首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant biomass partitioning is an important driver of whole-plant net carbon gain, as biomass allocation could directly affect plant's future growth and reproduction. Alpine meadow in the northwestern Sichuan was impressed by the abundant community structure and species diversity. This study on biomass allocation pattern of different functional types and lifeforms might help understand plant life-history strategy of alpine meadow plants. We investigated 72 dominant herbaceous species for their compartments, biomass, and morphological traits during 2012-2014. These plants were sampled from natural grassland, disturbed grassland, and wintergreen grassland; they belonged to three functional types (grass, sedge, and forb) and two lifeforms (annual and perennial). The scaling relationships between functional traits of these plants were analyzed using Model type II regression method to estimate the parameters of the allometric equations. (1) Biomass allocation proportion of components significantly differed among grasses, sedges, and forbs owing to phylogeny: grasses had the highest stem biomass percentage, sedges had higher root biomass percentage, and forbs had higher leaf biomass percentage, but the scaling relationships were not significantly different, and isometric scaling was noted between biomass components for the three functional types. (2) Moreover, plant lifeforms affected the biomass allocation proportion of components, owing to the shorter or longer turnover rate and investment strategy between annual and perennial species. Annuals allocated more biomass to the stem and reproduction organs, but perennials invested more biomass to the leaves and roots. (3) In addition, plants from different grassland types differed in both biomass and morphology traits. Moreover, forbs from natural grassland and wintergreen grassland had higher leaf and reproductive biomass, but those from disturbed grasslands had higher stem biomass. Our results suggest that the functional type and lifeform decide the inherent scaling relationships between components of plants, but anthropogenic disturbance significantly impacted the quantity of component biomass. This study has important theoretical and practical significance to understand the response of alpine plants to climate change and anthropogenic disturbance as well as to help in the scientific management of alpine meadow. © 2018 Science Press. All rights reserved.  相似文献   

2.
Poorter L  Bongers F 《Ecology》2006,87(7):1733-1743
We compared the leaf traits and plant performance of 53 co-occurring tree species in a semi-evergreen tropical moist forest community. The species differed in all leaf traits analyzed: leaf life span varied 11-fold among species, specific leaf area 5-fold, mass-based nitrogen 3-fold, mass-based assimilation rate 13-fold, mass-based respiration rate 15-fold, stomatal conductance 8-fold, and photosynthetic water use efficiency 4-fold. Photosynthetic traits were strongly coordinated, and specific leaf area predicted mass-based rates of assimilation and respiration; leaf life span predicted many other leaf characteristics. Leaf traits were closely associated with growth, survival, and light requirement of the species. Leaf investment strategies varied on a continuum trading off short-term carbon gain against long-term leaf persistence that, in turn, is linked to variation in whole-plant growth and survival. Leaf traits were good predictors of plant performance, both in gaps and in the forest understory. High growth in gaps is promoted by cheap, short-lived, and physiologically active leaves. High survival in the forest understory is enhanced by the formation of long-lived well protected leaves that reduce biomass loss by herbivory, mechanical disturbance, or leaf turnover. Leaf traits underlay this growth-survival trade-off; species with short-lived, physiologically active leaves have high growth but low survival. This continuum in leaf traits, through its effect on plant performance, in turn gives rise to a continuum in species' light requirements.  相似文献   

