首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
ABSTRACT

Linhong Jing completed a master's degree in chemistry at UNLV and is currently enrolled in the Ph.D. program at Purdue University. Her address is Department of Chemistry, Purdue University, West Lafayette, IN 47907. Dr. Spencer Steinberg is an associate professor of chemistry at UNLV. His address is UNLV Department of Chemistry, P.O. Box 454003, Las Vegas, NV 89154-4003. Dr. Brian Johnson is an associate professor of chemistry at UNLV. His address is UNLV Department of Chemistry, P.O. Box 454003, Las Vegas, NV 89154-4003.

Oxidation of benzene, toluene, ethylbenzene, and xylenes (BTEX) in air, of significance due to, for example, the potential for O3 formation, is believed to be initiated by OH attack on the ring (addition) or on the alkyl side chain (H abstraction). A series of ring-breaking reactions follows, with major products predicted to be a-dicarbonyls, simple aldehydes, and organic acids. To test this prediction, ambient air mixing ratios of aldehydes (formaldehyde, ac-etaldehyde, benzaldehyde, glyoxal, and pyruvaldehyde), along with some supporting BTEX data, were measured at an urban site in Las Vegas, NV. Samples were collected on sorbents and determined by chromatographic methods; mixing ratios were compared to ambient levels of CO, O3, and NOx. A meteorological analysis (temperature, wind speed, and wind direction) was also included. Statistically significant relationships were noted among the BTEX hydrocarbons (HCs) and among the photochemi-cally derived species (e.g., O3, NO2, and some of the aldehydes), although there was seasonal variation. The observations are consistent with a common primary source (i.e., vehicular exhaust or fuel evaporation) for the BTEX compounds and a common secondary source (e.g., OH attack) for glyoxal and pyruvaldehyde.  相似文献   

2.
This paper presents the analysis of ambient air concentrations of 10 carbonyl compounds (aldehydes and ketones) measured in the yards of 87 residences in the city of Elizabeth, NJ, throughout 1999-2001. Most of these residences were measured twice in different seasons; the sampling duration was 48 hr each time. The authors observed higher concentrations for most of the measured carbonyl compounds on warmer days, reflecting larger contributions of photochemical reactions on warmer days. The estimated contributions of photochemical production varied substantially across the measured carbonyl compounds and could be as high as 60%. Photochemical activity, however, resulted in a net loss for formaldehyde. The authors used stepwise multiple linear regression models to evaluate the impact of traffic sources and meteorological conditions on carbonyl concentrations using the data collected on colder days (with lower photochemical activities). They found that the concentrations of formaldehyde, acetaldehyde, acrolein, propionaldehyde, crotonaldehyde, benzaldehyde, glyoxal, and methylglyoxal significantly decreased with increasing distance between a measured residence and one or more major roadways. They also found significant negative associations between concentrations for most of the measured carbonyl compounds and each of the following meteorological parameters: mixing height, wind speed, and precipitation.  相似文献   

3.
Since the mid-1970s, ozone (O3) levels in portions of California's South Coast Air Basin (SoCAB) on weekends have been as high as or higher than levels on weekdays, even though emissions of O3 precursors are lower on weekends. Analysis of the ambient data indicates that the intensity and spatial extent of the weekend O3 effect are correlated with-day-of-week variations in the extent of O3 inhibition caused by titration with nitric oxide (NO), reaction of hydroxyl radical (OH) with nitrogen dioxide (NO2), and rates of O3 accumulation. Lower NO mixing ratios and higher NO2/oxides of nitrogen (NOx) ratios on weekend mornings allow O3 to begin accumulating approximately an hour earlier on weekends. The weekday/weekend differences in the duration of O3 accumulation remained relatively constant from 1981 to 2000. In contrast, the rate of O3 accumulation decreased by one-third to one-half over the same period; the largest reductions occurred in the central basin on weekdays. Trends in mixing ratios of O3 precursors show a transition to lower volatile organic compound (VOC)/NOx ratios caused by greater reductions in VOC emissions. Reductions in VOC/NOx ratios were greater on weekdays, resulting in higher VOC/NOx ratios on weekends relative to weekdays. Trends in VOC/NOx ratios parallel the downward trend in peak O3 levels, a shift in the location of peak O3 from the central to the eastern portion of the basin, and an increase in the magnitude and spatial extent of the weekend O3 effect.  相似文献   

