首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PHB (poly-3-hydroxybutyric acid) is a thermoplastic polyester synthesized by Ralstonia eutropha and other bacteria as a form of intracellular carbon and energy storage and accumulated as inclusions in the cytoplasm of these bacteria. The degradation of PHB by fungi from samples collected from various environments was studied. PHB depolymerization was tested in vials containing a PHB-containing medium which were inoculated with isolates from the samples. The degradation activity was detected by the formation of a clear zone below and around the fungal colony. In total, 105 fungi were isolated from 15 natural habitats and 8 lichens, among which 41 strains showed PHB degradation. Most of these were deuteromycetes (fungi imperfecti) resembling species of Penicillium and Aspergillus and were isolated mostly from soils, compost, hay, and lichens. Soil-containing environments were the habitats from which the largest number of fungal PHB degraders were found. Other organisms involved in PHB degradation were observed. A total number of 31 bacterial strains out of 67 isolates showed clear zones on assay medium. Protozoa, possible PHB degraders, were also found in several samples such as pond, soil, hay, horse dung, and lichen. Lichen, a fungi and algae symbiosis, was an unexpected sample from which fungal and bacterial PHB degraders were isolated.  相似文献   

2.
Microorganisms which can assimilate a new polyester synthesized from polyethylene glycol (PEG) as a dihydroxyl compound and phthalic acid as a dicarboxyl compound were isolated from soils by enrichment culture techniques. Two cultures, K and N, were obtained: Culture K grew on PEG 4000 polyester and culture N assimilated PEG 6000 polyester. Each culture included two bacteria indispensable for the degradation of polyesters: bacteria K1 and K2 for PEG 4000 polyester-utilizing culture K and bacteria N1 and N2 for PEG 6000 polyester-utilizing culture N. Bacteria K2 and N2 were responsible for the hydrolysis of ester bonds in a polyester and both were identified as the same species,Comamonas acidovorans. Bacteria K1 and N6 could assimilate PEG as a sole carbon and energy source. Both are Gram-negative, non-spore-forming rods and resembled each other on their colony characteristics, although strain K1 could not grow on PEG 6000.C. acidovorans N2 (K2) grew on dialkyl phthalates (C2–C4) and phthalate and tributyrin, but not on PEG, diphthalic PEG, and PEG phthalate polyesters. Their culture supernatant and washed cells hydrolyzed PEG (400–20,000) phthalate and sebacate polyesters.C. acidovorans had higher esterase activity toward PEG phthalate, isophthalate, and terephthalate polyesters than known esterase and lipases. The esterase seemed to be an extracellular one and attached to the cell surface.  相似文献   

3.
A moorland soil site polluted with PCB showed a high diversity ofmetabolically active bacteria. Beside frequent types of 16S rRNAsequences similar to those of the species ofSphingomonasand the Acidobacterium phylum an unusual high number ofsequences from the genus Burkholderia were found. Burkholderia was also the main genus in isolates enriched onbiphenyl or various chlorobenzoates. In microcosm experimentssterilized surfaces exposed to PCB polluted soil always showed thepresence of clay aggregates formed by bacteria attached to thesubstratum. The bacteria use the PCB loaded clay colloids astransport medium for the water insoluble substrate to get accessto the carbon source. This is a novel mechanism of how bacteria dealwith hydrophobic substrates.  相似文献   

4.
In Brazil, few studies on microbial content of dental solid waste and its antibiotic susceptibility are available. An effort has been made through this study to evaluate the hazardous status of dental solid waste, keeping in mind its possible role in cross-infection chain. Six samples of solid waste were collected at different times and seasons from three dental health services. The microbial content was evaluated in different culture media and atmospheric conditions, and the isolates were submitted to antibiotic susceptibility testing. A total of 766 bacterial strains were isolated and identified during the study period. Gram-positive cocci were the most frequent morphotype isolated (48.0%), followed by Gram-negative rods (46.2%), Gram-positive rods (5.0%), Gram-negative-cocci (0.4%), and Gram-positive coccobacillus (0.1%). Only two anaerobic bacteria were isolated (0.3%). The most frequently isolated species was Staphylococcus epidermidis (29.9%), followed by Stenotrophomonas maltophilia (8.2%), and Enterococcus faecalis (6.7%). High resistance rate to ampicillin was observed among Gram-negative rods (59.4%) and Gram-positive cocci (44.4%). For Gram-negative rods, high resistance was also noted to aztreonam (47.7%), cefotaxime (47.4%), ceftriaxone and cefazolin (43.7%), and ticarcillin-clavulanic acid (38.2%). Against Gram-positive cocci penicillin exhibit a higher resistance rate (45.0%), followed by ampicillin, erythromycin (27.2%), and tetracycline (22.0%). The present study demonstrated that several pathogenic bacteria are present in dental solid waste and can survive after 48 h from the waste generation time and harbor resistance profiles against several clinical recommended antibiotics.  相似文献   