3.
Knowledge of leaf chemistry, physiology, and life span is essential for global vegetation modeling, but such data are scarce or lacking for some regions, especially in developing countries. Here we use data from 2021 species at 175 sites around the world from the GLOPNET compilation to show that key physiological traits that are difficult to measure (such as photosynthetic capacity) can be predicted from simple qualitative plant characteristics, climate information, easily measured ("soft") leaf traits, or all of these in combination. The qualitative plant functional type (PFT) attributes examined are phylogeny (angiosperm or gymnosperm), growth form (grass, herb, shrub, or tree), and leaf phenology (deciduous vs. evergreen). These three PFT attributes explain between one-third and two-thirds of the variation in each of five quantitative leaf ecophysiological traits: specific leaf area (SLA), leaf life span, mass-based net photosynthetic capacity (Amass), nitrogen content (N(mass)), and phosphorus content (P(mass)). Alternatively, the combination of four simple, widely available climate metrics (mean annual temperature, mean annual precipitation, mean vapor pressure deficit, and solar irradiance) explain only 5-20% of the variation in those same five leaf traits. Adding the climate metrics to the qualitative PFTs as independent factors in the model increases explanatory power by 3-11% for the five traits. If a single easily measured leaf trait (SLA) is also included in the model along with qualitative plant traits and climate metrics, an additional 5-25% of the variation in the other four other leaf traits is explained, with the models accounting for 62%, 65%, 66%, and 73% of global variation in N(mass), P(mass), A(mass), and leaf life span, respectively. Given the wide availability of the summary climate data and qualitative PFT data used in these analyses, they could be used to explain roughly half of global variation in the less accessible leaf traits (A(mass), leaf life span, N(mass), P(mass)); this can be augmented to two-thirds of all variation if climatic and PFT data are used in combination with the readily measured trait SLA. This shows encouraging possibilities of progress in developing general predictive equations for macro-ecology, global scaling, and global modeling.  相似文献   

4.
《Ecological modelling》2007,201(2):223-232
Barnes and Roderick [Barnes, B., Roderick, M.L., 2004. An ecological framework linking scales across space and time based on self-thinning. Theoret. Popul. Biol. 66, 113–128] developed a generic ecological framework for scaling from individuals to ecosystems. Their approach is general and can be applied to predict above-ground, or total (above- and below-ground), dry mass. In practice, the most common situation is to measure above-ground dry mass, and apply an allometric relationship to estimate the below-ground component. In this paper we develop a general theory for incorporating the dynamics of plant partitioning into the generic framework. We consider the inclusion of allometric relationships between components (such as between roots and shoots), as well as process driven relationships, and illustrate the application of each case. Through this approach, local scale measurements and individual-based dynamic relationships pertaining to plant partitioning can be applied to an understanding of partitioning at the patch (or ecosystem) scale. Moreover, we also demonstrate that the empirically based allometric relationships have, in some circumstances, a physical explanation, providing biological meaning to empirically established allometric constants.  相似文献   

5.
Summary. As Salicaceous plants produce new leaves for a prolonged period of time, they expose a wide range of differentially aged leaves to herbivores during the growing season. In this work, I show that young leaves of three Salicaceous species, Populus tremula L., Salix phylicifolia L. and S. pentandra L., contain more nitrogen than conspecific old leaves. In P. tremula and S. pentandra young leaves also contained more low-molecular weight secondary compounds, phenolic glucosides. Leaves of S. phylicifolia did not contain phenolic glucosides in detectable amounts. Furthermore, in P. tremula and S. pentandra young leaves contained less polymeric digestability-reducing phenolics, condensed tannins, than old leaves. In S. phylicifolia, higher concentrations of condensed tannins were found in young leaves. In laboratory feeding trials with six leaf beetle species, young leaves of the studied plants were invariably preferred in all tested herbivore × host species combinations. In particular, it is remarkable that three leaf beetle species with known different overall relationships to phenolic glucosides equally preferred more glucoside-containing young S. pentandra leaves over conspecific old ones. Four beetle species were found to prefer young leaves of S. phylicifolia despite the higher content of condensed tannins in young leaves. These results indicate that the general preference of leaf beetles for young leaves of Salicaceous plants probably does not primarily result from variable distribution of secondary compounds. Apparently, the preference for young leaves is fundamentally due to variation in leaf nutritive traits, such as nitrogen content. Received 9 February 2001.  相似文献   

6.
Duncan RP  Forsyth DM  Hone J 《Ecology》2007,88(2):324-333
Many fundamental traits of species measured at different levels of biological organization appear to scale as a power law to body mass (M) with exponents that are multiples of 1/4. Recent work has united these relationships in a "metabolic theory of ecology" (MTE) that explains the pervasiveness of quarter-power scaling by its dependence on basal metabolic rate (B), which scales as M(0.75). Central to the MTE is theory linking the observed -0.25 scaling of maximum population growth rate (rm) and body mass to the 0.75 scaling of metabolic rate and body mass via relationships with age at first reproduction (alpha) derived from a general growth model and demographic theory. We used this theory to derive two further predictions: that age at first reproduction should scale inversely to mass-corrected basal metabolic rate alpha infinity (B/M)(-l) such that rm infinity (B/M)1. We then used phylogenetic generalized least squares and model selection methods to test the predicted scaling relationships using data from 1197 mammalian species. There was a strong phylogenetic signal in these data, highlighting the need to account for phylogeny in allometric studies. The 95% confidence intervals included, or almost included, the scaling exponent predicted by MTE for B infinity M(0.75), rm infinity M(-0.25), and rm infinity alpha(-1), but not for alpha infinity M(0.25) or the two predictions that we generated. Our results highlight a mismatch between theory and observation and imply that the observed -0.25 scaling of maximum population growth rate and body mass does not arise via the mechanism proposed in the MTE.  相似文献   