4.
Revealing source signatures in ambient BTEX concentrations   总被引:2,自引:0,他引:2  
Management of ambient concentrations of Volatile Organic Compounds (VOCs) is essential for maintaining low ozone levels in urban areas where its formation is under a VOC-limited regime. The significant decrease in traffic-induced VOC emissions in many developed countries resulted in relatively comparable shares of traffic and non-traffic VOC emissions in urban airsheds. A key step for urban air quality management is allocating ambient VOC concentrations to their pertinent sources. This study presents an approach that can aid in identifying sources that contribute to observed BTEX concentrations in areas characterized by low BTEX concentrations, where traditional source apportionment techniques are not useful. Analysis of seasonal and diurnal variations of ambient BTEX concentrations from two monitoring stations located in distinct areas reveal the possibility to identify source categories. Specifically, the varying oxidation rates of airborne BTEX compounds are used to allocate contributions of traffic emissions and evaporative sources to observed BTEX concentrations.  相似文献   

5.
To convert gaseous carbonyls to oximes during sampling, an XAD-4 resin denuder system pre-coated with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine and followed by analysis with methane positive chemical ionization gas chromatography/mass spectrometry was used to measure carbonyls in ambient air samples in Riverside, CA. In conjunction with similar analyses of environmental chamber OH radical-initiated reactions of o- and p-xylene, 1,2,4-trimethylbenzene, ethylbenzene, 4-hydroxy-2-butanone and 1,4-butanediol, we identified benzaldehyde, o-, m- and p-tolualdehyde and acetophenone and the dicarbonyls glyoxal, methylglyoxal, biacetyl, ethylglyoxal, 1,4-butenedial, 3-hexene-2,5-dione, 3-oxo-butanal, 1,4-butanedial and malonaldehyde in the ambient air samples. As discussed, these carbonyls and dicarbonyls can be formed from the OH radical-initiated reactions of aromatic hydrocarbons and other volatile organic compounds emitted into the atmosphere, and we conclude that in situ atmospheric formation is a major source of these carbonyls in our Riverside, CA, ambient air samples.  相似文献   

6.
Volatile organic compounds (VOCs) are important precursors of tropospheric ozone formation. Isoprene contributions to ozone formation by using ambient mixing ratios are generally underestimated because of rapid chemical losses. In this study, ambient mixing ratios of major VOC species were continuously measured at Peking university (PKU) and YUFA, urban and sub-urban sites in Beijing, the city that will host 2008 Olympic Games. The observed mixing ratios of methyl vinyl ketone (MVK), methacrolein (MACR) and isoprene were used to derive the mixing ratios of initial isoprene, which means the ambient isoprene level before it undergoes any photochemical reaction with OH radicals. The average mixing ratios of initial isoprene were 3.3±1.6 and 2.9±1.5 ppbv at PKU and YUFA sites, respectively. The percentages of initial isoprene in total initial VOCs were 10.8% at PKU site and 11.4% at YUFA site, in reasonable agreement with the isoprene contribution in total VOC emissions as derived from source inventories. Maximum increment reactivity (MIR) was used to evaluate the ozone formation potential (OFP) for major VOC species. The OFP for initial isoprene accounted for 23% of the total OFPs for all measured species, compared to 11% using ambient mixing ratios of isoprene at PKU site. Similarly, at YUFA site, the ambient measured isoprene and initial isoprene contributed 10% and 22%, respectively, to the OFPs for total measured VOCs. It seems that isoprene has similar contribution to ozone formation at both sites in Beijing city.  相似文献   

7.
Abstract

This paper presents the analysis of ambient air concentrations of 10 carbonyl compounds (aldehydes and ketones) measured in the yards of 87 residences in the city of Elizabeth, NJ, throughout 1999–2001. Most of these residences were measured twice in different seasons; the sampling duration was 48 hr each time. The authors observed higher concentrations for most of the measured carbonyl compounds on warmer days, reflecting larger contributions of photochemical reactions on warmer days. The estimated contributions of photochemical production varied substantially across the measured carbonyl compounds and could be as high as 60%. Photochemical activity, however, resulted in a net loss for formaldehyde. The authors used stepwise multiple linear regression models to evaluate the impact of traffic sources and meteorological conditions on carbonyl concentrations using the data collected on colder days (with lower photochemical activities). They found that the concentrations of formal-dehyde, acetaldehyde, acrolein, propionaldehyde, crotonaldehyde, benzaldehyde, glyoxal, and methylglyoxal significantly decreased with increasing distance between a measured residence and one or more major roadways. They also found significant negative associations between concentrations for most of the measured carbonyl compounds and each of the following meteorological parameters: mixing height, wind speed, and precipitation.  相似文献   

