首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
为了研究氧化脱硫工艺中以乙酸作催化剂为代表的过氧化氢/羧酸氧化体系的热稳定性,利用快速筛选仪和绝热加速量热仪对过氧化氢/乙酸体系的放热分解过程进行试验研究,得到其初始放热温度、最大温升速率等参数.结果表明,30%过氧化氢和乙酸在等体积配比时具有的危险性最大;乙酸的加入使过氧化氢的活化能、初始放热温度降低,体系的热稳定性降低.通过绝热相容性分析计算可知,30% H2O2和H2O2/CH3COOH的平均加速度分别为0.579 8和0.049 8,乙酸和过氧化氢的相容性较好,体系的危险性降低.  相似文献   

2.
过氧化氢异丙苯热稳定性与热安全性研究   总被引:1,自引:1,他引:1  
为研究过氧化氢异丙苯(CHP)的热稳定性和热安全性,利用C80微量量热仪对CHP在空气中的热分解进行试验研究。利用热分析技术研究CHP的热分解,得到了升温速率对CHP热分解的影响,CHP热分解的活化能,绝热条件下最大反应速率到达时间Tmrad和不同包装下的自加速分解温度。结果表明:随着升温速率的增加,CHP的起始放热温度和最大放热温度随之升高;CHP热分解的活化能范围为52~91 kJ/mol;Tmrad为1,8,24,50和100 h时对应的起始温度分别为118.08,75.41,55.83,44.83和34.52℃;CHP的储罐内径越大,其对应的自加速分解温度越低。  相似文献   

3.
为了防止过氧化氢在生产、储存、运输和使用过程中因为混入杂质导致火灾爆炸事故,利用绝热加速量热仪对过氧化氢及其掺杂醇类物质后的放热分解过程进行了试验研究.结果表明,醇使过氧化氢的初始放热分解温度、活化能和SADT均降低,热危险性增加;正丙醇对过氧化氢热分解的促进作用大于无水甲醇和无水乙醇.  相似文献   

4.
过硫酸铵的热稳定性研究   总被引:1,自引:1,他引:0  
采用绝热加速量热仪(Accelerating Rate Calorimeter,ARC)对正常和潮湿条件下的过硫酸铵进行对比热容分析试验,得到了不同条件下过硫酸铵样品的热分解温度和压力随时间的变化曲线及压力和温升速率随温度的变化曲线.分析了过硫酸铵的热分解过程,用速率常数法计算了表观活化能Ea和指前因子A,得到了样品在最危险状态即绝热状态下的初始放热温度、初始温升速率、最大温升速率、自反应放热最高温度、绝热温升等反映其热稳定性的参数.结果表明,在绝热环境中,潮湿条件下的过硫酸铵比正常条件下更具有热危险性,更易发生自反应放热分解,且过程更加剧烈.过硫酸铵在储存过程中若不慎与水或潮湿空气接触,应尽量进行通风冷却和干燥处理,防止发生自分解放热进而引发火灾.  相似文献   

5.
为了分析过氧化二异丙苯(Dicumyl Peroxide,DCP)的热稳定性和热安全性,利用C80微量量热仪对DCP在空气中的热分解及稳定性能进行试验研究,得到了升温速率对DCP热分解的影响规律,运用AKTS高级热动力学软件计算得到DCP热分解的活化能及指前因子、绝热条件下最大反应速率到达时间TMRad和不同包装下的自加速分解温度。结果表明:随升温速率增加,DCP的起始放热温度和最大放热温度升高;并由Friedman法得到不同转化率下活化能E和指前因子A的关系,计算得到DCP热分解的活化能范围为50~130 kJ/mol;TMRad为1 h、8 h、24 h、50 h和100 h时对应的起始温度分别为105.33℃、84.38℃、74.38℃、68℃和62℃;DCP的储罐内径越大,其对应的自加速分解温度越低。在生产、制造、储存、运输等过程中,应防止因温度变化而引发DCP的自分解放热爆炸事故。  相似文献   

