首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the effects of human trampling on boreal forest understory vegetation on, and off paths from suburban forest edges towards the interiors and on the likelihood of trampling-aided dispersal into the forests for three years by carrying out a trampling experiment. We showed that the vegetation was highly sensitive to trampling. Even low levels of trampling considerably decreased covers of the most abundant species on the paths. Cover decreased between 10 and 30% on paths which had been trampled 35 times, and at least by 50% on those trampled 70–270 times. On-path vegetation cover decreased similarly at forest edges and in the interiors. However, some open habitat plant species that occurred outside the forest patches and at forest edges dispersed into the forests, possibly through the action of trampling. A higher cover percentage of an open habitat species at the forest edge line increased its probability to disperse into the forest interior. The vegetation community on, next to, and away from lightly trampled paths remained the same throughout the trampling experiment. For heavily trampled paths, the community changed drastically on the paths, but stayed relatively similar next to and away from the paths. As boreal vegetation is highly sensitive to the effects of trampling, overall ease of access throughout the forest floor should be restricted to avoid the excessive creation of spontaneous paths. To minimize the effects of trampling, recreational use could be guided to the maintained path network in heavily used areas.  相似文献   

2.
ABSTRACT: Soil loss prediction equations (Universal Soil Loss Equation, Modified Universal Soil Loss Equation, and Onstad-Foster Method) were modified to reflect the impact of trampling on soil erosion. The erosion control practice factor, P, was replaced by a trampling ratio, Tr, which is a function of the change in soil erosion due to animal trampling. Trampling impact on soil erosion varied With soil type. The data are a preliminary attempt to account for the impact of trampling on soil erosion.  相似文献   

3.
To prevent residues of veterinary medicinal products (VMPs) from contaminating surface waters and ground water, an environmental impact assessment is required before a new product is allowed on the market. Physically based simulation models are advocated for the calculation of predicted environmental concentrations at higher tiers of the assessment process. However, the validation status of potentially useful models is poor for VMP transport. The objective of this study was to evaluate the dual-permeability model MACRO for simulation of transport of sulfonamide antibiotics in surface runoff and soil. Special focus was on effects of solute application in liquid manure, which may alter the hydraulic properties at the soil surface. To this end we used data from a microplot runoff experiment and a field experiment, both conducted on the same clay loam soil prone to preferential flow. Results showed that the model could accurately simulate concentrations of sulfadimidine and the nonreactive tracer bromide in runoff and in soil from the microplot experiments. The use of posterior parameter distributions from calibrations using the microplot data resulted in poor simulations for the field data of total sulfadimidine losses. The poor results may be due to surface runoff being instantly transferred off the field in the model, whereas in reality re-infiltration may occur. The effects of the manure application were reflected in smaller total and micropore hydraulic conductivities compared with the application in aqueous solution. These effects could easily be accounted for in regulatory modeling.  相似文献   

4.
In the last few decades, trampling has become a cause of major disturbance to natural areas. Trampling can occur regularly either seasonally or throughout the year, or as a single impact depending on a recreational activity or an event. This study, carried out on a coastal heathland in north Brittany (France), was based on the hypothesis that the vegetation response can differ depending on whether the trampling is repeated or due to a single event. The aim was to compare the resistance and the short-term recovery capacity of selected species in coastal heathland communities subjected to a trampling experiment, applied once or five times (with equal total number of passes from 0 to 800). The temporal distribution of the trampling did not affect the response of Erica ciliaris, whereas for Erica cinerea and Ulex gallii, trampling was slightly less damaging when applied once rather than five times. These differences could be linked to the lower resistance and the higher recovery capacity of E. ciliaris, compared with the two other species. This study also emphasized the influence of site location by comparing observations with previous studies. Plant resistance calculated here appeared to be lower than that calculated for a less stressful site. The relationship between plant traits and response to trampling was also investigated. The effects of the different times between disturbance application and observations of the short-term response of woody vegetation to experimental trampling is also discussed.  相似文献   

