首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
In this work the content of seven heavy metals (Cd, Cr, Cu, Hg, Ni, Pb and Zn) and other parameters (the pH, organic matter, carbonates and granulometric fraction) in agricultural topsoil in the Ebro basin are quantified, based on 624 samples collected according to an 8 by 8 km square mesh. The average concentrations (mg/kg) obtained were: Cd 0.415+/-0.163, Cr 20.27+/-13.21, Cu 17.33+/-14.97, Ni 20.50+/-22.71, Pb 17.54+/-10.41, Zn 17.53+/-24.19 and Hg 35.6+/-42.05 microg/kg. The concentration levels are relatively low in areas of high pH and low organic matter content concentration. The results of factor analysis group Cd, Cu, Hg, Pb and Zn in F1 and Cr y Ni in F2. The spatial heavy metals component maps based on geostatistical analysis, show definite association of these factors with the soil parent material. The local anomalies (found in Cu, Zn and Pb) are attributed to anthropogenic influence.  相似文献   

2.
Four samples of ombrotrophic peat were collected from each of 10 upland locations in a transect from the southern Pennines to the Highland Boundary Fault, a total distance of ca. 400 km. Bulk compositions and other properties were determined. Total contents of Al and heavy metals (Ni, Cu, Zn, Cd, Pb) were determined following digestion with hydrofluoric acid, and concentrations of metals extractable with dilute nitric acid were also measured. Supernatants obtained from aqueous extractions of the peat samples were analysed for pH, major cations and anions, dissolved organic carbon and dissolved metals, and concentrations of free metal ions (Al(3+), Ni(2+), etc.) were estimated by applying a chemical speciation model. Both total and HNO(3)-extractable metal concentrations varied along the transect, the highest values being found at locations close to industrial and former mining areas. The HNO(3)-extractable soil metal contents of Ni, Cu and Cd were appreciably lower than lowest-observed-effect-concentrations (LOEC) for toxicity towards microorganisms in acid, organic rich soils. However, the contents of Zn at two locations, and of Pb at five locations exceeded LOECs, suggesting that they may be exerting toxic effects in the peats. Soil solution concentrations of free heavy metal ions (Cu(2+), Zn(2+), Cd(2+), Pb(2+)) were substantially lower than LOECs for toxicity towards vascular plants, whereas concentrations of Al(3+) were near to toxic levels at two locations.  相似文献   

3.
中国商品有机肥重金属分析   总被引:7,自引:0,他引:7  
测定了来自10个地区不同生产原料的118个商品有机肥样品的重金属含量.结果表明:(1)商品有机肥样品中的Cd、Hg、Pb、Cr、As、Zn、Cu、Ni的平均值分别为0.600、0.120、7.34、84.30、9.45、202.91、91.06、11.01 mg/kg.(2)河南、湖北、上海的商品有机肥中8种重金属平均值均较高;内蒙古的商品有机肥中Cr平均值为20.32 mg/kg,广西的商品有机肥中Zn平均值为51.36mg/kg,远低于所有样品中Cr和Zn平均值.(3)以猪粪为主要生产原料的商品有机肥中重金属平均值最高.(4)Cr超过中国商品有机肥重金属限量标准、欧盟生态标志法的重金属限量标准、加拿大堆肥重金属限量标准(A级)和加拿大堆肥重金属限量标准(B级);As、Cd超过中国商品有机肥重金属限量标准、欧盟生态标志法的重金属限量标准和加拿大堆肥重金属限量标准(A级);Cu、Zn超过欧盟生态标志法的重金属限量标准和加拿大堆肥重金属限量标准(A级);Hg超过加拿大堆肥重金属限量标准(A级);Pb超过中国商品有机肥重金属限量标准;Ni均未超标.  相似文献   

