首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Males of the cactophilic fruitfly, Drosophila pachea, produce relatively few but very large sperm, and partition their limited gamete numbers among successive mates. The present study found that males take 10 days longer than females, post-eclosion, to become sexually mature. The pattern of testes development suggests that the need to produce testes long enough to manufacture the giant sperm is the cause of the delayed male maturity. These findings generate the prediction that the operational sex ratio (OSR) of populations will be female-biased. The size, sex ratio, and OSR of natural populations were examined. In general, local populations tended to be small and sex ratios tended to be slightly male-biased. However, as predicted, the OSR of populations, at least in one season, tended to be female-biased, with an average of 2.3 receptive females for each sexually active male. Results of laboratory experiments to determine the relationship between female remating frequency and fitness, and between population OSR and productivity, suggest that natural populations with female-biased OSRs are sperm-limited. The origin and maintenance of sperm gigantism and the unusual sperm-partitioning behavior of males are discussed with respect to population structure.  相似文献   

2.
Potential rates of reproduction (PRR) differ between the sexes of many animal species. Adult sex ratios together with PRR are expected to determine the operational sex ratio (OSR) defined as the ratio of fertilizable females to sexually active males at any given time. OSR is expected to determine the degree to which one sex competes for another—the limiting sex. We explored the potential for mate limitation in an intertidal amphipod, Corophium volutator (Pallas). Males have higher PRR than females, but males may be limiting because of extreme female-biased sex ratios observed in this species. Consistent with this idea, late season females were less likely to be ovigerous and had smaller size-specific clutches, both of which were associated with seasonal declines in availability of males of reproductive size. Seasonal changes in ovigery could not be explained by seasonal changes across sites in other factors (e.g., female body size or phenology of breeding). Smaller females were less likely to become ovigerous later in the season at three of four sites. Seasonal reductions in clutch size also occurred among small females expected to be reproducing for their first time. In complimentary laboratory experiments, reduced likelihood of ovigery and reduced fecundity occurred when the number of receptive females was increased relative to availability of a reproductively active male. Our results suggest male mate limitation can occur seasonally in this species and that male limitation is regionally widespread and may affect recruitment.  相似文献   

3.
There are at least two mechanisms by which social monogamy in the absence of biparental care may evolve: as a form of territorial cooperation, in which one or both sexes benefits by sharing a territory with a partner, and as a form of extended mate guarding, in which males guard females through entire, and perhaps multiple, reproductive cycles. I examined the effects of population variables (density, sex ratio, female synchrony) on male pairing behavior in the snapping shrimp, Alpheus angulatus, to test the hypothesis that social monogamy in this genus has evolved as a result of selection on males for long-term mate guarding of females. There was no evidence that pairing behavior changes with differences in population density; in a natural population, there was a 1:1 relationship between the number in pairs and local population density. In a laboratory experiment, males altered their pairing behavior in response to manipulated differences in sex ratio. Males in female-biased sex ratios were significantly more likely to abandon recently mated females than males in equivalent sex ratios, though there was no significant difference in the duration of pairing or the number of times males switched females. Observations of shrimp maintained for an extended period in the laboratory revealed no evidence that females molt and become sexually receptive synchronously, which would reduce the likelihood that a searching male would encounter additional receptive females. These data suggest that sex ratio may have contributed to the evolution of social monogamy in snapping shrimp, but provide no evidence that population density or female synchronous receptivity have contributed to the evolution of social monogamy.  相似文献   

4.
In the pipefish Syngnathus typhle, only males brood embryos in specially developed brood pouches, supplying oxygen and nutrients. Laboratory studies have shown that this elaborate paternal care has led to sex-role reversal in this species: males limit female reproductive rate, females are the primary competitors for mates and males exercise greater selectivity in accepting mates. In the first field study of this pipefish, we describe mating behaviour in the wild and test the hypothesis that temporal variations in the operational sex ratio (OSR) determine sex differences in mating behaviour. Our study comprised two reproductive seasons of two sequential mating periods each, the latter separated by a lengthy interval of male brooding. During mating periods, females displayed to all males without wandering and males moved about searching for females, without reacting to all females. The OSR was least female-biased (or even male-biased) at the onset of the breeding season, when most pipefish were simultaneously available to mate, but became strikingly female-biased as males' pouches were filled. The OSR remained substantially female-biased during the second mating period, because few males became available to remate at any one time. As hypothesised, female-biased OSRs resulted in more female-female meetings. As well, females were above the eelgrass more often than brooding males, thus exposing themselves to conspecifics and/ or predators. In the second year, males arrived earlier than females on the breeding site and male pregnancies were shorter, because of higher water temperatures, so rematings occurred earlier. Males met more often during that year than the previous one, but male competitive interactions were still not observed. The field results support laboratory studies and demonstrate that behaviours associated with female-female competition are more prominent when the OSR is more female-biased. Correspondence to: A. Vincent  相似文献   