8.
More than half of the world's population lives in cities, and their populations are rapidly increasing. Information on vertical and diurnal characterizations of volatile organic compounds (VOCs) in urban areas with heavy ambient air pollution can help further understand the impact of ambient VOCs on the local urban environment. This study characterized vertical and diurnal variations in VOCs at 2, 13, 32, 58, and 111 m during four daily time periods (7:00 to 9:00 a.m., 12:00 to 2:00 p.m., 5:00 to 7:00 p.m., and 11:00 p.m. to 1:00 a.m.) at the upwind of a high-rise building in downtown, Kaohsiung City, Taiwan. The study used gas chromatography-mass spectrometry to analyze air samples collected by silica-coated canisters. The vertical distributions of ambient VOC profiles showed that VOCs tended to decrease at greater heights. However, VOC levels were found to be higher at 13 m than at ground level at midnight from 11:00 p.m. to 1:00 a.m. and higher at 32 than 13 m between 7:00 and 9:00 a.m. These observations suggest that vertical dispersion and dilution of airborne pollutants could be jointly affected by local meteorological conditions and the proximity of pollution sources. The maximum concentration of VOCs was recorded during the morning rush hours from 7:00 to 9:00 a.m., followed by rush hours from 5:00 to 7:00 p.m., hours from 12:00 to 2:00 p.m., and hours from 11:00 p.m. to 1:00 a.m., indicating that the most VOC compounds in urban air originate from traffic and transportation emissions. The benzene-toluene-ethyl benzene-xylene (BTEX) source analysis shows that BTEX at all heights were mostly associated with vehicle transportation activities on the ground.  相似文献   

9.
Sulfur hexafluoride (SF6) tracer was used in a series of the experiments to simulate emissions of benzene, toluene, ethyl-benzene, and xylenes (BTEX) from a refinery wastewater basin. The ratio of the measured tracer release to the ambient tracer concentration established a dilution factor which was then used to calculate the mass flux of BTEX from the wastewater basin using the ambient BTEX concentration data. Measured fluxes of BTEX varied from 7 g/min to 70 g/min.

The CHEMDAT7 air emissions model was then used to predict emissions for comparison with the emissions measured using the tracer flux simulation. CHEMDAT7 typically overpredicted total measured BTEX emissions by factors of twelve to seventeen. The degree of overprediction varied both by the individual compound and the module of CHEMDAT7 used to predict emission fluxes.  相似文献   

10.
The present work investigated the levels of total volatile organic compounds (TVOC) and benzene, toluene, ethylbenzene, m/p-xylene, and o-xylene (BTEX) in different microenvironments in the library of Jawaharlal Nehru University in summer and winter during 2011–2012. Carcinogenic and non-carcinogenic health risks due to organic compounds were also evaluated using US Environmental Protection Agency (USEPA) conventional approaches. Real-time monitoring was done for TVOC using a data-logging photo-ionization detector. For BTEX measurements, the National Institute for Occupational Safety and Health (NIOSH) standard method which consists of active sampling of air through activated charcoal, followed by analysis with gas chromatography, was performed. Simultaneously, outdoor measurements for TVOC and BTEX were carried out. Indoor concentrations of TVOC and BTEX (except benzene) were higher as compared to the outdoor for both seasons. Toluene and m/p-xylene were the most abundant organic contaminant observed in this study. Indoor to outdoor (I/O) ratios of BTEX compounds were generally greater than unity and ranged from 0.2 to 8.7 and 0.2 to 4.3 in winter and summer, respectively. Statistical analysis and I/O ratios showed that the dominant pollution sources mainly came from indoors. The observed mean concentrations of TVOC lie within the second group of the Molhave criteria of indoor air quality, indicating a multifactorial exposure range. The estimated lifetime cancer risk (LCR) due to benzene in this study exceeded the value of 1?×?10?6 recommended by USEPA, and the hazard quotient (HQ) of non-cancer risk came under an acceptable range.  相似文献   