4.
Seven sediment cores (60-80 cm) were collected at Chiricahueto marsh, a salt marsh influenced by agrochemical, domestic and industrial effluents. The concentrations of Ag, Al, Cd, Co, Cu, Fe, Li, Mn, Pb, V and Zn were studied in the solid phase at each 1-cm section. The profiles of Ag, Cd, Cu, Mn, Ni, Pb and Zn showed a slight recent pollution in the site with enrichment and anthropogenic factors higher than unity; and correlation analysis indicated a direct association with organic carbon. Al, Co, Cr, Fe, Li, and V concentration profiles displayed a negative correlation with organic C and positive with mud content and no consistent enrichment at surface. Based on the principal component analysis and correlation analysis, two principal groups of metals were identified. The first group includes Al, Co, Cr, Fe and Li, that are derived predominantly from the weathering of parent materials in the local bedrock; and the second group include most of the metals, which were relatively enriched at surficial sediments, that are produced mainly by anthropogenic activities such as agriculture (Cd, Cu and Zn), sewage effluents (Ag, Cd, Cu, Ni, Pb and Zn) and in lesser extent atmospheric deposition (Cd and Pb).  相似文献   

5.
Frozen topsoil samples (0-5 cm) were collected during March/April 1994 in eight Arctic catchments in northern Europe (4 in Russia, 3 in Finland, 1 in Norway) at varying distances and wind directions from the emissions of the Russian nickel ore mining, roasting and smelting industry on the Kola Peninsula. Between 14 and 25 sites were sampled in catchment basins ranging in size from 12 to 35 km(2). Sampling was repeated in spring immediately after the snow melted, in summer and in autumn to study seasonal variability and the fate of elements when the snow melts. The <2 mm fraction of air-dried topsoils was analysed for total (aqua regia extraction) and easily leachable (in 1 m ammonium acetate, buffered at pH 4.5) element concentrations using ICP-AES and GFAAS for up to 35 elements. Results for selected elements are presented here. Soil organic matter can be shown to be the controlling factor determining element contents and fate. In catchments close to the Russian nickel industry, the topsoils have low carbon and nitrogen contents. Using both extraction methods most elements reach maximum concentrations in winter; lowest concentrations are observed in midsummer. Soil organic matter and elements associated with it are thus leached out of the soils together with soluble elements when the snow melts. This process continues in summer. Elements will enrich surface waters, the lower layers of podzol profiles, or reach the groundwater. The use of the two extractions described provides a simple method to study the mobilities and pathways of elements in the topsoils during the arctic year. Using the proportions of easily leachable to total concentration, a good estimation of the status of the topsoil in the study area can be given.  相似文献   

6.
Leaves of nine different plant species (terrestrial moss: Hylocomium splendens and Pleurozium schreberi, blueberry: Vaccinium myrtillus, cowberry: Vaccinium vitis-idaea, crowberry: Empetrum nigrum, birch: Betula pubescens, willow: Salix spp., pine: Pinus sylvestris, and spruce: Picea abies) have been collected from up to nine catchments (size 14-50 km2) spread over a 1,500,000 km2 area in northern Europe. Additional soil samples were taken from the O-horizon and the C-horizon at each plant sample site. All samples were analysed for 38 elements (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Rb, S, Sb, Sc, Se, Si, Sn, Sr, Th, Tl, U, V, Y, Zn, and Zr) by ICP-MS, ICP-AES or CV-AAS (Hg) techniques. One of the 9 catchments was located directly adjacent (5-10 km S) to the nickel smelter and refinery at Monchegorsk, Kola Peninsula, Russia. The high levels of pollution at this site are reflected in the chemical composition of all plant leaves. However, it appears that each plant enriches (or excludes) different elements. Elements emitted at trace levels, such as Ag, As and Bi, are relatively much more enriched in most plants than the major pollutants Ni, Cu and Co. The very high levels of SO2 emissions are generally not reflected by increases in plant total S-content. Several important macro-(P) and micro-nutrients (Mn, Mg, and Zn) are depleted in most plant leaves collected near Monchegorsk.  相似文献   