6.
Fe3+掺杂对双氧水热稳定性的影响   总被引:2,自引:0,他引:2  
为了定量考察Fe3+掺杂对双氧水热稳定性的影响,利用泄放尺寸实验仪(VSP2)研究了无Fe3+及Fe3+质量分数为0.003%、0.01%、0.02%时的27.5%双氧水(质量分数)热分解特性,得到了这4种样品绝热自分解过程的温度及压力数据,计算得到初始温度为40 ℃时不同Fe3+质量分数的双氧水在绝热条件下到达最大反应速率所需时间(TMRad).结果表明,为保证双氧水在一般环境条件下安全稳定存储,需要控制双氧水中Fe3+的质量分数低于9.2×10-6.  相似文献   

7.
采用先进的绝热加速量热仪为手段,对二甲亚砜的热稳定性进行了系统研究,其内容涉及纯二甲亚砜的热稳定性、加酸碱和硫化物等杂质后二甲亚砜的热稳定性,包括初始放热温度、温升速率、温度-压力等;通过修正试验数据,消除了热惰性因子的影响;得到了二甲亚砜的热稳定性特性。研究表明,在酸、碱存在时,二甲亚砜在室温下即可发生强烈的放热反应,导致二甲亚砜的分解温度提前。该实验研究结果,对二甲亚砜的安全生产工艺过程控制具有重要参考价值。  相似文献   

8.
为了考察高浓度过氧化氢存储的适宜条件,利用微型量热仪C600对70%H2O2在室温至250℃范围内的热分解过程进行了研究,模拟计算了扫描速率对H2O2热分解的影响,分别利用Friedman等转化率法和ASTM E 698法处理试验结果。然后模拟绝热条件下失控反应,并考虑热惰性因子对到达最大反应速率所需时间的影响。结果表明,用等转化率法和ASTM E698法计算得到70%H2O2分解的活化能分别为32~76 kJ/mol、56.292 kJ/mol,结果相差不大。热惰性因子为1.0、1.5、2.0和3.0时,需要确保使用和储存70%H2O2的温度分别低于15.3℃、18.8℃、21.6℃、26.4℃。最后,模拟计算了不同包装材料、包装尺寸下70%H2O2的自加速分解温度SADT。在此基础上提出了高浓度H2O2使用及储运过程中的建议防护措施。  相似文献   

9.
采用绝热加速量热仪(ARC)对分析纯过硫酸铵、含10%氯化钠杂质的过硫酸铵以及含10%二氧化硅杂质的过硫酸铵进行热分析实验,得到了实验过程中温度、温升速率和压力等数据,计算了3组样品的反应动力学参数,引入热惰性因子对实验数据进行修正,得到了3组样品在严格绝热条件下的热危险性参数,分析了3组样品的反应过程和热危险性。通过Semenov理论计算了3组样品的自加速分解温度(SADT)。结果表明,过硫酸铵加入氯化钠或二氧化硅杂质后,热危险性增大,自加速分解温度降低,更容易发生反应且反应更剧烈。  相似文献   

10.
无机酸对硝酸铵热稳定性影响的研究   总被引:5,自引:1,他引:5  
为了研究硫酸、盐酸两种无机酸对含能材料硝酸铵热稳定性的影响,使用绝热加速量热仪ARC和微量量热仪C80,对纯硝酸铵及硝酸铵和硫酸、盐酸的混合物进行了热分析实验并研究各种样品在恒温以及升温条件下的吸、放热特性。根据化学反应动力学和热力学理论,确定了硝酸铵及其与无机酸的混合物发生放热分解反应的反应动力学参数和热力学参数。基于Semenov热爆炸模型,计算并比较了各样品标准包装的自加速分解反应温度。  相似文献   

11.
4种硝酸酯热安定性的绝热试验研究   总被引:2,自引:0,他引:2  
利用绝热加速量热仪(ARC)对硝酸正丙酯(NPN)、硝酸异丙酯(IPN)、太根(TEGDN)、敌根(DEGDN)4种硝酸酯的热稳定性进行了绝热试验研究,得到绝热放热曲线和热分解特征参数。分析了4种物质分解过程的特点,对测试结果进行了修正。计算得到动力学参数和自加速分解温度SADT,以此作为评估热安定性的判据。结果表明,4种硝酸酯在外界热作用下容易发生分解,反应速度较快,伴随明显的热效应和压力效应。4种硝酸酯的热安定性由好到差排序为:IPN、NPN、TEGDN、DEGDN。  相似文献   