5.
The microbial degradation of tensile test pieces made of poly(3-hydroxybutyrate) [P(3HB)] or copolymers with 10% [P(3HB-co-10%3HV)] and 20% [P(3HB-co-20%3HV)] 3-hydroxyvaleric acid was studied in small household compost heaps. Degradation was measured through loss of weight (surface erosion) and changes in molecular weight and mechanical strength. It was concluded, on the basis of weight loss and loss of mechanical properties, that P(3HB) and P(3HB-co-3HV) plastics were degraded in compost by the action of microorganisms. No decrease inM w could be detected during the degradation process. The P(3HB-co-20%3HV) copolymer was degraded much faster than the homopolymer and P(3HB-co-10%3HV). One hundred nine microbial strains capable of degrading the polymersin vitro were isolated from the samples used in the biodegradation studies, as well as from two other composts, and identified. They consisted of 61 Gram-negative bacteria (e.g.,Acidovorax facilis), 10 Gram-positive bacteria (mainlyBacillus megaterium), 35Streptomyces strains, and 3 molds.  相似文献   

6.
Poly(L-lactide)(PLA)-degrading activities of a fungus, Tritirachium album, and two strains of actinomycetes,Lentzea waywayandensis and Amycolatopsis orientalis, were inducible by some proteins (poly-L-amino acid), peptides and amino acids. Extracellular PLA-degrading activity of the culture filtrates was detected when these strains grew in liquid basal medium containing 0.1% (w/v) of (poly-L-amino acids), peptides or amino acids as the enzyme inducer. In addition to PLA-degrading activity, succinyl-(L-alanyl-L-alanyl-L-alanine)-p-nitroanilide (Suc-(Ala)3-pNA)-degrading activity was observed, implying that the enzymes produced were protease-type. The enzyme activities produced varied between different strains and different inducers. Silk fibroin was the best inducer for A. orientalis and that elastin was the best inducer for L. waywayandensis and T. album.  相似文献   

7.
Two different microbial communities able to degrade atrazine (atz) were inoculated in four different soils. The most critical factor affecting the success of inoculation was the soil pH and its organic matter (OM) content. In two alkaline soils (pH > 7), some inoculations led immediately to a strong increase of the biodegradation rate. In a third slightly acidic soil (pH = 6.1), only one inoculum could enhance atz degradation. In a soil amended with organic matter and straw (pH = 5.7, OM = 16.5%), inoculation had only little effect on atz dissipation on the short as well as on the long-term. Nine months after the microflora inoculations, atz was added again and rapid biodegradation in all alkaline inoculated soils was recorded, indicating the long-term efficiency of inoculation. In these soils, the number of atz degraders was estimated at between 6.5 × 103 and 1.5 × 106 (g of soil)-1, using the most probable number (MPN) method. Furthermore, the presence of the atz degraders was confirmed by the detection of the gene atzA in these soils. Denaturing gradient gel electrophoresis (DGGE) analysis of the 16S rDNA genes indicated that the inoculated bacterial communities had little effect on the patterns of the indigenous soil microflora.  相似文献   