7.
Concentration of ten metals (Cd, Cr, Co, Cu, Fe, Li, Mn, Ni, Pb and Zn) were analyzed in the egg contents, prey and soil samples of little egret (Egretta garzetta) and cattle egret (Bubulcus ibis) from two Headworks to determine habitat and species-specific differences; to assess the importance of prey and habitat contamination as an exposure source for heavy metals. Concentration of Cu, Mn, Cr and Pb in egg contents, Fe, Co, Cu, Mn, Zn in prey and Fe, Co, Cu, Ni, Li in surface soils were significantly different (P < 0.05). Mean metal concentrations of Cr, Pb and Cd were relatively higher in little egret whereas Cu and Mn were higher in the egg contents of cattle egret. The mean concentrations of Cu, Mn and Zn were higher in prey samples of cattle egrets and Cr, Cd and Pb in prey samples of little egrets. In soil samples collected from little egret heronries metal concentrations were higher except Cu and Ni. Correlation Analysis and Hierarchical Agglomerative Cluster Analysis (HACA) identified relatively similar associations of metals and their source identification. Metals such as Fe, Cu, Mn, and Li were related with geochemical origin from parent rock material as well as anthropogenic input whereas Cr, Cd, Pb, Ni, Co and Zn were associated mostly with anthropogenic activities. The study suggested that eggs are useful bio-monitor of local heavy metal contamination.  相似文献   

8.
The aim of this study was to evaluate the contamination of six edible wild species of mushrooms (Boletus pulverulentus, Cantharellus cibarius, Lactarius quietus, Macrolepiota procera, Russula xerampelina and Suillus grevillei) by heavy metals (Hg, Cd, Pb, Zn, Cu, Ni, Cr, Co, Mn and Fe). Mushroom samples were collected from sites contaminated by emissions from mining and processing of polymetallic ores in operation during the period 1969–1993 in Rudňany, southeast Slovakia. The four study sites spanned up to a 5-km distance from the emission source. The collected mushroom samples were analyzed using Flame Atomic Absorption Spectrophotometry and/or Flame Atomic Absorption Spectrophotometry with graphite furnace. Mercury, Cd and, in some samples, also Pb present the highest risks in terms of contamination of the food chain following subsequent consumption. The content of two metals in the dry matter (dm) of the mushrooms exceeded the limits set by the European Union (EU; Cd: 0.5 mg/kg dm, Pb: 1.0 mg/kg dm). The highest mean contents of the eight metals recorded for S. grevillei were 52.2, 2.15, 107, 104, 2.27, 2.49, 81.6 and 434 mg/kg dm for Hg, Pb, Zn, Cu, Ni, Cr, Mn and Fe, respectively. The highest content of Cd was recorded in M. procera (3.05 mg/kg dm) and that of Co in L. quietus (0.90 mg/kg dm). The calculated weekly intake for Hg, Pb and Cd shows that regular consumption of mushrooms from the studied area poses risks to human health.  相似文献   

9.
Huang SS  Liao QL  Hua M  Wu XM  Bi KS  Yan CY  Chen B  Zhang XY 《Chemosphere》2007,67(11):2148-2155
We investigated concentrations of Hg, Cd, Pb, Zn, Cu, As, Ni, and Cr in samples of soil, cereal, and vegetables from Yangzhong district, China. Compared to subsoils, the sampled topsoils are enriched in Hg, Cd, Cu, Pb, Zn, and As. High levels of Cd and Hg are observed in most agricultural soils. Concentrations of Cr and Ni show little spatial variation, and high Cu, Pb, and Zn contents correspond well to areas of urban development. High As contents are primarily recorded at the two ends of the sampled alluvion. The contents of Cd, Hg, and total organic carbon (TOC) increase gradually to maximum values in the upper parts of soil profiles, while Cr and Ni occur in low concentrations within sampled profiles. As, Pb, Cu, and Zn show patterns of slight enrichment within the surface layer. Compared to data obtained in 1990, Cd and Hg show increased concentrations in 2005; this is attributed to the long-term use of agrochemicals. Cr and Ni contents remained steady over this interval because they are derived from the weathering of parent material and subsequent pedogenesis. The measured As, Cu, Pb, and Zn contents show slight increases over time due to atmospheric deposition of material sourced from urban anthropogenic activity. Low concentrations of heavy metals are recorded in vegetables and cereals because the subalkaline environment of the soil limits their mobility. Although the heavy metal concentrations measured in this study do not pose a serious health risk, they do affect the quality of agricultural products.  相似文献   