7.
Sack L  Frole K 《Ecology》2006,87(2):483-491
The hydraulic resistance of the leaf (R1) is a major bottleneck in the whole plant water transport pathway and may thus be linked with the enormous variation in leaf structure and function among tropical rain forest trees. A previous study found that R1 varied by an order of magnitude across 10 tree species of Panamanian tropical lowland rain forest. Here, correlations were tested between R1 and 24 traits relating to leaf venation and mesophyll structure, and to gross leaf form. Across species, R1 was related to both venation architecture and mesophyll structure. R1 was positively related to the theoretical axial resistivity of the midrib, determined from xylem conduit numbers and dimensions, and R1 was negatively related to venation density in nine of 10 species. R1 was also negatively related to both palisade mesophyll thickness and to the ratio of palisade to spongy mesophyll. By contrast, numerous leaf traits were independent of R1, including area, shape, thickness, and density, demonstrating that leaves can be diverse in gross structure without intrinsic trade-offs in hydraulic capacity. Variation in both R1-linked and R1-independent traits related strongly to regeneration irradiance, indicating the potential importance of both types of traits in establishment ecology.  相似文献   

8.
The research presented here develops a geometrically accurate model of cotton crop canopies that can be used to explore changes in canopy microenvironment and physiological function with leaf structure. We develop an accurate representation of the leaves, including changes in three-dimensional folding and orientation with age and cultivar. Photogrammetrical analysis of leaf surfaces is used to generate measured points at known positions. Interpolation of points located on the surface of the cotton leaves is then performed with a tensor product interpolants model that generates a generic leaf shape. Dynamic changes in leaf shape and canopy position over the growing season are based on measurements of cotton canopies in the field, and are used to modulate the generic leaf shape. The simulated leaves populate a canopy element based on statistical distributions from measured crop canopies. The simulation is found to give a good representation of cotton canopy leaves, adequately capturing the three-dimensional structure of the leaves and changes in leaf shape and size over the growing season. The simulated canopy accurately estimates leaf area index, except for the earliest measurement period prior to canopy closure. The application of the CAGD algorithm for representing cotton leaf and canopy geometry, and the technique for changing the leaves’ spatial position, size and shape through time of four representative cotton canopies is found to be a useful tool for developing a realistic crop canopy. We use leaf area index (LAI) as a measure of the accuracy of model-predicted LAI values in comparison to LAI in crop canopies in situ, obtaining r2 values ranging from 0.82 to 0.92. The level of detail captured in the model could contribute greatly to future studies of physiological function and biophysical dynamics within a crop canopy.  相似文献   

9.
Fundamental trade-offs generating the worldwide leaf economics spectrum   总被引:5,自引:0,他引:5  
Recent work has identified a worldwide "economic" spectrum of correlated leaf traits that affects global patterns of nutrient cycling and primary productivity and that is used to calibrate vegetation-climate models. The correlation patterns are displayed by species from the arctic to the tropics and are largely independent of growth form or phylogeny. This generality suggests that unidentified fundamental constraints control the return of photosynthates on investments of nutrients and dry mass in leaves. Using novel graph theoretic methods and structural equation modeling, we show that the relationships among these variables can best be explained by assuming (1) a necessary trade-off between allocation to structural tissues versus liquid phase processes and (2) an evolutionary tradeoff between leaf photosynthetic rates, construction costs, and leaf longevity.  相似文献   