8.
Indigenous microorganisms, enriched and isolated from refinery waste sludge, were observed to possess a broad range of metabolic activities for mixtures of several classes of substrates of petroleum hydrocarbons, such as monoaromatic and polycyclic aromatic hydrocarbons (PAHs) and n- and branched alkanes. Three of the best-growing bacterial isolates selectively enriched with these compounds were identified by 16S rDNA sequencing as belonging to the genera Enterobacter and Ochrobactrum. Two of them, Enterobacter sp. strain EK3.1 and Ochrobactrum sp. strain EK6 utilise a hydrocarbon mixture of the branched alkane 2,6,10,14-tetramethylpentadecane and the PAHs acenaphthylene and acenaphthene. Enterobacter sp. strain EK4 can grow with a mixture of 2,6,10,14-tetramethylpentadecane, toluene, acenaphthylene and acenaphthene as carbon sources. Nucleic acid fingerprint analysis, by terminal restriction fragment length polymorphism (T-RFLP) of the PCR-amplified 16S rRNA genes, of the autochthonous bacterial community in contaminated soil samples showed complex and different community structures under different treatments of refinery waste sludge in landfarm areas. The characteristic peaks of the T-RFLP profiles of the individual, isolated degrading bacteria Enterobacter spp. and Ochrobactrum sp. were detected in the T-RFLP fingerprint of the bacterial community of the four months old treated landfarm soil, suggesting the enrichment of bacteria belonging to the same operational taxonomic units, as well as their importance in degrading activity.  相似文献   

9.
Azotobacter vinelandii UWD, ATCC 53799, an engineered strain derived from Azotobacter vinelandii UW was used in the poly(ethylene glycol) (PEG)-modulated synthesis of poly(-hydroxybutyrate) (PHB). To the best of our knowledge, this is the first report on modulating the production of PHB by amending the fermentation broth with PEG using A. vinelandii UWD. It was determined that A. vinelandii UWD is prone to back-mutation to the parent strain; hence fermentation experiments require the use of the antibiotic rifampicin. Diethylene glycol (DEG) and PEGs with molecular weights of 400, 2000, and 3400 Da and pentaerythritol ethoxylate (PEE) were used in the modulated fermentation experiments in a concentration of 2% (w/v). The molecular weight of the resulting polymers was reduced by up to 78%. No impact on the productivity of the strain was observed. Spectroscopic evidence showed that PEG-modulated synthesis resulted in the covalent attachment of the ethylene glycol moiety only when a small molecule, DEG, was used. PEGs had the same effects on the polymer formation in terms of molecular weight reduction as DEG, but no spectroscopic evidence was found for the formation of a covalent linkage between PHB and higher molecular weight PEGs.  相似文献   

10.
A simple method was developed for the preparation of an autoclavable, long-side-chain poly (-hydroxyalkanoate) (LSC-PHA) colloidal suspension, which was used as a substrate for enzymatic degradation and to prepare agar overlay plates for the isolation of microorganisms producing extracellular LSC-PHA depolymerase. Six cultures producing extracellular LSC-PHA depolymerase were isolated from a composted hydrocarbon-contaminated soil. All were pseudomonads or related bacteria. All (with the possible exception ofXanthomonas maltophilia) could produce LSC PHA. Except forX. maltophilia none could hydrolyze poly (-hydroxybutyrate). Screening of sevenPseudomonas strains known to accumulate LSC PHA showed that all were negative for extracellular LSC-PHA depolymerase production. It was concluded that extracellular LSC-PHA depolymerase producers are found mostly in the genusPseudomonas but that they are relatively uncommon.  相似文献   

11.
Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants that are mutagenic, carcinogenic, and toxic to living organisms. Here, the ability and effectiveness of selected bacteria isolated from an oil‐contaminated area in biodegrading PAHs were evaluated, and the optimal conditions conducive to bacterial PAH biodegradation were determined. Of six bacterial isolates identified based on their 16S rRNA sequences, Planomicrobium alkanoclasticum could subsist on and consume nearly all hydrocarbons according to the 2,6‐dichlorophenolindophenol assay. The efficacy of this isolate at PAH biodegradation was then empirically confirmed. After 30 days of incubation, P. alkanoclasticum degraded 90.8% of the 16 PAH compounds analyzed and fully degraded eight of them. The optimum P. alkanoclasticum growth conditions were 35°C, pH 7.5, and NaNO3 as the nitrogen source. Under these biostimulant conditions, P. alkanoclasticum degraded 91.4% of the total PAH concentration and completely decomposed seven PAHs after 15 days incubation. Hence, P. alkanoclasticum is an apt candidate for the biodegradation of PAHs and the bioremediation of sites contaminated by them.  相似文献   