5.
Off-road vehicles increase soil erosion by reducing vegetation cover and other types of ground cover, and by changing the structure of soil. The investigation of the relationship between disturbance from off-road vehicles and the intensity of the activities that involve use of vehicles is essential for water and soil conservation and facility management. Models have been developed in a previous study to predict disturbance caused by off-road vehicles. However, the effect of data on model quality and model performance, and the appropriate structure of models have not been previously investigated. In order to improve the quality and performance of disturbance models, this study was designed to investigate the effects of model structure and data. The experiment considered and tested: (1) two measures of disturbance based on the Vegetation Cover Factor (C Factor) of the Revised Universal Soil Loss Equation (RUSLE) and Disturbance Intensity; (2) model structure using two modeling approaches; and (3) three subsets of data. The adjusted R-square and residuals from validation data are used to represent model quality and performance, respectively. Analysis of variance (ANOVA) is used to identify factors which have significant effects on model quality and performance. The results of the ANOVA show that subsets of data have significant effects on both model quality and performance for both measures of disturbance. The ANOVA also detected that the C Factor models have higher quality and performance than the Disturbance models. Although modeling approaches are not a significant factor based on the ANOVA tests, models containing interaction terms can increase the adjusted R-squares for nearly all tested conditions and the maximum improvement can reach 31%.  相似文献   

6.
The effects of trampling on the coral communities of the outer reef flat and reef crest were investigated at Heron Island at the southern end of the Great Barrier Reef. Eighteen months of trampling at various intensities increased the percentage cover of unoccupied substrate and the cover of mobile rubble. The morphology of the coral was the most important feature relating to trampling resistance. Branching corals were reduced on the outer reef flat, and most broken branches were recorded in the initial phases of the experiment. The reef crest was much more resistant.A short-term trampling experiment showed that trampling detached a greater mass and larger fragments of coral on the outer reef flat than on the reef crest. Further trampling reduced the sizes of the detached fragments on the outer reef flat. A drift experiment indicated that greatest movement of fragments occurred on the reef crest and here the largest fragments moved greater distances.We concluded that all habitats would be changed by reef walking and that by one measure the outer reef flat was 16 times more vulnerable than the reef crest. The routes taken by reef walkers need to be chosen in relation to the trampling resistance of the habitat.  相似文献   

7.
ABSTRACT: A rainfall simulator was used on runoff plots to study the effects of simulated canopy cover, trampling disturbance, and soil type on nil and interrill erosion. Sandy loam soil was more erodible than clay loam soil. Furthermore, the simulated canopy cover signffi-Soilfactorsrelatedtonil cantly influenced nil and interrill erosion. The effect of trampling on rill and interrill erosion varied with soil type (clay loam versus sandy loam) and erosion type (nh versus interrill erosion). On large plots, where both nil and internill erosion were involved, 30 percent trampling significantly increased soil loss. However, on small plots, 30 percent trampling significantly reduced interrill erosion.  相似文献   

8.
Controlled trampling was conducted to investigate the trampling resistance of contrasting high fertility basaltic and low fertility rhyolitic soils and their associated highland tropical rainforest vegetation in north east Australia's Wet Tropics. Although this approach has been taken in numerous studies of trampling in a variety of ecosystem types (temperate and subtropical forest, alpine shrubland, coral reef and seagrass beds), the experimental method does not appear to have been previously applied in a tropical rainforest context. Ground vegetation cover and soil penetration resistance demonstrated variable responses to trampling. Trampling, most noticeably after 200 and 500 passes reduced organic litter cover. Bulk density increased with trampling intensity, particularly on basalt soils as rhyolite soils appeared somewhat resistant to the impacts of trampling. The permeability of the basalt and rhyolite soils decreased markedly with increased trampling intensity, even after only 75 passes. These findings suggest physical and hydrological changes may occur rapidly in tropical rainforest soils following low levels of trampling, particularly on basalt soils.  相似文献   