10.
A set of toxic metals, i.e. As, Hg, Pb, Cd, Cu, Zn, Ni and Cr, in urban and suburban SDSs were investigated comparatively in the biggest metropolitan area of China, Shanghai. Results showed that all of the metals except As were accumulated greatly, much higher than background values. Geo-accumulation index indicated that metal contamination in urban SDSs was generally heavier than that in suburban SDSs. Potential ecological risk index demonstrated that overall risks caused by metals were considerable. Cd contributed 52% to the overall risk. Multivariate statistical analysis revealed that in urban SDSs, Zn, Ni, Cd, Pb, Cu and Cr were related to traffic and industry; coal combustion led to elevated levels of Hg; soil parent materials controlled As contents. In suburban SDSs, Pb, Cu, As and Cd largely originated from traffic pollution; Zn, Ni and Cr were associated with industrial contaminants; Hg was mainly from domestic solid waste.  相似文献   

11.
Mean annual (1994-1996) budgets for Cd, Cu, Ni, Pb and Zn at two background, forested catchments, VK and HJ, in Finland are presented. Budgets for plots (VK3, HJ1 and HJ4) included throughfall (TF), litterfall (LF) and soil leaching fluxes, and for catchments terrestrial retention and leaching and lake sedimentation fluxes. Total deposition (TD) loads were relatively low (Cd < 0.1, Cu < 2, Ni < 1, Pb < 3 and Zn < 5 mg m-2 year-1) and that even in these areas almost half of the TD was in the form of dry deposition. Retention of TD within catchments was > or = 77% for all metals, except for Ni at VK (54%). For Cu and Pb, the retention was 94-97%. Most of the retention (74-97%) took place in the terrestrial part of the catchment, lake sedimentation accounting for the remainder. Plot-scale soil leaching fluxes at 40 cm of Cd, Cu (VK3) and Ni (VK3) were greater (> or = 100%) than TD inputs. Most of the catchment retention must therefore have taken place either deeper in the soil or in the lowland peatland areas. The humus layer was particularly effective in retaining Cu and Cd (65-81% and 51-78% of total inputs to the forest floor (TF + LF)). The retention of Pb by the humus layer was less than expected (26-54% of TF + LF). Litterfall was a particularly important internal flux for Zn.  相似文献   

12.

Trace metal element contamination in mining areas is always a huge environmental challenge for the global mining industry. In this study, an abandoned sphalerite mine near the Yanshan Mountains was selected as subject to evaluate the soil and water contamination caused by small-scale mining. The results show that (1) Pearson correlation matrix and principal component analysis (PCA) results reveal that Zn, Cu, Cd, and Pb were greatly affected by the operation of mines, especially mineral tailings. The contents of trace metal elements decrease with the increase of the distance from the mining area. Zinc, Pb, and Cd were discovered in almost all soil samples, and Zn accounted for about 80% of pollution of the topsoil. (2) The trace element pollution levels in the topsoil of the three villages were ranked as follows: Cd?>?Cu?>?Pb~Zn. The potential ecological risk of farmland around the mine ranges from lower to higher, with Cd being the most harmful. (3) Human health risk assessment results show that trace elements in the mining area pose obvious non-carcinogenic health risks to children while the risks to adults are not equally obvious. The carcinogenic risk of Cd and Cr is within a safe range and does not pose an obvious cancer risk to the population.