12.
Systematic screening of 45 soil fungi for degradation polyhydroxyalkanoic acids (PHAs) has led to the selection of 6 potent Aspergillus isolates belonging to A. flavus, A. oryzae, A. parasiticus, and A. racemosus. Degradation of PHAs as determined by tube assay method revealed that these Aspergillus spp. were more efficient in degrading poly(3-hydroxybutyrate) [P(3HB)] compared to copolymer of 3-hydroxybutyric acid and 3-hydroxyvaleric acid (P3HB-co-16% 3HV). Moreover, the extent of degradation in mineral base medium was much better than those in complex organic medium. For all the Aspergillus spp. tested, maximum degradation was recorded at a temperature of 37°C with significant inhibition of growth. The optimum pH range for degradation was 6.5–7.0 with degradation being maximum at pH 6.8. The extent of polymer degradation increased with increase in substrate concentration, the optimum concentration for most of the cultures being 0.4% and 0.2% (w/v) for P(3HB) and P(3HB-co-16%3HV) respectively. Supplementation of the degradation medium with additional carbon sources exerted significant inhibitory effect on both P(3HB) and P(3HB-co-16%3HV) degradation.  相似文献   

13.
Bio‐Traps® were used to investigate biodegradation of benzene, methyl tertiary butyl ether (MTBE), and tertiary butyl alcohol (TBA) under different conditions at a fractured rock site to aid the selection of a bioremediation approach. The Bio‐Traps were amended with the 13C‐labeled constituent of interest and sampled sequentially at 15‐, 30‐, 60‐, and 90‐day intervals. The conditions tested were biodegradation during operation of an air sparge system, amendment with nitrate during the air sparge operation, anaerobic biodegradation with the system turned off, and anaerobic biodegradation with nitrate amendment. There was increased biomass with nitrate amendment whether the air sparge system was on or off for all the constituents of interest. The diversity of the microbial community, determined by phospholipid fatty acid analysis, decreased with nitrate amendment as more specialized degraders were selected. The most negative indicators of potential biodegradation performance were observed with the anaerobic control. There was less biomass overall, less incorporation of 13C into biomass, and decreased membrane permeability. As testing with additional amendments continues at the site, it is not yet certain which treatment might be selected for bioremediation, but the Bio‐Trap tests thus far have identified that the in situ, natural attenuation condition is least favorable for biodegradation. © 2009 Wiley Periodicals, Inc.  相似文献   

14.
Nickel-resistant bacteria isolated from underneath Ni-hyperaccumulators growing on serpentine soils were screened for production of polyhydroxyalkanoates. These rhizobacteria accumulated poly-3-hydroxybutyric acid [P(3HB)] accounting 3.9–67.7% of cell dry weight during growth in gluconate and/or glucose. Cupriavidus pauculus KPS 201 utilized only gluconate and accumulated about 67.7% P(3HB) while, Bacillus firmus AND 408 utilized both carbon sources for polymer synthesis. The isolates being resistant to Ni also accumulated substantial amount of P(3HB) when grown in presence of the heavy metal and this was revealed by transmission electron microscopic studies. Although B. firmus AND 408 produced only P(3HB) at higher concentrations of gluconate, C. pauculus KPS 201 synthesized copolymer of 3-hydroxybutyric acid (3HB) and 3-hydroxyvaleric acid (3HV) [P(3HB-co-3HV)]. In presence of 0.8% gluconate and 4 mM Ni, KPS 201 cells produced PHA amounting 81% CDW, which contained 76 and 24 mol% 3HB and 3HV monomers, respectively.  相似文献   