5.
To resolve conflicting field observations regarding the action of sexual selection, we used breeding experiments and paternity analysis of the 927 resulting offspring to assess how male size, condition, tail length, genetic similarity to the female, and variation in operational sex ratio (OSR) affected male reproductive success and the incidence of polyandry in northern watersnakes (Nerodia sipedon). Only size affected male mating success. Large males were more successful, but only when male size varied substantially and competition among males was intense (i.e., male-biased OSR). The conditional nature of the size advantage may explain why studies of free-living watersnakes have produced inconsistent results regarding the relationship between male size and mating success. Size differences between males did not affect the proportion of offspring each male sired within multiply sired litters. We found positive size-assortative mating, but only when the OSR was female biased, suggesting that smaller males had improved access to females when competition among males was reduced, but that competition with larger males still restricted mating opportunities of small males to less preferred, smaller females. Most litters (58%) were multiply sired and larger females were more likely to produce multiply sired litters, similar to free-living watersnakes. There was no association between the incidence of multiple paternity and OSR, however, suggesting that polyandry is not simply a function of opportunity, with females passively waiting for males to court them.  相似文献   

6.
In katydids such as Kawanaphilanartee, a female bias in the operational sex ratio (OSR) results in female competition for mates and male choice of mates. Previous work showed that the excess of sexually active females occurs when food availability is low, in part because less food increases the propensity of females to mate as they forage for the large edible spermatophores produced by males. In this study with K.nartee, a pollen-feeding species, we estimate natural variation in numbers of sexually active males and females by assessing male calling activity and the propensity of females to respond to experimental calling males. We found an excess of sexually active males at a site with many flowers and an excess of sexually active females at a site with few flowers about 900 m away. Between-site differences in gut masses of calling males were consistent with the hypothesis that pollen availability controls OSR. Finally, at a third site where flowers were at first scarce, we found that the initial excess in sexually active females changed to an excess of sexually active males after a clump of grass-trees flowered. The mean gut mass of all sampled males from this site increased after flowering. The large variation in OSR that we document for K. nartee highlights the importance of identifying the appropriate spatial and temporal scales over which OSRs are measured in studies of factors controlling sexual selection. Received: 13 May 1997 / Accepted after revision: 27 October 1997  相似文献   

7.
Abstract: Species that have temperature‐dependent sex determination (TSD) often produce highly skewed offspring sex ratios contrary to long‐standing theoretical predictions. This ecological enigma has provoked concern that climate change may induce the production of single‐sex generations and hence lead to population extirpation. All species of sea turtles exhibit TSD, many are already endangered, and most already produce sex ratios skewed to the sex produced at warmer temperatures (females). We tracked male loggerhead turtles (Caretta caretta) from Zakynthos, Greece, throughout the entire interval between successive breeding seasons and identified individuals on their breeding grounds, using photoidentification, to determine breeding periodicity and operational sex ratios. Males returned to breed at least twice as frequently as females. We estimated that the hatchling sex ratio of 70:30 female to male for this rookery will translate into an overall operational sex ratio (OSR) (i.e., ratio of total number of males vs females breeding each year) of close to 50:50 female to male. We followed three male turtles for between 10 and 12 months during which time they all traveled back to the breeding grounds. Flipper tagging revealed the proportion of females returning to nest after intervals of 1, 2, 3, and 4 years were 0.21, 0.38, 0.29, and 0.12, respectively (mean interval 2.3 years). A further nine male turtles were tracked for short periods to determine their departure date from the breeding grounds. These departure dates were combined with a photoidentification data set of 165 individuals identified on in‐water transect surveys at the start of the breeding season to develop a statistical model of the population dynamics. This model produced a maximum likelihood estimate that males visit the breeding site 2.6 times more often than females (95%CI 2.1, 3.1), which was consistent with the data from satellite tracking and flipper tagging. Increased frequency of male breeding will help ameliorate female‐biased hatchling sex ratios. Combined with the ability of males to fertilize the eggs of many females and for females to store sperm to fertilize many clutches, our results imply that effects of climate change on the viability of sea turtle populations are likely to be less acute than previously suspected.  相似文献   