  相似文献   

13.
The Qinling panda subspecies (Ailuropoda melanoleuca qinlingensis) is highly endangered with fewer than 350 individuals inhabiting the Qinling Mountains. Previous studies have indicated that giant pandas are exposed to heavy metals, and a possible source is vehicle emission. The concentrations of Cu, Zn, Mn, Pb, Cr, Ni, Cd, Hg, and As in soil samples collected from sites along a major highway bisecting the panda’s habitat were analyzed to investigate whether the highway was an important source of metal contamination. There were 11 sites along a 30-km stretch of the 108th National Highway, and at each site, soil samples were taken at four distances from the highway (0, 50, 100, and 300 m) and at three soil depths (0, 5, 10 cm). Concentrations of all metals except As exceeded background levels, and concentrations of Cu, Zn, Mn, Pb, and Cd decreased significantly with increasing distance from the highway. Geo-accumulation index indicated that topsoil next to the highway was moderately contaminated with Pb and Zn, whereas topsoil up to 300 m away from the highway was extremely contaminated with Cd. The potential ecological risk index demonstrated that this area was in a high degree of ecological hazards, which were also due to serious Cd contamination. And, the hazard quotient indicated that Cd, Pb, and Mn especially Cd could pose the health risk to giant pandas. Multivariate analyses demonstrated that the highway was the main source of Cd, Pb, and Zn and also put some influence on Mn. The study has confirmed that traffic does contaminate roadside soils and poses a potential threat to the health of pandas. This should not be ignored when the conservation and management of pandas is considered.  相似文献   

14.
Concentrations of aluminium and minor metals (Mn, Ni, Cu, Zn, Sr, Cd, Ba, Pb) were measured in precipitation and surface water at two upland locations (Upper Duddon Valley, UDV; Great Dun Fell, GDF) in northern England for 1 year commencing April 1998. At both locations, the loads in bulk precipitation were at the lower ends of ranges reported for other rural and remote sites, for the period 1985-1995. The deposited metals were mostly in the dissolved form, and their concentrations tended to be greatest when rainfall volumes were low. The concentrations of Cu, Zn and Pb in deposition were correlated (r2 > or = 0.40) with concentrations of non-marine sulphate. Three streams, ranging in mean pH from 5.07 to 7.07, and with mean concentrations of dissolved organic carbon (DOC) < 1 mg l(-1). were monitored at UDV, and two pools (mean pH 4.89 and 6.83, mean DOC 22 and 15 mg l(-1)) at GDF. Aluminium and the minor metals were mainly in the dissolved form, and in the following ranges (means of 49-51 samples. microg l(-1)): Al 36-530. Mn 4.4-36, Ni 0.26-2.8, Cu 0.25-1.7, Zn 2.1-30, Cd 0.03-0.16, Ba 1.9-140, Pb 0.10-4.5. Concentrations were generally higher at GDF. Differences in metal concentrations between the two locations and between waters at each location, and temporal variations in individual waters, can be explained qualitatively in terms of sorption to solid-phase soil organic matter and mineral surfaces, complexation and transport by DOC, and chemical weathering. The UDV catchments are sinks for Pb and sources of Al, Mn, Sr, Cd and Ba. The GDF catchments are sources of Al, Mn, Ni, Zn, Sr, Cd and Ba. Other metals measured at the two locations are approximately in balance. Comparison of metal:silicon ratios in the surface waters with values for silicate rocks indicates enrichment of Ni and Cu, and substantial enrichment of Zn, Cd and Pb. These enrichments, together with high metal deposition in the past, make it likely that concentrations of the metals in the surface waters are governed by release from catchment pools of atmospherically-deposited metal. The catchments appear to be responding on a time scale of decades, possibly centuries, to changes in metal deposition. For the more acid waters at UDV, the calculated free-ion concentrations of Al are similar to published LC50 values for acute toxicity towards fish. The free-ion concentrations of Ni, Cu, Zn and Cd in all the surface waters are one-to-four orders of magnitude lower than reported LC50 values for fish.  相似文献   