10.
植物叶片汞浓度与大气气态单质汞(GEM/Hg0)浓度的线性关系表明叶片汞浓度大小可用于指示植物生长区内GEM浓度的高低水平.通过分析上海市绿地公园(25座)中常见落叶树木樱花、水杉、法桐叶片汞浓度的时空变化特征,探究区域内GEM含量水平及分布特征.2017年5-10月对7座公园中这3种树木叶汞浓度进行连续监测,结果显示...  相似文献   

11.
Summary. Plants attacked by herbivorous insects emit a blend of volatile compounds that serve as important host location cues for parasitoid wasps. Variability in the released blend may exist on the whole-plant and withinplant level and can affect the foraging efficiency of parasitoids. We comprehensively assessed the kinetics of herbivore-induced volatiles in soybean in the context of growth stage, plant organ, leaf age, and direction of signal transport. The observed patterns were used to test the predictions of the optimal defence hypothesis (OD). We found that plants in the vegetative stage emitted 10-fold more volatiles per biomass than reproductive plants and young leaves emitted >2.6 times more volatiles than old leaves. Systemic induction in single leaves was stronger and faster by one day in acropetal than in basipetal direction while no systemic induction was found in pods. Herbivore-damaged leaves had a 200-fold higher release rate than pods. To some extent these findings support the OD: i) indirect defence levels were increased in response to herbivory and ii) young leaves, which are more valuable, emitted more volatiles. However, the fact that reproductive structures emitted no constitutive or very few inducible volatiles is in seeming contrast to the OD predictions. We argue that in case of volatile emission the OD can only partially explain the patterns of defence allocation due to the peculiarity that volatiles act as signals not as toxins or repellents.  相似文献   

12.
湖北海棠实生树童区与成年区形态学和细胞学比较研究   总被引:1,自引:0,他引:1  
通过将湖北海棠(Malushupehensis)实生树不同发育区接穗嫁接到一年生本砧上,建立一个遗传背景一致、所处发育阶段不同的童期研究实验系统,并采用显微图像形态定量分析系统对湖北海棠实生树童区和成年区及其嫁接植株形态学和细胞学进行比较研究.结果表明,实生树从童区向成年区转变后,其叶片细胞核DNA相对含量增加,细胞RNA合成增强,细胞核增大,但细胞变小,叶片叶肉组织分化程度提高,叶面积增大,叶片增厚;取实生树童区和成年区枝条嫁接到一年生本砧上,成年区嫁接苗当年就具有开花能力,而童区嫁接苗仍保持童年特征,不具备开花能力,PP333不能诱导童区嫁接苗开花,童区嫁接苗分枝能力较强,叶形与实生树童区和同龄实生苗相似.成年区嫁接植株叶片细胞RNA含量依然显著高于童区嫁接植株,尽管叶片细胞核DNA含量和细胞核大小仍有增加趋势,但增加幅度显著减少,两者叶片叶肉组织均表现为阳性结构.对实生树童区向成年区转变过程中DNA和RNA含量变化及其作用进行了讨论  相似文献   

13.
Karban R 《Ecology》2008,89(9):2446-2452
Conventional explanations for deciduousness do not include losses to herbivory. However, a recent explanation posits that deciduous leaf drop allows trees to reduce their herbivore loads and that this benefit of the deciduous habit may partly offset lost opportunities for photosynthesis. Much of the damage caused by chewing herbivores occurs early in the season when adult insects colonize as new leaves are expanding; trees without leaves from previous leaf flushes at this time are less attractive and suffer less cost of herbivory. I tested this hypothesis using Ceanothus velutinus, an evergreen shrub that shows considerable individual variation in leaf retention. Stems that held more leaves through winter experienced more chewing damage the following season. Stems with leaves experimentally removed through winter also were less likely to receive chewing damage the following season. At least some herbivores in this system make oviposition decisions before new leaves have expanded, and old leaves may provide cues about the suitability of the stem. Holding leaves through winter increased the likelihood of herbivory, and experimental protection from herbivores caused 60% greater inflorescence production compared to unprotected stems. However, the cost of leaf retention was more than offset by an overall benefit. Stems that were allowed to keep winter leaves produced larger new leaves in summer and expanded them more rapidly in the season than stems with winter leaves experimentally removed. As a result, stems with leaves through winter experienced higher survival, four times as many inflorescences, and 40 times as many fruits as shoots that were experimentally defoliated. Losses to herbivores may be an unappreciated cost of leaf retention, and cost-benefit models of deciduous and evergreen behavior should include these losses.  相似文献   