8.
Socioecological theory predicts that the distribution of fertile females in space and time is the major determinant of male spacing behavior and mating strategies. Using a small nocturnal Malagasy primate, the gray mouse lemur (Microcebus murinus), we determined the spatiotemporal distribution of estrous females during the brief annual mating season to examine the predictive power of the socioecological model for male mating strategies. Mouse lemurs are particularly interesting in this respect because this polygynous species is characterized by seasonal reproduction, seasonally reversed sexual dimorphism, and relatively large testes. All resident animals in our 8-ha study area, a total of 30 adult males and 27 adult females, were individually marked and regularly recaptured to determine female reproductive status and to obtain home range data. We found that the mating season is limited to 4 weeks following female emergence from hibernation. Only 3-9 females could have synchronized estruses during a given week, indicating a moderately high male monopolization potential. However, receptive females were not spatially clumped and male ranges overlapped with those of many other rivals. Therefore, we suggest that individual powerful males may be unable to defend exclusive permanent access to receptive females because of prohibitive costs of range defense resulting from the strongly male-biased operational sex ratio and the corresponding intruder pressure. Our general conclusions are (1) that the socioecological model provides a useful heuristic framework for the study of mating systems, but that (2) it does not specify the degree of spatiotemporal clumping of receptive females at which male mating strategies switch among mate guarding, spatial exclusion of rivals, and roaming, and that (3) the operational sex ratio can have profound effects on male mating strategies as well.  相似文献   

9.
Male bushcrickets, Kawanaphila nartee, exercise mate choice when nutrients are limited. Male mate choice is associated with a female-biased operational sex ratio (OSR) that arises from an increased relative paternal investment under nutrient limitation. However, increased male choosiness could be attributable to the fact that females vary more in fecundity, and consequently in mate quality, when nutrient limited. Our objective was to experimentally partition the influences of OSR (male or female bias) and variance in mate quality (high or low) and to assess their relative influence on the intensity of mate choice by male bushcrickets. Female quality was manipulated by controlled feeding regimes that directly affected female fecundity. We found that males and females engaged in sexual interactions sooner under a male-biased than a female-biased OSR. Males were more likely to reject females on their first encounter when variance in female quality was high. However, the effect of quality variance on the total number of rejections during a 4-h observation period was dependent on the perceived OSR. A male's prior experience of variance in female quality did not influence male choosiness. Our observed rates of mate rejection conformed well with those predicted from recent theoretical models of sexual differences in choosiness. In conclusion, our results show that the opportunity for selection via male mate choice is influenced by an interaction between OSR and the variance in mate quality that arises within nutrient-limited populations of females. Received: 5 January 1998 / Accepted after revision: 25 October 1998  相似文献   

10.
The primates of Madagascar (Lemuriformes) deviate from fundamental predictions of sexual selection theory in that polygynous species lack sexual dimorphism, have even adult sex ratios and often live in female-dominated societies. It has been hypothesized that intrasexual selection in these species is either reduced or primarily focused on traits related to scramble competition. The goal of this study was to examine these hypotheses by studying the mating system of a solitary nocturnal species, Mirzacoquereli. During a 4-year field study in western Madagascar, I captured and followed 88 individually marked animals. I found that adult males were significantly larger than females, providing the first evidence for sexual size dimorphism in lemurs. In addition, the adult sex ratio was biased in favour of females in 3 out of 4 years. There was no significant sex difference in canine size, however. Males showed pronounced seasonal variation in testis size with a 5-fold increase before and during the short annual mating season. During the mating season, males had more injuries than females and more than quadrupled their home ranges, overlapping with those of more than ten females, but also with about the same number of rivals. Only about one social interaction per 10 h of observation was recorded, but none of them were matings. Together, these results indicate that these solitary lemurs are clearly subject to intrasexual selection and that male-male competition is primarily, but not exclusively, of the scramble type. In addition, they suggest that the above-mentioned idiosyncracies may be limited to group-living lemurs, that social systems of solitary primates are more diverse than previously thought, and that the temporal distribution of receptive females is responsible for this particular male mating strategy. Received: 11 January 1997 / Accepted after revision: 18 April 1997  相似文献   