15.
雷州半岛土壤重金属分布特征及其污染评价   总被引:6,自引:1,他引:5  
在雷州半岛采集了106个土壤表层样品,分析了其中8种重金属元素(Cu、Pb、Zn、Cr、Ni、Cd、Hg和As)的全量.结果表明,雷州半岛土壤重金属污染由高到低排序为Ni>Cr>Hg>Cu>Zn>Cd>As>Pb,Zn、Cd、As和Pb质量浓度均没有超标,Hg和Cu质量浓度超标率亦不高,但Ni和Cr平均质量浓度达49.81、87.13 mg/kg,高于国内外其他对照区域,超标率分别为25.47%和24.53%;重金属元素在雷州半岛各土壤利用类型中分布规律不明显,按4种主要土壤利用类型受重金属污染程度大小排序为甘蔗地>果园土>水田>菜地;雷州半岛土壤综合污染指数总平均为0.970,土壤总体上尚清洁,重金属污染处于警戒水平;雷州半岛各区域中,徐闻、雷州两地土壤重金属质量浓度明显高于其他地区,其主要原因是徐闻、雷州两地成土母质主要为玄武岩,造成土壤Cr、Ni及其他重金属背景值较高.  相似文献   

16.
Metal (Cu, Zn, Pb, Cd, Ni, Co, and Fe) contamination in sediments from a tropical estuary (Ébrié Lagoon, Ivory Coast) was assessed using pollution indices, multivariate analyses and sediment quality guidelines (SQGs). The results demonstrate that increased input of the studied metals occurred over the past 6 years compared to that from 20 years ago, due to rapid population growth, along with the increase of industrial and agricultural activities in the vicinity of the estuary. Ébrié Lagoon was also found to be one of the most contaminated tropical coastal estuaries. Very high average total organic carbon (TOC) content was found (1.9–3.70%) with significant spatial variation as a result of the influence of anthropogenic activities. This study also found that TOC plays an important role in the distribution of Cu, Zn, Co, and Cd in the Ébrié Lagoon sediments. Moderate to high sediment contamination was observed for Cd and Cu, moderate contamination was observed for Zn and Pb, while low contamination was observed for Ni, Co, and Fe. Cluster analysis (CA) and principal component analysis (PCA) investigation revealed that Cu, Zn, Cd, and Co result mainly from anthropogenic sources while Pb, Ni, and Fe may be of natural origin. The pollution-loading index (PLI) indicated that all of the sites close to wastewater discharges were highly polluted. The sediments are likely to be an occasional threat to aquatic organisms due to Cu, Zn, Pb, Cd, and Ni contents, based on the SQGs approach.  相似文献   

17.
In the urban-rural transitional area of Hangzhou, China, 74 topsoil samples were collected from vegetable fields to measure the contents of arsenic (As), copper (Cu), cobalt (Co), cadmium (Cd), chromium (Cr), mercury (Hg), manganese (Mn), nickel (Ni), lead (Pb) and zinc (Zn). The combination of multivariate statistical and geostatistical methods successfully separated the contaminating elements (As, Cd, Cu, Hg, Pb and Zn) from uncontaminated elements (Co, Cr, Ni and Mn). A significant correlation was found between these uncontaminated elements and total Al2O3, Fe2O3, and SiO2 of the soils, indicating that the source of these elements was mainly controlled by soil-forming factors. On the other hand, these contaminating elements showed relatively weaker correlation and higher spatial variability, indicating that their enrichment and spatial heterogeneity were mostly affected by anthropic inputs. Through the pollution evaluation, it was found that only 30.8% of the study area did not suffer from moderate or severe pollution.  相似文献   