14.
Summary. The quality of tree leaves as food for herbivores changes rapidly especially during the spring and early summer. However, whether the quality of an individual tree in relation to other trees in the population changes during the growing season and between years is less clear. We studied the seasonal and annual stability of chemical and physical traits affecting leaf quality for herbivores. Rankings of trees in terms of the contents of two major groups of phenolics in their leaves, hydrolyzable tannins and proanthocyanidins (condensed tannins), were very stable from the early spring to the end of the growing season. There were also strong positive within-season correlations in the levels of some other groups of phenolics in the leaves (kaempferol glycosides, myricetin glycosides and p-coumaroylquinic acid derivatives). The contents of individual sugars and the sum content of protein-bound amino acids showed patterns of seasonal consistency in mature leaves, but not in young developing leaves. The seasonal correlations in leaf water content and toughness were also strongest in mature leaves. The correlations between two years at corresponding times of the growing season were strongly positive for the major groups of phenolics throughout the season, but were more variable for the contents of proteins and some sugars. Leaf toughness and water content showed strong positive correlations in mature leaves. Despite the consistency of tree ranking in terms of leaf phenolics, the relative resistance status of trees may, however, change during a growing season because there was a negative correlation between the content of hydrolyzable tannins (early-season resistance compounds) in leaves early in the season and the content of proanthocyanidins (late-season resistance compounds) late in the season, and vice versa. Thus, assuming that phenolics affect herbivore preference and performance, different plants may suffer damage at different times of the growing season, and the overall variation between trees in the fitness consequences may be low. In addition, the adaptation of herbivorous insects to mountain birch foliage in general, as well as to specific tree individuals, may be constrained by variation in the relative resistance status of the trees.  相似文献   

15.
外源氮输入对互花米草生长及叶特征的影响   总被引:2,自引:0,他引:2  
入侵种互花米草(Spartina alterniflora)是滨海盐沼湿地的多年生草本植物,研究人类活动引起的外源氮输入对其生长的影响有助于了解滨海湿地生态系统结构和功能的未来变化趋势。运用随机区组试验设计方法,模拟海滩水分条件(间歇淹水和持续淹水),研究了互花米草的地上部生物量、叶片光合特征以及形态特征对外源氮输入的响应。结果表明:互花米草地上部生物量在施氮条件下显著增加,且在土壤处于间歇淹水状态时表现更为明显;施氮条件下植株分蘖数比对照处理分别增加了60.0%和60.2%,是引起地上部生物量增加的主要原因。施加氮素促进了互花米草叶片的生长,叶面积、叶数、叶长和叶宽均显著增加,而叶数的变化是导致植物叶面积增加的主要因素。外源氮输入促进了互花米草叶绿素含量的增加,而对净光合速率的季节变化特征无明显影响。持续淹水处理的植物地上部生物量、生长速率、分蘖数、净光合速率和叶面积均低于间歇淹水处理,说明持续淹水状态对互花米草生长造成了一定的抑制作用。  相似文献   

16.
Summary. Mountain birches are deciduous trees consisting of several clonal and partly autonomous ramets. Autumnal moth, Epirrita autumnata, is an extremely harmful pest of mountain birches that during outbreak years may cause the death of trees over large areas. During the larval development of E. autumnata, leaf characters and nutritional suitability vary considerably both temporally and spatially among and within mountain birches. Compared to variation between trees, however, the extent of within-tree variation is known for only a limited number of potentially defensive traits. Plant oxidases, polyphenoloxidases (PPOs) and peroxidases (PODs) may play an important part in dictating the suitability of a tree for plant-eating animals, including E. autumnata. In this study, we observed changes in the activities of oxidative and antioxidative enzymes along leaf development during the larval period of E. autumnata. We also estimated the relative amounts of spatial variation among and within trees. Our results show that POD activities were remarkably high during the rapid elongation growth phase of leaves but decreased with leaf maturation. Thus PODs are suggested to take part in leaf elongation growth. Time and within tree variation accounted for the most of variation in POD activities whereas there was no among tree variation. In contrast, the activities of antioxidative CATs, which act as antagonists to PODs, were low in young leaves and increased towards leaf maturation, reflecting an increase in the oxidative status of source leaves. Within tree variation accounted for the most of the variation in CAT activities. The absolute PPO activities decreased along leaf growth due to the dilution effect whereas the specific activity of PPOs, which has been shown to be defensive against E. autumnata larvae, did not vary temporally that might reflect the importance of these enzymes in the defence of birches. Acidic PPOs showed marked within- and among-tree variation, which may impact herbivores performance on certain genotypes and increase larval mobility within the tree canopy.  相似文献   