11.
《Environmental Forensics》2013,14(4):319-329
Accidental spills and chronic leaks of fuel oil or other hydrocarbon material (e.g., coal tar) often result in subsurface accumulation of nonaqueous phase liquid (NAPL), which can be a subsequent source of contamination in groundwater. Linking hydrocarbons in groundwater to a source NAPL has been difficult when using standard target analytes (e.g., BTEX) because of differences in partitioning properties of the analytes between the source NAPL and groundwater. Because aqueous solubility is predicted to be the controlling influence in the partitioning of hydrocarbons from NAPL to groundwater, a solubility-based approach to matching dissolved hydrocarbons in groundwater to their source NAPL has been developed and validated for two sites with commonly encountered types of NAPL contamination. Specifically, a gasoline LNAPL and a coal tar DNAPL from two separate sites (West Virginia and California) and groundwater interfaced with these NAPLs were analyzed for approximately 50 gasoline-range hydrocarbons consisting of paraffin, isoparaffin, (mono-) aromatic, naphthene, and olefin compounds (PIANO). Solubility characteristics of selected alkyl aromatic hydrocarbons from the PIANO analysis were used to identify a set of diagnostic hydrocarbons, expressed as hydrocarbon ratios, which were found to be useful in distinguishing the source(s) of hydrocarbons in groundwater. At the West Virginia site, the diagnostic ratios in a downgradient groundwater sample were similar to those of a gasoline NAPL at that site, indicating the source of hydrocarbons to the groundwater was the upgradient gasoline NAPL. The diagnostic ratios of the groundwater in contact with the gasoline NAPL and the remote groundwater were also similar, providing evidence that the diagnostic ratios were retained during transport in the aquifer. At the California site, diagnostic ratios in a cross-gradient groundwater sample differed from those of the coal tar NAPL at that site, indicating that the remote groundwater hydrocarbons did not originate from the coal tar contamination. Environmental factors such as selective degradation of specific isomers and various geological conditions (e.g., soil mineralogy, and organic content) may confound the application of this solubility-based fingerprinting approach. Thus, it is recommended that multiple diagnostic pairs be simultaneously evaluated when considering this fingerprinting approach for specific sites and product types.  相似文献   

12.
Human exposures to criteria and hazardous air pollutants (HAPs) in urban areas vary greatly due to temporal-spatial variations in emissions, changing meteorology, varying proximity to sources, as well as due to building, vehicle, and other environmental characteristics that influence the amounts of ambient pollutants that penetrate or infiltrate into these microenvironments. Consequently, the exposure estimates derived from central-site ambient measurements are uncertain and tend to underestimate actual exposures. The Exposure Classification Project (ECP) was conducted to measure pollutant concentrations for common urban microenvironments (MEs) for use in evaluating the results of regulatory human exposure models. Nearly 500 sets of measurements were made in three Los Angeles County communities during fall 2008, winter 2009, and summer 2009. MEs included in-vehicle, near-road, outdoor, and indoor locations accessible to the general public. Contemporaneous 1- to 15-min average personal breathing zone concentrations of carbon monoxide (CO), carbon dioxide (CO2), volatile organic compounds (VOCs), nitric oxide (NO), nitrogen oxides (NOx), particulate matter (<2.5 μm diameter; PM2.5) mass, ultrafine particle (UFP; <100 nm diameter) number, black carbon (BC), speciated HAPs (e.g., benzene, toluene, ethylbenzene, xylenes [BTEX], 1,3-butadiene), and ozone (O3) were measured continuously. In-vehicle and inside/outside measurements were made in various passenger vehicle types and in public buildings to estimate penetration or infiltration factors. A large fraction of the observed pollutant concentrations for on-road MEs, especially near diesel trucks, was unrelated to ambient measurements at nearby monitors. Comparisons of ME concentrations estimated using the median ME/ambient ratio versus regression slopes and intercepts indicate that the regression approach may be more accurate for on-road MEs. Ranges in the ME/ambient ratios among ME categories were generally greater than differences among the three communities for the same ME category, suggesting that the ME proximity factors may be more broadly applicable to urban MEs.
Implications:Estimates of population exposure to air pollutants extrapolated from ambient measurements at ambient fixed site monitors or exposure surrogates are prone to uncertainty. This study measured concentrations of mobile source air toxics (MSAT) and related criteria pollutants within in-vehicle, outdoor near-road, and indoor urban MEs to provide multipollutant ME measurements that can be used to calibrate regulatory exposure models.  相似文献   