9.
The amount of biosolids recycled in agriculture has steadily increased during the last decades. However, few models are available to predict the accompanying risks, mainly due to the presence of trace element and organic contaminants, and benefits for soil fertility of their application. This paper deals with using data mining to assess the benefits and risks of biosolids application in agriculture. The analyzed data come from a 10-yr field experiment in northeast France focusing on the effects of biosolid application and mineral fertilization on soil fertility and contamination. Biosolids were applied at agriculturally recommended rates. Biosolids had a significant effect on soil fertility, causing in particular a persistent increase in plant-available phosphorus (P) relative to plots receiving mineral fertilizer. However, soil fertility at seeding and crop management method had greater effects than biosolid application on soil fertility at harvest, especially soil nitrogen (N) content. Levels of trace elements and organic contaminants in soils remained below legal threshold values. Levels of extractable metals correlated more strongly than total metal levels with other factors. Levels of organic contaminants, particularly polycyclic aromatic hydrocarbons, were linked to total metal levels in biosolids and treated soil. This study confirmed that biosolid application at rates recommended for agriculture is a safe option for increasing soil fertility. However, the quality of the biosolids selected has to be taken into account. The results also indicate the power of data mining in examining links between parameters in complex data sets.  相似文献   

10.
We aimed to assess the impacts of recreational trampling on rare species, plant communities and landscape structure in the Iroise Biosphere Reserve (western France). Focusing on coastal grasslands, we first identified indicators discriminating human-induced short grasslands (i.e. maintained short by intensive trampling) from natural short grasslands (i.e. maintained by environmental constraints): the presence of lichens and succulent or woody species, which are known to be highly sensitive to trampling, as well as a shallow soil were good indicators of natural short grasslands. Recreational activities affected the majority of plots containing rare species, but one third of rare species (according to their habitat preference) appeared currently not threatened by recreational activities. The other rare species were found in grasslands with low trampling intensity and were not found in grasslands with greater trampling intensity. One lichen species (Teloshistes flavicans) was not affected by trampling intensity, while two plants species (Scilla verna and Ophioglossum lusitanicum) showed higher abundances when trampling was low to medium. When it occurs in natural short grasslands, tourist trampling reduced drastically plant species richness. However, when considering maritime high grasslands, we observed that species richness was higher under low trampling vs. no trampling, but decreased at higher trampling intensity. At a landscape scale, the mean annual rate of path creation was about 1.6% and tourist trampling has already completely destroyed 3.5ha of natural coastal vegetation. Trampling of maritime-high grassland has also created 31ha of short grasslands, which represent 50.8% of the whole short grassland habitat of the island. Moreover trampling affected respectively, 41% and 15% of natural short grasslands and maritime-high grasslands. One of the main suggestions for managers to minimise trampling impacts should be to protect areas of rocky soil covered by short grassland that are still non-trampled and not impacted. Fortunately, this appears compatible with a relatively free access of visitors to coastal areas, as tourists can be redirected towards maritime-high grasslands, an habitat which is less impacted by tourism in terms of affected surface, soil cover, loss of species, or presence of rare species host.  相似文献   

11.
Dunes that are protected because of their very rich and diverse plant communities are often exposed to excessive visitor pressure. The effects of trampling on the habitat must be known from a conservation viewpoint but also are important for management. To determine the response of plant assemblages to trampling by people, an experimental study was conducted on the state-owned dunes at Quiberon (Brittany, France). Indices of resistance and resilience were used to compare three typical plant communities belonging to the various landscape units: mobile dune, semifixed dune, and fixed dune. The strong contrasts between communities belonging to different successional stages reflect their ecological functioning. The mobile dune and semifixed dune with their low resistance contrasted with the fixed dune. Only the vegetation cover of the semifixed dune benefited from long-term trampling and had a very high resilience (134%). This response could be explained by a good balance of two opposite factors: soil compaction increasing soil stability and moisture content, and vegetation destruction. Because of their low resilience, trampling seems to be harmful for fixed dunes in the long term. The tourist pressure seems easier to integrate in to the mobile dunes and the semifixed dunes if periods of recovery are included in the management.  相似文献   

12.
Recreation ecology, the study of environmental consequences of outdoor recreation activities and their effective management, is a relatively new field of scientific study having emerged over the last 50 years. During this time, numerous studies have improved our understanding of how use-related, environmental and managerial factors affect ecological conditions and processes. Most studies have focused on vegetation and soil responses to recreation-related trampling on trails and recreation sites using indicators such as percent vegetation cover and exposed mineral soil. This applied approach has and will continue to yield important information for land managers. However, for the field to advance, more attention needs to be given to other ecosystem attributes and to the larger aspects of environmental conservation occurring at landscape scales. This article is an effort at initiating a dialog on needed advances in the field. We begin by reviewing broadly generalizable knowledge of recreation ecology, to separate what is known from research gaps. Then, based on the authors’ perspective of research in the USA and North America, several research directions are suggested as essential for continued progress in this field including theoretical development, broadening scale, integration with other disciplines, and examination of synergistic effects.  相似文献   