11.
We investigated the effects of male population density and male-biased operational sex ratio (OSR) with constant and limited resource density on male mating tactics shown by a freshwater fish, the European bitterling, Rhodeus sericeus. This species spawns inside living unionid mussels. Large males defended territories and were aggressive towards conspecifics under equal sex ratios. They also monopolised pair spawnings with females, releasing 98% of all sperm clouds during mating. However, the mating tactic changed at high male density where large males ceased to be territorial and instead competed with groups of smaller males to release sperm when females spawned. Large, medium and small males now obtained 61%, 33%, and 6% of sperm releases respectively, thereby reducing the opportunity for sexual selection by half. Females spawned at equal rates in the two densities of males, despite lower courtship at high density. These results run counter to the usual expectation that an increasingly male-biased OSR should lead to higher variance in male mating success. Instead, the use of alternative reproductive behaviours by males can lead to lower resource competition and mating variance at high male densities.  相似文献   

12.
Operational sex ratio (OSR) theory predicts that sexual differences in potential reproductive rates (PRRs) create biases in the OSR and thus determine the relative strength of sexual selection (competition and choice) operating on each sex. Although this theory is well accepted, empirical studies that quantify it are still lacking. This paper presents such a study. I measured the natural OSR of Galilee St. Peter’s fish (Sarotherodon galilaeus) in the field (Lake Kinneret) and examined the direction of mate choice in the laboratory. The OSR in Lake Kinneret was male biased. Both a male-biased sex ratio and higher male reproductive rates (twice as fast as females) contributed to the skew in the OSR, but the sexual differences in PRR were shown to be the main factor causing variation in the OSR. Females, the sex with the lower PRR, were more selective for mates. The faster male reproductive rate may explain why females are more selective for mates despite varying less in quality. Received: 29 May 1995/Accepted after revision: 13 April 1996  相似文献   

13.
In laboratory and field studies of the walnut fly, Rhagoletis juglandis Cresson (Diptera: Tephritidae), we assessed the effect of operational sex ratio on copulation duration and partitioned the sex ratio effect into component effects due to male density and female density. In our first laboratory experiment, results were clearly consistent with theoretical expectation: increases in male density were associated with significant increases in copulation duration while increases in female density were associated with significant decreases in copulation duration. These component effects yielded a striking composite effect of operational sex ratio (OSR) on copulation duration in which male-biased ratios were associated with low frequencies of short copulations and female-biased ratios were associated with high frequencies of short copulations. Consistent with a priori expectations concerning costs of territorial behavior, the effect of male density on copulation duration was stronger than that of female density. There was no significant interaction between the effects of gender density on copulation duration: each gender density contributed additively to the composite OSR effect on copulation duration. In contrast to the effect of OSR, overall density had little effect. Field data corroborated these findings fully and showed additionally that OSR in the vicinity of fruit tended in nature to be male-biased. In a second laboratory experiment, we measured copulation duration for individuals exposed alternately to male-biased and female-biased ratios. Individual flies consistently copulated for longer in male-biased environments than in female-biased ones. We propose that this plasticity permits individuals to track changes in local sex ratio over space and time and respond appropriately. Received: 15 November 1995/Accepted after revision: 27 April 1996  相似文献   

14.
Group histories and offspring sex ratios in ringtailed lemurs (Lemur catta)   总被引:2,自引:0,他引:2  
Birth sex ratios were examined for ringtailed lemurs (Lemur catta) at the Duke University Primate Center. This population provides a long-term database of births under a variety of demographic and management conditions, including two semi-freeranging groups between which males transfer freely and females defend stable territorial boundaries. We examined three hypotheses usually considered in studies of primate sex ratio bias. The Trivers-Willard hypothesis predicts that dominant females produce males, local resource competition at the population level (LRC-population) predicts that the dispersing sex (males) will be overproduced in dense populations, and local resource competition among individuals (LRC-individual) predicts that dominant females overproduce the philopatric sex (females). We also examined a fourth hypothesis, local resource enhancement (LRE), which is usually subsumed under LRC-individual in studies of primate sex ratio evolution. LRE predicts that under certain conditions, females will produce the sex that provides later cooperative benefits, such as alliance support for within- or between-group competition. Our data provide support for LRE: females overproduce daughters given prospects of new group formation, either through group fission or threatened expulsion of young mothers. Behavioral data from Duke and also wild populations show that daughters serve mothers as important allies in this context and LRE effects also have been documented in other mammals that experience similar group histories. Nonsignificant trends in the data supported the LRC-population hypothesis, and we suggest that LRC interacts with LRE to explain offspring sex ratios in ringtailed lemurs. Received: 27 August 1999 / Received in revised form: 6 March 2000 / Accepted: 18 March 2000  相似文献   