12.
反应量热仪RC1研究磺化反应过程中热危险性具有评价路线简单、易于操作、过程绿色环保等优势,近年来逐渐成为研究的热点.磺化反应过程中由于工艺的不同,不同磺化反应过程的热危险性也具有很大的差别.通过反应量热仪RC1、差示扫描量热DSC、绝热加速量热仪ARC对10种不同工艺的磺化反应过程的热危险进行了深入的研究,对企业实践生...  相似文献   

13.
在纯过氧化环己酮(CYHPO)储运中常添加减敏剂,以降低其热危险性。为了对比评价减敏性能,采用绝热加速量热仪测试了纯CYHPO及加入等质量邻苯二甲酸二丁酯(DBP)、邻苯二甲酸二辛酯(DOP)、正己酸(HAA)和环己醇(CCH)后的热危险参数,并计算了上述5种样品的反应动力学常数和绝热校正数据,建立了包括初始放热温度T0和绝热反应加速度SARC的减敏效果判据,对4种减敏剂的热危险性减敏效果进行了评价。结果表明,DOP对CYHPO热危险性的减敏效果最好。  相似文献   

14.
过氧化苯甲酰合成工艺热危险性分析   总被引:1,自引:0,他引:1  
采用RC1e反应量热仪对过氧化苯甲酰(BPO)合成工艺危险性进行研究,测试不同Na OH溶液初始浓度(1.96 mol/L、3.93 mol/L、7.14 mol/L)下反应的放热历程,获得BPO合成反应过程中的热危险性参数,并采用PHI-TECⅡ绝热加速量热仪对产物进行热稳定性分析,最后评估该反应热风险。结果表明,Na OH浓度为7.14 mol/L时,反应初期放热速率慢,热累积度大,后期反应剧烈,绝热温升(ΔTad)及热失控时工艺反应达到的最高温度(MTSR)最大。热稳定性试验表明,合成的粗产物BPO初始分解温度、活化能、指前因子、最大放热速率到达时间为24 h时的对应温度(TD24)均低于纯BPO。利用合成粗产物BPO的TD24对反应进行危险度评估,该工艺热危险性等级均为5级,工艺危险性大。  相似文献   

15.
环氧丙烷具有较强化学活性,分析了环氧丙烷生产过程中可能出现的安全问题;测试了不同温度、pH值和铁离子存在条件下环氧丙烷的反应稳定性。结果表明,环氧丙烷在低pH值和铁离子存在的环境中容易发生强烈放热反应。根据环氧丙烷工业化生产的特点,提出了相应的控制条件。  相似文献   

16.
利用绝热加速量热仪对商业锂离子电池中常用的3种电解液进行了热分析实验,并根据测试结果评价了其热安全性.3种电解液的初始反应温度均在180~200℃之间;运用绝热理论模型,得到3种电解液热分解反应的活化能Ea分别为(246.202±2.866)kJ·mol、(277.94±7.49)kJ·mol-1和(778.81±34.86)kJ·mol-1;每克样品反应终止时压力分别达到2173.84kPa、2 074.80kPa和2408.65 kPa,压力升高值△P分别为:819.42 kPa、1 619.37 kPa和808.54 kPa.  相似文献   

17.
为了研究活性化合物热稳定性预测技术,调研了国内外活性化合物热稳定性预测技术的发展情况,综述了活性化合物起始放热温度、分解热、自加速分解温度的预测方法,着重介绍了定量结构-性质相关性(QSPR)研究方法在热稳定性预测领域的应用情况,分析了活性化合物热稳定性预测早期研究情况。基于量子力学计算的QSPR研究情况、QSPR数据样本的选取、分子描述符的选取、QSPR建模方法的选择,提出了热稳定性QSPR预测领域中存在的问题,并对热稳定性QSPR预测技术未来的发展方向进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号