13.
Due to the intense microbial oxidation of organic soils in the Florida Everglades, approximately 1400 kg N/ha are mineralized annually. Most of this nitrogen is lost to the atmosphere through denitrification in the soil. Nitrous oxide is one of the gaseous products of denitrification, therefore the objectives of this study were to determine the quantities of N2O emitted from these soils and to measure the effect of this N2O on ambient mixing ratios in the Everglades. Nitrous oxide fluxes from these soils ranged from 4 g N/ha/day, during dry periods, to 4500 g N/ha/day following rainfall events. Nitrous oxide emissions increased with increasing soil moisture. From April through the end of December 1979, a total of 165, 97, and 48 kg N2O-N/ha were emitted from fallow, St. Augustine grass, and sugarcane fields, respectively. There was a diurnal variation in the N2O mixing ratios of air 8 m above the soil in the Everglades. This diurnal fluctuation was affected by wind speed. There was a significant linear correlation between the average daily mixing ratio and the flux of N2O from the soil.  相似文献   

14.
The impacts of emissions plumes from major industrial sources on black carbon (BC) and BTEX (benzene, toluene, ethyl benzene, xylene isomers) exposures in communities located >10 km from the industrial source areas were identified with a combination of stationary measurements, source identification using positive matrix factorization (PMF), and dispersion modeling. The industrial emissions create multihour plume events of BC and BTEX at the measurement sites. PMF source apportionment, along with wind patterns, indicates that the observed pollutant plumes are the result of transport of industrial emissions under conditions of low boundary layer height. PMF indicates that industrial emissions contribute >50% of outdoor exposures of BC and BTEX species at the receptor sites. Dispersion modeling of BTEX emissions from known industrial sources predicts numerous overnight plumes and overall qualitative agreement with PMF analysis, but predicts industrial impacts at the measurement sites a factor of 10 lower than PMF. Nonetheless, exposures associated with pollutant plumes occur mostly at night, when residents are expected to be home but are perhaps unaware of the elevated exposure. Averaging data samples over long times typical of public health interventions (e.g., weekly or biweekly passive sampling) misapportions the exposure, reducing the impact of industrial plumes at the expense of traffic emissions, because the longer samples cannot resolve subdaily plumes. Suggestions are made for ways for future distributed pollutant mapping or intervention studies to incorporate high time resolution tools to better understand the potential impacts of industrial plumes.

Implications: Emissions from industrial or other stationary sources can dominate air toxics exposures in communities both near the source and in downwind areas in the form of multihour plume events. Common measurement strategies that use highly aggregated samples, such as weekly or biweekly averages, are insensitive to such plume events and can lead to significant under apportionment of exposures from these sources.  相似文献   


15.
There is an ongoing debate as to which components of the ambient ozone (O3) exposure dynamics best explain adverse crop yield responses. A key issue is regarding the importance of peak versus mid-range hourly ambient O3 concentrations. While in this paper the importance of peak atmospheric O3 concentrations is not discounted, if they occur at a time when plants are conducive for uptake, the corresponding importance of more frequently occurring mid-range O3 concentrations is described. The probability of co-occurrence of high O3 concentrations and O3 uptake limiting factors is provided using coherent data sets of O3 concentration, air temperature, air humidity, mean horizontal wind velocity and global radiation measured at representative US and German air quality monitoring sites. Using the PLant-ATmosphere INteraction (PLATIN) model, the significance of the aforementioned meteorological parameters on ozone uptake is examined. In addition, the limitations of describing the O3 exposure for plants under ambient, chamberless conditions by SUM06, AOT40 or W126 exposure indices are discussed.  相似文献   

16.
Abstract

Expected urban air concentrations of the gasoline additive methyl tertiary butyl ether (MTBE) were calculated using volatile emissions estimates and screening transport models, and these predictions were compared with Boston, MA, area urban air measurements. The total volatile flux of MTBE into the Boston primary metropolitan statistical area (PMSA) airshed was calculated based on estimated automobile nontailpipe emissions and the Universal Quasi-Chemical Functional-Group Activity Coefficient computed abundance of MTBE in gasoline vapor. The fate of MTBE in the Boston PMSA was assessed using both the European Union System for the Evaluation of Substances, which is a steady-state multimedia box model, and a simple airshed box model. Both models were parameterized based on the meteorological conditions observed during air sampling in the Boston area. Measured average urban air concentrations of 0.1 and 1 [H9262]g/m3 MTBE during February and September of 2000, respectively, were comparable to corresponding model predictions of 0.3 and 1 μg/m3 and could be essentially explained from estimated temperature-dependent volatile emissions rates, observed average wind speed (the airshed flushing rate), and reaction with ambient tropospheric hydroxyl radical (.OH), within model uncertainty. These findings support the proposition that one can estimate gasoline component source fluxes and use simple multimedia models to screen the potential impact of future proposed gasoline additives on urban airsheds.  相似文献   

