty acid composition of chick SWAT was identical to that of the dietary lipids. Because the diet of adult king penguins feeding for self-maintenance (i.e. not for their chicks) was essentially unknown, we subsequently analysed their SWAT fatty acid patterns after premolting and prebreeding foraging trips (during which they build up large energy reserves). The fatty acid composition of SWAT from adults was identical to that of chick adipose tissue and food. King penguin diet and SWAT were characterized by high levels of very long-chain mono-unsaturated fatty acids (20 to 24 carbon atoms, 16 to 23% by mass) and (n-3) poly-unsaturated fatty acids (19 to 27%); these consisted mainly of 20:1n-9 (5 to 8%) and 22:1n-11 (5 to 8%), and 22:6n-3 (10 to 13%) and 20:5n-3 (3 to 9%), respectively. Prey items identified from chick stomach contents indicated that the bulk of the food was oceanic myctophid fishes, mainly Electrona carlbergi, Krefftichthys anderssoni and Protomyctophum tenisoni. The fatty acid composition of four other species of myctophid fishes was similar to that of penguin diet and SWAT, but markedly different from that measured for a squid species and that reported for crustaceans. These findings indicate that adult king penguins prey on myctophid fish not only to feed their chicks but also for their own nutrition. The fatty acid signature-technique is therefore a reliable method to gain information on the food and feeding ecology of seabirds when more conventional techniques are of limited value. Such information is important to the understanding of trophic relationships between key species of the ecosystems, and also to provide insight into the nature of avian adaptations to the marine environment. Received: 11 December 1997 / Accepted: 25 July 1998  相似文献   

18.
The lipid/fatty acid composition of marine fish eggs and larvae is linked with buoyancy regulation, but our understanding of such processes is largely restricted to species with pelagic eggs. In this study, we examined developmental changes in the lipid/fatty acids of eggs and embryos of Pacific cod (Gadus macrocephalus), a species that spawns demersal eggs along coastal shelf edges, but as larvae must make a rapid transition to the upper reaches of the water column. Adult Pacific cod were collected in the Gulf of Alaska during the spawning season and eggs of two females were artificially fertilized with sperm from three males for each female. The eggs were subsequently reared in the laboratory to determine (1) how lipids/fatty acids were catabolized during egg and larval development, and (2) whether lipid/fatty acid catabolism had measurable effects on egg/embryo density. Eggs incubated at 4°C began hatching after 3-weeks and continued to hatch over a 10-day period, during which there was a distinct shift in lipid classes (phospholipids (PL), triacyglycerols (TAG), and sterols (ST)) and essential fatty acids (EFAs: 22:6n-3 (DHA), 20:5n-3 (EPA), and 20:4n-6 (AA)). In the egg stage, total lipid content steadily decreased during the first 60% of development, but just prior to hatch we observed an unexpected 2–3-fold lipid increase (~6–9 μg individual−1) and a significant drop in egg density. The increase in lipids was largely driven by PL, with evidence of long-chained fatty acid synthesis. Late-hatching larvae had progressively decreasing lipid and fatty acid reserves, suggesting a shift from lipogenesis to lipid catabolism with continued larval development. Egg density measures suggest that lipid/fatty acid composition is linked to buoyancy regulation as larvae shift from a demersal to a pelagic existence following hatch. The biochemical pathway by which Pacific cod are apparently able to synthesize EFAs is unknown, therefore representing a remarkable finding meriting further investigation.  相似文献   

19.
Freshly caught orange roughy (Hoplostethus atlanticus) obtained at the edge of the Chatham Rise, east of the South Island of New Zealand, in June 1988, were used to investigate tissue-specific lipid synthesis and to obtain blood for plasma lipoprotein analysis. Tissue slices prepared from an intraneurocranial fat deposit, pieces of skull (neurocranium), swimbladder and liver were incubated with radioactive acetate, palmitate and oleate, and the labelled lipids extracted and analysed. All four tissues could incorporate acetate label into fatty acids which were themselves incorporated into triacylglycerols and phospholipids although not into wax esters, the most abundant lipid class in these tissues. Exogenous palmitate and oleate were also incorporated into more complex lipids, with the label from oleate (but not palmitate) being found in wax esters as well as triacylglycerols and phospholipids. The distribution of the label in the wax esters showed that some reduction of the fatty acid to fatty alcohol had occurred. The only exception to this pattern was the swimbladder, which incorporated small amounts of palmitate-label into both the fatty acid and fatty alcohol portions of the wax esters. Lipoproteins were isolated from serum by centrifugation. All lipoprotein classes contained phospholipid, cholesterol, triacylglycerol, cholesteryl esters and wax esters. A very low-density lipoprotein class also contained large amounts of unesterified fatty acids, which are possibly artefacts resulting from storage of the samples. Significant quantities of-3 fatty acids were also found in the serum lipids.  相似文献   

20.
The composition of lipids and fatty acids was determined for the livers, muscle, pancreas, kidney and stomach fluids of deepwater chondrichthyan species (including 11 squaliformes, 3 chimaeriformes, 1 hexanchiforme and 3 carcharhiniformes) caught as bycatch from continental waters off south-eastern Australia. The lipid class, fatty acid and fatty alcohol composition differed markedly in each tissue and in each species. The lipid and fatty acid composition of large, lipid-rich (38–70% wet weight, ww) livers demonstrated the multifunctional role of this organ in: lipid distribution, storage and biosynthesis, and buoyancy regulation. In the liver, the importance of certain lipids (including squalene, diacylglyceryl ethers, triacylglycerols and to a lesser extent wax esters) as mediators of buoyancy varied according to lifestyle and habitat. Less variability was observed in the muscle profiles, characterized by low lipid content (<1.0% ww) and high relative levels of polar lipids (>70%). The lipid and fatty acid profiles of the kidney and pancreas showed the highest intraspecific variability, suggesting these organs also have complex roles in lipid storage and metabolism. Overall intra- and interspecific differences in the tissue fatty acid profiles could be related to differences in a number of factors including phylogeny, habitat (depth), buoyancy regulation and diet and presumably also reflect different ecological roles. The lipid and fatty acid profiles are the first published for Rhinochimaera pacifica, Chimaera lignaria and Figaro boardmani and the first to demonstrate interspecific variation in lipid profiles of various tissues of deepwater chondrichthyans. The application of multivariate analysis to lipid class and fatty acid tissue profiles in chondrichthyans inferred dietary differences and metabolic preferences between species and habitats. These results have important implications for the future use of fatty acids as dietary tracers in chondrichthyan research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号