18.
Heavy metal levels and solid phase speciation in street dusts of Delhi,India   总被引:36,自引:0,他引:36  
Street dust samples were collected from three different localities (industrial, heavy traffic and rural) situated in the greater Delhi area of India. The samples analyzed for Cd, Zn, Pb, Ni, Cu, and Cr indicated remarkably high levels of Cr, Ni, and Cu in the industrial area, whilst Pb and Cd did not show any discernible variations between the three localities. A multivariate statistical approach (Principal Component Analysis) was used to define the possible origin of metals in dusts. The street dusts were sequentially extracted so that the solid pools of Cd, Zn, Pb, Ni, Cu, Cr could be partitioned into five operationally defined fractions viz. exchangeable, bound to carbonates, bound to Fe-Mn oxides, bound to organic matter and residual. Metal recoveries in sequential extractions were +/- 10% of the independently measured total metal concentrations. Cd was the only metal present appreciably (27.16%) in the exchangeable fraction and Cu was the only metal predominantly associated (44.26%) with organic fraction. Zn (45.64%) and Pb (28.26%) were present mainly in the Fe-Mn oxide fraction and the residual fraction was the most dominant solid phase pool of Cr (88.12%) and Ni (70.94%). Assuming that the mobility and bioavailability are related to the solubility of geochemical forms of the metals and decrease in order of extraction, the apparent mobility and potential metal bioavailability for these highly contaminated street dust samples is: Cd>Zn approximately equal Pb>Ni>Cu>Cr.  相似文献   

19.
The use of the herbarium moss archive for investigating past atmospheric deposition of Ni, Cu, Zn, As, Cd and Pb was evaluated. Moss samples from five UK regions collected over 150 years were analysed for 26 elements using ICP-MS. Principal components analysis identified soil as a significant source of Ni and As and atmospheric deposition as the main source of Pb and Cu. Sources of Zn and Cd concentrations were identified to be at least partly atmospheric, but require further investigation. Temporal and spatial trends in metal concentrations in herbarium mosses showed that the highest Pb and Cu levels are found in Northern England in the late 19th century. Metal concentrations in herbarium moss samples were consistently higher than those in mosses collected from the field in 2000. Herbarium moss samples are concluded to be a useful resource to contribute to reconstructing trends in Pb and Cu deposition, but not, without further analysis, for Cd, Zn, As and Ni.  相似文献   

20.
According to the European Thematic Strategy for Soil Protection, the characterization of the content and source of heavy metals in soils are necessary to establish quality standards on a regional level that allow the detection of sampling sites affected by pollution. In relation to this, the surface horizons of 54 agricultural soils under vegetable crops in the Alicante province (Spain), a representative area of the European Mediterranean region, were sampled to determine the content of Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn. Analytical determinations were performed by atomic absorption spectroscopy after microwave sample digestion in acid solution. Results indicated that heavy metal levels were similar to those reported by authors working on agricultural soils from other parts of the Mediterranean region, with the exception of Cu and Pb in some samples. Multivariate analysis (principal component analysis and cluster analysis) was performed to identify a common source for heavy metals. Moreover, soil properties were determined in order to characterize agricultural soils and to analyze relationships between heavy metal contents and soil properties. The content of Co, Cr, Fe, Mn, Ni and Zn were associated with parent rocks and corresponded to the first principal component called the lithogenic component. A significant correlation was found between lithogenic metals and some soil properties such as soil organic matter, clay content, and carbonates, indicating an important interaction among them. On the other hand, elements such as Cd, Cu and Pb were related to anthropic activities and comprised the second (Cu and Pb) and third principal components (Cd), designated the anthropogenic components. Generally, Cd, Cu and Pb showed a lower correlation with soil properties due to the fact that they remain in available forms in these agricultural soils. Taking into account these results and other achieved in other parts of the European Mediterranean region, it can be concluded that soil quality standards are highly needed to declare soils affected by human induced pollution. This is particularly relevant for anthropogenic metals (Cd, Cu and Pb, and in some areas also Zn). Further research in other agricultural areas of the region would improve the basis for proposing such soil quality standards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号