17.
Background, Aims and Scope This research attempted to identify the dominant factors simultaneously affecting the airborne concentrations of five air pollutants with principal component analysis and to determine the meteorologically related parameters that cause severe air-pollution events. According to the definition of subPSI and PSI values through the U.S. EPA, the historical raw data of five criteria air pollutants, SO2, CO, O3, PM10 and NO2, were calculated as daily subPSI values. In addition to the airborne concentrations, this study simultaneous collected the surface meteorological parameters of the Taipei meteorological station, established by the Central Weather Bureau. Methods Principal component analysis was conducted to screen severe air pollution scenarios for five air pollutants: SO2, CO, O3, PM10 and NO2. The concentrations of various air pollutants measured at 17 air-quality stations in northern Taiwan from 1995 to 2001 were transformed into daily subPSI values. The correlation analysis of the five air pollutants and four meteorological parameters (wind speed, temperature, mixing height and ventilation rate) were included in this research. After screening severe air pollution scenarios, this study recognized the synoptic patterns easily causing the severe air-pollution events. Results and Discussion Analytical results showed that the eigenvalues of the first two principal components for SO2, CO, O3, PM10 and NO2 were greater than 1. The first component of five air pollutants explained 64, 64, 67, 76 and 63% of subPSI variance for SO2, CO, O3, PM10 and NO2, respectively. Only the correlation coefficient of NO2 and CO had statistically significant positive values (0.82); other pollutant pairs presented medium (0.4 to 0.7) or low (0 to 0.4) positive values. The correlation coefficients for air pollutants and three meteorological parameters (wind speed, mixing height and ventilation index) were medium or low negative values. In northern Taiwan, spring was most likely induced high concentrations and the component scores of the first component for SO2, CO, PM10 and NO2; summer was the worst season that caused high O3 episodes. Consequently, the analytical results of factor loadings for the first principal component and emission inventory of various sources revealed that mobile sources were dominant factors affecting ambient air quality in northern Taiwan. Conclusion According to the results of principal component analysis for the five air pollutants, the first two of 17 components were cited as major factors and explained 71% of subPSI variance. Based on the inventory of NOx emissions and the isopleth diagram of factor loading for the first component, mobile sources in the southwest Taipei City accounted for the highest factor loading values and emission inventory values. Synoptic analysis and principal component analysis demonstrated that three types of weather patterns (high-pressure recirculation, prefrontal warm sector and the southwesterly wind system) easily caused the severe air-pollution scenarios. In summary, if severe air-pollution days occurred, the average meteorological parameters experienced adverse conditions for diffusing air pollutants; that is, the average values of wind speed, mixing height and ventilation index were lower than 2.1 ms-1, 360 m and 800 m2s-1, respectively. If one of the three synoptic patterns were to occur in combination with adverse meteorological conditions, severe air-pollution events would be developed. Recommendation and Outlook By utilizing synoptic patterns, this work found three weather systems easily caused severe air-pollution events over northern Taiwan. Analytical results showed, respectively, the wind speed and mixing height were less than 2.1 m/s and 360 m during severe air-pollution events.  相似文献   

18.
The study presents the levels of air pollution by aromatic organic compounds BTEX (benzene, toluene, ethylbenzene, o-, m-, and p-xylenes) in the city of Algiers. The sampling was carried out using Radiello passive sampler. Three sampling campaigns were carried out in roadside, tunnel, urban background, and semirural sites in Algiers. In order to determine the diurnal mean levels of air pollution by BTEX to which people are exposed, a modified passive sampler was used for the first time. In addition, monitoring of pollution inside vehicles was also made. In the spring of 2009, more than 27 samplings were carried out. In the background and road traffic sites the Radiello sampler was exposed for 7 days, whereas the time exposure was reduced to 1 day in the case of the vehicle as well as the tunnel. The results indicate that average benzene concentrations in the roadside and inside vehicle exceed largely the limit value of 5 μg m?3 established by the European Community (EC). On the other hand, it has been noticed that the concentration levels of other BTEX are relatively high. Also, in order to identify the origin of emission sources, ratios and correlations between the BTEX species have been highlighted. This study shows that road traffic remains the main source of many local emission in Algiers.