17.
18.
The large variation in the relationships between environmental factors and plant traits observed in natural communities exemplifies the alternative solutions that plants have developed in response to the same environmental limitations. Qualitative attributes, such as growth form, woodiness, and leaf habit can be used to approximate these alternative solutions. Here, we quantified the extent to which these attributes affect leaf trait values at a given resource supply level, using measured plant traits from 105 different species (254 observations) distributed across 50 sites in mesic to wet plant communities in The Netherlands. For each site, soil total N, soil total P, and water supply estimates were obtained by field measurements and modeling. Effects of growth forms, woodiness, and leaf habit on relations between leaf traits (SLA, specific leaf area; LNC, leaf nitrogen concentration; and LPC, leaf phosphorus concentration) vs. nutrient and water supply were quantified using maximum-likelihood methods and Bonferroni post hoc tests. The qualitative attributes explained 8-23% of the variance within sites in leaf traits vs. soil fertility relationships, and therefore they can potentially be used to make better predictions of global patterns of leaf traits in relation to nutrient supply. However, at a given soil fertility, the strength of the effect of each qualitative attribute was not the same for all leaf traits. These differences may imply a differential regulation of the leaf economy traits at a given nutrient supply, in which SLA and LPC seem to be regulated in accordance to changes in plant size and architecture while LNC seems to be primarily regulated at the leaf level by factors related to leaf longevity.  相似文献   

19.
There are presently few tools available for estimating epidemic risks from forest pathogens, and hence informing pro-active disease management. In this study we demonstrated that a bioclimatic niche model can be used to examine questions of epidemic risk in temperate eucalypt plantations. The bioclimatic niche model, CLIMEX, was used to identify regional variation in climate suitability for Mycosphaerella leaf disease (MLD), a major cause of foliage damage in temperate eucalypt plantations around the world. Using historical observations of MLD damage, we were able to convert the relative score of climatic suitability generated by CLIMEX into a severity ranking ranging from low to high, providing for the first time a direct link between risk and impact, and allowing us to explore disease severity in a way meaningful to forest managers. We determined that the ‘Compare Years’ function in CLIMEX could be used for site-specific risk assessment to identify severity, frequency and seasonality of MLD epidemics. We explored appropriate scales of risk assessment for forest managers. Applying the CLIMEX model of MLD using a 0.25° or coarser grid size to areas of sharp topographic relief frequently misrepresented the risk posed by MLD, because considerable variation occurred between individual forest sites encompassed within a single grid cell. This highlighted the need for site-specific risk assessment to address many questions pertinent to managing risk in plantations.  相似文献   

20.
A new model for determining leaf growth in vegetative shoots of the seagrass Zostera marina (eelgrass) is described. This model requires the weights of individual mature and immature whole leaves and leaf plastochrone interval (PL) as parameters, differing from the conventional leaf marking technique (CLM) that requires cutting and separation between new and old tissue of leaves. The techniques required for the model are the same as for the plastochrone method, but the parameters differ between both methods in use of the weight of individual immature leaves. In a mesocosm study, eelgrass growth was examined, and parameters for the new model and plastochrone method (the weights of individual mature and immature leaves and PL) were measured. Leaf growth rate was measured using the CLM and determined by the new method and the plastochrone method. The results were then compared between the CLM, the new model, and the plastochrone method. The results obtained with the new model were similar to those obtained with the CLM. However, the results of the plastochrone method differed from those of the CLM, while the weight of immature leaves varied seasonally. The new model was also used to determine leaf growth in a natural eelgrass bed in Mikawa Bay, Japan, and revealed the growth rates in all shoots and those of different ages. This method would be advantageous as an accurate means of direct measurement in fieldwork, and should therefore be a useful tool for monitoring seagrass growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号