15.
Both modelling and field data from three breeding seasons show that an environmental factor, clutch loss (CL), affects the operational sex ratio (OSR) and therefore male mating frequency in strawberry poison frogs. Clutch loss affects the length of reproductive cycles of both sexes: with increasing clutch losses, males spend proportionately more time than females in parental investment activities. Because of this, males spend relatively less time in the mating pool, i.e. exhibit proportionately more time-out than females in comparison to a situation with low or no clutch loss. Hence, clutch loss leads to a less male-biased OSR, coupled with a decrease in the opportunity for sexual selection. Furthermore, this study resolves an apparent paradox, the negative correlation between mating frequency and reproductive success (=number of produced tadpoles) of individual males in one breeding season. Clutch loss decouples the correlation between mating frequency and reproductive success because females re-enter the mating pool when they lose their offspring. However, clutch loss diminishes the reproductive output. Similar consequences of clutch loss on the OSR may be true for many species where both sexes reproduce frequently in one breeding season.Communicated by J. Christensen-Dalsgaard  相似文献   

16.
Summary Operational sex ratio (OSR) was proposed by Emlen and Oring (1977) as an empirical measure of the intensity of sexual selection. Few studies, however, have examined the link between OSR and levels of intrasexual competition, which may influence selection. We studied the seasonal relationship between OSR and female-female competition for mates in Wilson's phalarope (Phalaropus tricolor), a sex-role reversed, non-territorial shorebird. Positive correlations between four measures of OSR (Scan Ratio, Day Ratio, Focal Ratio, and Chase Ratio) indicated seasonal changes in the availability of mates for females. Changes in mate availability resulted from the interaction between paternal care and female emancipation, asynchronous spring arrival schedules of the sexes (Reynolds et al. 1986), and the effect of clutch failure on renesting opportunities. Measures of intrasexual competition (courtship chases, percent males defended, rate and intensity of mate defense, and female-male proximity) varied significantly within and among years. Univariate and multivariate correlations indicated general agreement between measures of OSR and estimates of intrasexual competition. Our results suggest that OSR may provide a useful estimate of the opportunity for sexual selection, especially in species with matedefense mating systems.  相似文献   

17.
Although dominant African wild dogs (Lycaon pictus) are generally believed to be the sole breeders within a pack, earlier behavioral and endocrine data suggest that reproduction could be shared with subordinates. We performed an extensive behavioral, demographic, and genetic evaluation of a wild dog population in South Africa to examine the level of such sharing and the proximate mechanisms influencing reproductive contributions of each sex. While a majority of pups were born to dominants because of a lack of subordinate potential breeders, we discovered a substantial portion of reproductive sharing between dominants and subordinates. Compared with alpha females that mated annually, subordinate beta females bred in 54.5% of years whereas thetas never bred. The three top-ranking males all sired pups (56.0%, 32.0%, and 12.0%, respectively) when three or more adult males were present. With only two pack males, alpha and beta individuals shared reproduction nearly equally (55.2% and 44.8%, respectively), and litters of mixed paternity were discovered on eight of 15 (53.3%) occasions. A skewed adult sex-ratio and frequent alpha mortalities for females and behavioral aggression in males allowed most individuals to attain dominant status in their lifetime, creating a constantly shifting social hierarchy. Genetic parentage results corresponded to reported hormone profiles, suggesting physiological suppression in some lower-ranked individuals of both sexes. Thus, a combination of demographic, behavioral, and hormonal proximate factors mediates reproductive partitioning in wild dogs. We conclude that reproductive sharing can be significant in this species, especially for males that have less robust suppressive mechanisms than females.  相似文献   