15.
A set of microcosm experiments was performed to understand the behaviour of special degraders in bioaugmentation experiments. In the experiments the following chlorobenzene degraders were used: the genetically modified Pseudomonas putida F1CC, and the two wild-type strains Pseudomonas putida GJ31 and Pseudomonas aeruginosa RHO1. These strains were used at an initial cell density of 105 cells mL–1 groundwater which had been spiked with 1,2-dichlorobenzene (1,2-DCB), 1,4-dichlorobenzene (1,4-DCB) and, as main contaminant, chlorobenzene (CB). The population dynamics and behaviour of the three special degraders within the groundwater microcosms were studied by single-strand conformation polymorphism (SSCP) analysis of 16S rDNA fragments amplified from directly extracted community DNA and fluorescent in situ hybridization (FISH) with species-specific probes. RHO1 disappeared after 4 days as detected by FISH in contrast to SSCP-detection where RHO1 could be found during the whole incubation time. Whereas GEM F1CC and wild-type strain GJ31 survived the whole incubation for 20 days. With both methods we were able to detect all strains with high specificity among the indigenous microbial community. The data sets obtained from SSCP analysis and FISH were highly correlated. Specific band intensity within the SSCPfingerprints and the cell counts determined by FISH gave a quantitative overview about the introduced strains.  相似文献   

16.
We intended to find thermophilic degraders of terephthalate-containing Biomax® films. Films in mesh bags were buried in composts (inside temperature: approximately 55–60 °C), resulting in the degradation of them in 2 weeks. Fluorescent microscopy of films recovered from composts showed that microorganisms gradually covered the surface of a film during composting. DGGE analysis of microorganisms on the composted film indicated the presence of Bacillus species as main species (approximately 80% of microbial flora) and actinomycetes (approximately 10–20%) as the second major flora. Isolation of Biomax®-utilizing bacteria was focused on these two genera: two actinomycetes and one Bacillus species were isolated as pure best degraders from the composted polymer films, which were fragmented into small pieces. All the strains were thermophilic and identified, based on their 16S rDNA analyses. Degradation of polymer films was confirmed by (1) accelerated fragmentation of films in composts, compared with a control (no inoculum) and resultant decrease in molecular weights, (2) growth in a powdered Biomax® medium, compared with a control without powdered Biomax®, and (3) production of terephthalate in a powdered Biomax® medium. In this way, we concluded that these bacteria were useful for degradation of thermostable Biomax® products.  相似文献   

17.
A series of laboratory microcosm experiments and a field pilot test were performed to evaluate the potential for in situ chemical oxidation (ISCO) of aromatic hydrocarbons and methyl tertiary butyl ether (MTBE), a common oxygenate additive in gasoline, in saline, high temperature (more than 30 °C) groundwater. Groundwater samples from a site in Saudi Arabia were amended in the laboratory portion of the study with the chemical oxidants, sodium persulfate (Na2S2O8) and sodium percarbonate (Na2(CO3)2), to evaluate the changes in select hydrocarbon and MTBE concentrations with time. Almost complete degradation of the aromatic hydrocarbons, naphthalene and trimethylbenzenes (TMBs), was found in the groundwater sample amended with persulfate, whereas the percarbonate‐amended sample showed little to no degradation of the target hydrocarbon compounds in the laboratory. Isotopic analyses of the persulfate‐amended samples suggested that C‐isotope fractionation for xylenes occurred after approximately 30 percent reduction in concentration with a decline of about 1 percent in the δ13C values of xylenes. Based on the laboratory results, pilot‐scale testing at the Saudi Arabian field site was carried out to evaluate the effectiveness of chemical oxidation using nonactivated persulfate on a high temperature, saline petroleum hydrocarbon plume. Approximately 1,750 kg of Na2S2O8 was delivered to the subsurface using a series of injection wells over three injection events. Results obtained from the pilot test indicated that all the target compounds decreased with removal percentages varying between 86 percent for naphthalene and more than 99 percent for the MTBE and TMBs. The benzene, toluene, ethylbenzene, and xylene compounds decreased to 98 percent on average. Examination of the microbial population upgradient and downgradient of the ISCO reactive zone suggested that a bacteria population was present following the ISCO injections with sulfate‐reducing bacteria (SRB) being the dominant bacteria present. Measurements of inorganic parameters during injection and postinjection indicated that the pH of the groundwater remained neutral following injections, whereas the oxidation–reduction potential remained anaerobic throughout the injection zone with time. Nitrate concentrations decreased within the injection zone, suggesting that the nitrate may have been consumed by denitrification reactions, whereas sulfate concentrations increased as expected within the reactive zone, suggesting that the persulfate produced sulfate. Overall, the injection of the oxidant persulfate was shown to be an effective approach to treat dissolved aromatic and associated hydrocarbons within the groundwater. In addition, the generation of sulfate as a byproduct was an added benefit, as the sulfate could be utilized by SRBs present within the subsurface to further biodegrade any remaining hydrocarbons. ©2015 Wiley Periodicals, Inc.  相似文献   