13.
The effects of human trampling and firewood gathering on eight backcountry campsites in the Great Smoky Mountains were surveyed. Sample plots were classified as sitecenter, transition, firewood-gathering area, and control. The canopy in the center of the sites tended to be more open than that of control plots, with the greatest openings occurring at shelter sites in spruce-fir forest. Intensive human trampling in the center of the sites inhibited reproduction of tree species, whereas firewood gathering alone did not. In some cases where canopy opening had occurred, there was an increase in shrub and tree reproduction around the edge of the site. Reduction in the basal area of standing deadwood varied with the type of site; older growth stands were less depleted. Injuries to trees increased tenfold from control areas to the center of the campsites. Smaller fuels were more strongly impacted by trampling and little impacted by firewood gathering. Woody fuels in the 2.5- to 7.6-cm size class were preferred for firewood. A previously constructed carbon cycling model was modified to incorporate removal of firewood and litter on campsites. The model suggested that after extended removal of leaf litter, soil carbon takes 12 to 50 years to recover, but this hypothesis remains to be tested in the field.  相似文献   

14.
ABSTRACT: This study evaluated the impact of selected soil surface characteristics on infiltration rates and sediment production from interrill erosion from loam soil. Treatments were two different grass species (crested wheatgrass and intermediate wheatgrass), three levels of grass cover (30, 50, and 80 percent), four levels of rock cover (5, 10, 15, and 20 percent), and six levels of simulated trampling (10 to 60 percent of the respective plot area by 10 percent increments). Results indicated that plots with sod forming grass infiltrated only slightly more water than plots with bunchgrass, though the differences were significant. Trampling reduced infiltration rates significantly. On uncompacted soil, infiltration rates increased as percentage of rock cover increased. Trampling gradually destroyed this relationship however. Rock cover did not significantly affect sediment production. The tradeoff between vegetal cover and rock cover was affected by simulated trampling. Once trampling disturbance reached 20 percent, no relationship between vegetal cover and rock cover existed. Trampling was the most important factor influencing infiltration rates, explaining 35 to 48 percent of the variation in infiltration rates. The most important factor influencing sediment production was grass cover, which explained 40 to 62 percent of the variations associated with sediment yield at various trampling percentages. Results strongly suggest that, for slopes and soils as used here, adequate watershed protection may be obtained by maintaining 50 percent protective ground cover. Additional validation studies are recommended.  相似文献   

15.
Ground flora trampling studies: Five years after closure   总被引:8,自引:1,他引:8  
Trampling as an ecological factor is a major concern of the management of park, forest, nature preserves, and wilderness areas as recreational resources. Of particular importance to the management concept of carrying capacity is the relative resistance of native plant communities, to trampling and the resilience or the capacity of impacted communities to recover. This information can be used by management to establish seasonal use limits to prevent irreversible degradation of these resources. The purpose of this study was to follow the recolonizaton of experimental trail surfaces barren of vegetative cover and hiked at three levels of use intensity. Results of this study indicate that soil compaction as measured by soil penetration resistance increased progressively with use level while the total number of species, species diversity, and dominant index scores declined. A major finding was that the greatest degree of change occurred at the first level of hiking, indicating that major floristic measures were most affected by the least amount of hiking. Recolonization of impacted areas that received 100 trampling passes as measured by plant cover, dominant indices, floristic dissimilarity, and species diversity was similar to areas receiving four and eight times more trampling, despite major differences in soil penetration resistance. These data suggest limited use delivered at one time can be as damaging as increasing levels of use delivered at over time.  相似文献   