18.
The populations of many species are structured such that mating is not random and occurs between members of local patches. When patches are founded by a single female and all matings occur between siblings, brothers may compete with each other for matings with their sisters. This local mate competition (LMC) selects for a female-biased sex ratio, especially in species where females have control over offspring sex, as in the parasitic Hymenoptera. Two factors are predicted to decrease the degree of female bias: (1) an increase in the number of foundress females in the patch and (2) an increase in the fraction of individuals mating after dispersal from the natal patch. Pollinating fig wasps are well known as classic examples of species where all matings occur in the local patch. We studied non-pollinating fig wasps, which are more diverse than the pollinating fig wasps and also provide natural experimental groups of species with different male morphologies that are linked to different mating structures. In this group of wasps, species with wingless males mate in the local patch (i.e. the fig fruit) while winged male species mate after dispersal. Species with both kinds of male have a mixture of local and non-local mating. Data from 44 species show that sex ratios (defined as the proportion of males) are in accordance with theoretical predictions: wingless male species<wing-dimorphic male species<winged male species. These results are also supported by a formal comparative analysis that controls for phylogeny. The foundress number is difficult to estimate directly for non-pollinating fig wasps but a robust indirect method leads to the prediction that foundress number, and hence sex ratio, should increase with the proportion of patches occupied in a crop. This result is supported strongly across 19 species with wingless males, but not across 8 species with winged males. The mean sex ratios for species with winged males are not significantly different from 0.5, and the absence of the correlation observed across species with wingless males may reflect weak selection to adjust the sex ratio in species whose population mating structure tends not to be subdivided. The same relationship is also predicted to occur within species if individual females adjust their sex ratios facultatively. This final prediction was not supported by data from a wingless male species, a male wing-dimorphic species or a winged male species. Received: 27 July 1998 / Received in revised form: 11 January 1999 / Accepted: 16 January 1999  相似文献   

19.
In most birds, natal dispersal is female-biased, but the selective pressures leading to this pattern have rarely been explored with comprehensive data on lifetime reproductive success. In territorial birds, the benefit of philopatry should be higher for males than for females when males establish territories for which knowledge about the local environment is important. As females may use male characteristics for mate choice, and hence indirectly for territory choice, the benefit from the direct knowledge of the local environment may be lower for females than males. We tested this hypothesis using data from a long-term study of group living corvids, the Siberian jays (Perisoreus infaustus). In this species, the socially dominant offspring delay dispersal while the sub-dominant offspring leave the family group directly after reaching independence. Our results show that natal dispersal distance (a proxy for local knowledge) was related to sex and dispersal timing (a proxy for “quality”): Females and early dispersers traveled further on average than males and delayed dispersers. Furthermore, dispersal distance and timing were negatively related to the number of recruits produced over an individual’s lifetime in males, but not in females. Hence, the results support the hypothesis that the female-biased natal dispersal found in this and other bird species may come about through higher lifetime reproductive success of philopatric males than females.  相似文献   

20.
Lekking behavior in the neotropical frog Ololygon rubra   总被引:2,自引:0,他引:2  
Summary This is the first study to document in detail the satisfaction of Bradbury's four criteria for categorizing any anuran as a classical lekking species. The paternal care of male neotropical frogs, Ololygon rubra, consisted of minimal contributions of their genes. Males competed acoustically at traditional, defended, clustered sites (Fig. 1, Table 3) to attract gravid females, who paired with the males at these locations but took the amplectant males to oviposition sites away from the pairing sites. Individual males apparently did not control resources necessary for attracting females, because there were no correlations between male numbers and measured habitat variables, or between male numbers and oviposition sites. On chorusing nights, males always arrived at their display arenas before any females were observed. Females moved freely among clusters and males, before making their choices of mates. However, males employed other mate acquisition strategies that tended to undermine the initial female choices. The predictions that lekking species should have a relatively extended breeding season, a highly biased operational sex ratio (OSR), and an absence of male control of resources essential for female acquisition were also evaluated and corroborated. These frogs have two long breeding seasons encompassing a total of about 6 months (Fig. 2). There were strongly male biased nightly OSRs (Table 1), that contributed to high variance in male reproductive success (RS), but reduced indices of sexual selection, and a relatively low coefficient of variation (CV) of male RS (Table 5) compared to other amphibians. Thus, all of this evidence supports the conclusion that O. rubra in coastal Guyana uses a lek mating system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号