18.
Two pilot tests of an aerobic in situ bioreactor (ISBR) have been conducted at field sites contaminated with petroleum hydrocarbons. The two sites differed with respect to hydrocarbon concentrations. At one site, concentrations were low but persistent, and at the other site concentrations were high enough to be inhibitory to biodegradation. The ISBR unit is designed to enhance biodegradation of hydrocarbons by stimulating indigenous microorganisms. This approach builds on existing Bio‐Sep® bead technology, which provides a matrix that can be rapidly colonized by the active members of the microbial community and serves to concentrate indigenous degraders. Oxygen and nutrients are delivered to the bioreactor to maintain conditions favorable for growth and reproduction, and contaminated groundwater is treated as it is circulated through the bed of Bio‐Sep® beads. Groundwater moving through the system also transports degraders released from Bio‐Sep® beads away from the bioreactor, potentially increasing biodegradation rates throughout the aquifer. Groundwater sampling, Bio‐Traps, and molecular biological tools were used to assess ISBR performance during the two pilot tests. Groundwater monitoring indicated that contaminant concentrations decreased at both sites, and the microbial data suggested that these decreases were due to degradation by indigenous microorganisms rather than dilution or dispersion mechanisms. Taken together, these lines of evidence showed that the ISBR system effectively increased the number and activity of indigenous microbial degraders and enhanced bioremediation at the test sites. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
This study focused on the microbial desulfurization of ground tire rubber (GTR) by Sphingomonas sp. that was selected from coal mine soil and had sulphur oxidizing capacity. GTR was immersed in the medium co-cultured with the Sphingomonas sp. for 20?days. The growth curve of Sphingomonas sp. during co-cultured desulfurization with GTR was measured and the surface chemical groups of GTR before and after desulfurization were analyzed. The crosslink density, mechanical properties, dynamic mechanical properties, and morphology of fracture surface of SBR composites filled with GTR or DGTR were studied to evaluate the microbial desulfurization effect. The results showed that GTR had low toxicity to Sphingomonas sp., so Sphingomonas sp. was able to maintain a high biomass. After desulfurization, not only a rupture of conjugated C=C bonds, but also a reduction of sulfur content had happened to GTR. The sol fraction of GTR increased from its original 4.69?C8.68% after desulfurization. Desulfurated ground tire rubber (DGTR) sheets had better physical properties, and higher swelling values than GTR sheets. The DMA results showed that SBR/DGTR composite had a reduction of molecular chain friction resistance during glass transition region and a decrease of glass transition temperature. SEM photograph further indicated a good coherency interface between DGTR and the rubber matrix.  相似文献   

20.
Three bacteria isolated for degradation of rubbers were compared for their growth characteristics derived from the Bradford protein assay and turbidity (optical density, OD) measurement. Both Alcaligenes xylosoxidans T2 and Pseudomonas aeruginosa GP10 were fast-growing bacteria while Nocardia corynebacterioides S3 was a slow grower utilizing rubber as the sole source of carbon and energy, but the extent of degradation was lower by the formers than the latter. A. xylosoxidans T2, P. aeruginosa GP10 and N. corynebacterioides S3 showed a typical sigmoidal growth pattern based on binding of Coomassie Brilliant Blue G250 to bacterial proteins and spectrophotometrical measurement at 600 nm. Both assays showed similar growth characteristics for all three bacteria in this study. Degradation of rubber was more pronounced by N. corynebacterioides S3 than either A. xylosoxidans T2 or P. aeruginosa GP10 during 70 days of incubation. Our results suggest that slow-growing bacteria may play a much greater role in degrading polymeric materials than was previously believed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号