Implications The vehicle fleet in Algeria is growing rapidly since the 1990s following economic growth and is responsible for the increasing air pollution in large cities. Because there are no data collection of BTEX carried out by national air quality network, all environmental and transportation policies are based on European emissions standards, but national emission standards are currently not in place. This work will contribute to the analysis of real emissions of BTEX in Algiers, for the development of management and for assessment of population exposure variation depending on the location in the city of Algiers.  相似文献   

19.
The authors quantified changes between mean weekday and weekend ambient concentrations of ozone (O3) precursors (volatile organic compounds [VOC], carbon monoxide [CO], nitric oxide, and oxides of nitrogen [NOx]) in Atlanta and surrounding areas to observe how weekend precursor emission levels influenced ambient O3 levels. The authors analyzed CO, nitric oxide (NO), and NO, measurements from 1998 to 2002 and speciated VOC from 1996 to 2003. They observed a strong weekend effect in the Atlanta region, with median daytime (6:00 a.m. to 3:00 p.m. Eastern Standard Time) decreases of 62%, 57%, and 31%, respectively, in the ambient levels of NO, NOx, and CO from Wednesdays to Sundays, during the ozone season (March to October). They also observed significant decreases in ambient VOC levels between Wednesdays and Sundays, with decreases of 28% for the sum of aromatic compounds and 19% for the sum of Photochemical Assessment Monitoring Stations target compounds. Despite large reductions in O3 precursor levels on weekends, day-of-week differences in O3 mixing ratios in and near Atlanta were much smaller. Averaging overall O3-season days, the 1-hr and 8-hr mean peak daily O3 maxima on Sundays were 4.5% and 2.3% lower, respectively, than their mean levels on Wednesdays (median of 14 site differences), with no sites showing statistically significant Wednesday-to-Sunday differences. When restricted to high-O3 days (highest 3 peak O3 days per day of week per site per year), the 1-hr and 8-hr Sunday O3 mixing ratios were 11% and 10% lower, respectively, than their mean peak levels on Wednesdays (median of 14 site differences), with 6 of 14 sites showing statistically significant Wednesday-to-Sunday differences. The analyses of weekday/weekend differences in O3 precursor concentrations show that different emission reductions than normally take place each weekend will be required to achieve major reductions in ambient ozone levels in the Atlanta area.  相似文献   

20.
Two experimental monitoring campaigns were carried out in 2012 to investigate the air quality in the port of Naples, the most important in southern Italy for traffic of passengers and one of the most important for goods. Therefore, it represents an important air pollution source located close to the city of Naples. The concentrations of sulfur dioxide (SO2), nitrogen dioxide (NO2), and BTEX (benzene, toluene, ethylbenzene, and xylenes) in the air were measured at 15 points inside the Naples port area through the use of passive samplers. In addition, a mobile laboratory was positioned in a fixed point inside the port area to measure continuous concentration of pollutants together with particulate matter, ambient parameters, and wind direction and intensity. The pollution levels monitored were compared with those observed in the urban area of Naples and in other Mediterranean ports. Even though the observation time was limited, measured concentrations were also compared with limit values established by European legislation. All the measured pollutants were below the limits with the exception of nitrogen dioxide: its average concentration during the exposition time exceeded the yearly limit value. A spatial analysis of data, according to the measured wind direction and intensity, provided information about the effects that ship emissions have on ambient air quality in the port area. The main evidence indicates that ship emissions influence sulfur dioxide concentration more than any other pollutants analyzed.

Implications: Two monitoring campaigns were carried out to measure BTEX, SO2, NO2, and PM10 (particulate matter with an aerodynamic diameter <10 μm) air concentrations in the port of Naples. NO2 hourly average and PM10 daily average comply with European legislative standards. Spatial variation of pollutants long the axis corresponding to the prevailing wind direction seems to indicate a certain influence of ship emissions for SO2. For NO2 and PM10, a correlation between concentrations in the harbor and those measured by the air quality monitoring stations sited in the urban area of Naples was observed, indicating a possible contribution of the near road traffic to the air pollution in the port of Naples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号