16.
17.
Parathion is an insecticide of a group of highly toxic organophosphorus compounds. To investigate the dissipation and toxicological impact of parathion [O,O-diethyl O-(4-nitrophenyl) phosphorothioate] and its highly toxic metabolite, paraoxon, soil laboratory experiments were conducted in columns during a 19-d experiment under variably saturated conditions. Water and pesticide transport, sorption, and biodegradation of parathion were measured in three soil pools (soluble phase, weakly and strongly sorbed phases) using C-labeled pesticide. The effects of parathion and its metabolite on the mobility of soil nematodes were observed and then modeled with an effective variable, which combined pesticide concentration and time of application. Results showed that parathion was highly sorbed and slowly degraded to a mixture of metabolites. The parent compound and its metabolites remained located in the top 0.06-m soil layer. A kinetic model describing the sorption, biodegradation, and allocation into different soil pools of parathion and its metabolites was coupled with heat and water transport equations to predict the fate of parathion in soil. Simulated results were in agreement with experimental data, showing that the products remained in the upper soil layers even in the case of long-term (11-mo) simulation. The strongly sorbed fraction may be regarded as a pesticide reservoir that regularly provides pesticide to the weakly sorbed phase, and then, liquid phase, respectively. From both modeling and observations, no major toxicological damage of parathion and paraoxon to soil nematodes was found, although some effects on nematodes were possible, but at the soil surface only (0.01- and 0.02-m depth).  相似文献   

18.
A 4-year study was conducted to evaluate the consequences of human trampling on dryas and tussock tundra plant communities. Treatments of 25, 75, 200 and 500 trampling passes were applied in 0.75 m2 vegetation plots at a time of approximately peak seasonal biomass. Immediately after and 1 and 4 years after trampling, plots were evaluated on the basis of plant species cover, percent bare ground, vegetation height, and soil penetration resistance. One year after trampling, soils were collected for nitrogen analysis in highly disturbed and control plots. Immediately after trampling, 500 trampling passes resulted in approximately 50% cover loss in the dryas tundra and 70% cover loss in tussock tundra, but both communities showed a substantial capacity for regrowth. Plots where low and moderate levels of trampling were applied returned to pre-disturbance conditions by 4 years after trampling, but impact was still evident in plots subjected to high levels of disturbance. These results suggest that these tundra communities can tolerate moderate levels of hiking and camping provided that use is maintained below disturbance thresholds and that visitors employ appropriate minimum-impact techniques. By utilizing this information in a visitor education program combined with impact monitoring and management, it is possible to allow dispersed camping and still maintain these vegetation communities with a minimum of observable impact.  相似文献   

19.
Exposed limestone cliffs in central Europe harbor a highly divers flora with many rare and endangered species. During the past few decades, there has been increasing recreational use of these cliffs, which has caused local environmental disturbances. Successful restoration strategies hinge on identifying critical limitations. We examined the composition of aboveground forest vegetation and density and species composition of seeds in the soil seed bank at the base of four limestone cliffs in mixed deciduous forests that are intensively disturbed by human trampling and at four undisturbed cliffs in the Jura Mountains in northwestern Switzerland. We found that long-term human trampling reduced total aboveground vegetation cover at the base of cliffs and caused a significant shift in the plant-species composition. Compared with undisturbed cliffs, total seed density was lower in disturbed cliffs. Human trampling also altered the species composition of seeds in the soil seed bank. Seeds of unintentionally introduced, stress-tolerant, and ruderal species dominated the soil seed bank at the base of disturbed cliffs. Our findings indicate that a restoration of degraded cliff bases from the existing soil seed bank would result in a substantial change of the original unique plant composition. Active seed transfer, or seed flux from adjacent undisturbed forest areas, is essential for restoration success.  相似文献   

20.
This article presents several case studies in southwest Germany, which aimed to support land use management decisions by a process-oriented statistical upscaling of point-related environmental monitoring data to the landscape scale. When techniques of data subsetting were used in a sensible way and corresponding to the appropriate scale for the evaluation envisaged, multiple linear regression offered a data mining technique which was able to spatially predict relatively complex environmental patterns with parsimonious, interpretable and accurate models, whereby different evaluation scales were best represented by different DTM resolutions. Scenario models based upon the regression formulas were a valuable tool for visualizing management options and evaluating management impacts (tree species selection) on soil functions (carbon storage), which qualifies the presented methodology as a useful aid in decision making. Such upscaling techniques may be used for forecasting long-term effects of ecosystem management, but they provided no information on temporal dynamics. Therefore, time trends of point information on soil solution data were scaled by linking them to soil chemical data which was available in higher spatial resolution, using both statistical and process-oriented methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号