首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Journal of Material Cycles and Waste Management - In this study, the physical properties of modified asphalt binders and performance of asphalt mixes after the addition of different modifiers such...  相似文献   

2.
Journal of Material Cycles and Waste Management - This paper studies the use of wastepaper sludge ash (WPSA) for structural concrete in binary and ternary mixes with high-strength cement and two...  相似文献   

3.
For resource reutilization, scrap tyres have long been investigated as an additive to concrete to form 'Rubcrete' for various applications and have shown promising results. However, the addition of rubber particles leads to the degradation of physical properties, particularly, the compressive strength of the concrete. In this study, a theoretical model was proposed to shed light on the mechanisms of decrease in compressive strength due to the addition of rubber particles as well as improvement in compressive strength through modification of particle surfaces. The literature suggests that the compressive strength can be improved by soaking the rubber particles in alkaline solution first to increase the inter-phase bonding between the rubber particles and cement. Instead, we discovered that the loss in compressive strength was due to local imperfections in the hydration of cement, induced by the addition of heterogeneous and hydrophobic rubber particles. Microscopic studies showed that the rubber particles disturbed the water transfer to create channels, which were prone to cracking and led to a loss in the compressive strength. Unexpectedly, no cracking was found along the surfaces of the rubber particles, indicating that the bonding strength between the rubber particles and cement phases was not the critical factor in determining the compressive strength. Therefore, a theoretical model was proposed to describe the water transfer in the Rubcrete specimens to explain the experimental data. In the model, the local water available for hydration (Q) is: Q = -A(slv)/6piv, where Q, A(slv), and v are mass flow rate (kg s(-1)), Hamaker constant (J), and dynamic viscosity (m2 s(-1)), respectively. By maximizing the quantity Q and, in turn, the Hamaker constant A(slv), the compressive strength could be improved. The Hamaker constant A(slv) for water film on rubber particle surfaces was smaller than that for the hydrated cement particles; the water transfer rate was lower in the presence of rubber particles because the Hamaker constant A(slv) for water film on rubber particle surfaces was smaller than that on the hydrated cement particles. Thus, the compressive strength of Rubcrete could be improved by increasing the Hamaker constant of the system. This was achieved by increasing the refractive indices of the solids (n(s)). The refractive indices of materials increase with increases in functional groups, such as OH and SH on the surface. The model provided a possible mechanism for the efficacy of treating rubber particles with NaOH in improving the compressive strength. By using NaOH solution treatment, an oxygen-containing OH group was formed on the rubber surface to increase the Hamaker constant of the system, leading to higher compressive strength. Based on this mechanism, a novel method for modification of the rubber particles was also proposed. In this process, the rubber particles were partially oxidized with hot air/steam in a fluidized bed reactor to produce the hydrophilic groups on the surface of the particles. Preliminary results obtained so far are promising in accordance with the theory.  相似文献   

4.
5.
Industrial activities in Iraq are associated with significant amounts of non-biodegradable solid waste, waste plastic being among the most prominent. This study involved 86 experiments and 254 tests to determine the efficiency of reusing waste plastic in the production of concrete. Thirty kilograms of waste plastic of fabriform shapes was used as a partial replacement for sand by 0%, 10%, 15%, and 20% with 800 kg of concrete mixtures. All of the concrete mixtures were tested at room temperature. These tests include performing slump, fresh density, dry density, compressive strength, flexural strength, and toughness indices. Seventy cubes were molded for compressive strength and dry density tests, and 54 prisms were cast for flexural strength and toughness indices tests. Curing ages of 3, 7, 14, and 28 days for the concrete mixtures were applied in this work. The results proved the arrest of the propagation of micro cracks by introducing waste plastic of fabriform shapes to concrete mixtures. This study insures that reusing waste plastic as a sand-substitution aggregate in concrete gives a good approach to reduce the cost of materials and solve some of the solid waste problems posed by plastics.  相似文献   

6.
Use of waste ash from palm oil industry in concrete   总被引:1,自引:0,他引:1  
Palm oil fuel ash (POFA), a by-product from the palm oil industry, is disposed of as waste in landfills. In this study, POFA was utilized as a pozzolan in concrete. The original size POFA (termed OP) was ground until the median particle sizes were 15.9 microm (termed MP) and 7.4 microm (termed SP). Portland cement Type I was replaced by OP, MP, and SP of 10%, 20%, 30%, and 40% by weight of binder. The properties of concrete, such as setting time, compressive strength, and expansion due to magnesium sulfate attack were investigated. The results revealed that the use of POFA in concretes caused delay in both initial and final setting times, depending on the fineness and degree of replacement of POFA. The compressive strength of concrete containing OP was much lower than that of Portland cement Type I concrete. Thus, OP is not suitable to be used as a pozzolanic material in concrete. However, the replacement of Portland cement Type I by 10% of MP and 20% of SP gave the compressive strengths of concrete at 90 days higher than that of concrete made from Portland cement Type I. After being immersed in 5% of magnesium sulfate solution for 364 days, the concrete bar mixed with 30% of SP had the same expansion level as that of the concrete bar made from Portland cement Type V. The above results suggest that ground POFA is an excellent pozzolanic material and can be used as a cement replacement in concrete. It is recommended that the optimum replacement levels of Portland cement Type I by MP and SP are 20% and 30%, respectively.  相似文献   

7.
This investigation presents the results of the study conducted to utilize carbide lime waste as a filler in asphaltic paving mixes, and to study the effect of the incorporation of the waste on the properties of asphaltic paving mixes. The waste, which consists mainly of calcium hydroxide, is generated from two acetylene plants in Bahrain, and the amount is estimated to be 5000 tonnes annually. Physical and chemical properties of the waste were studied. A total of 450 asphaltic concrete mixes were prepared at five different percentages by weight of the waste and the limestone (control). The percentages employed in the mixes were 2, 4, 6, 8, and 10 by weight of the aggregate. Marshall test methods were used to evaluate the compacted mix density, percent air voids, voids in mineral aggregate, stability, and flow. The Marshall stability was carried out at 40 °C, 60 °C, and 70 °C. The results revealed that the minimum 8 KN criteria adopted by the Bahrain specifications was met by all the waste mixes. Also, the waste mixes had much better resistance to high temperatures compared with mixes using conventional limestone filler. The results of the investigation suggest that the incorporation of the waste in asphaltic concrete mixes improves some of its properties, and that it is especially advantageous for use in arid environments, such as Bahrain.  相似文献   

8.
This paper gives an overview of the results of a research project into the possibilities of immobilising polycyclic aromatic hydrocarbons (PAH), that are present in waste materials. The results show that with hydraulic binders the waste materials can be solidified. The PAH do still leach to a relatively high extent. However, this PAH leaching can be decreased by more than a factor 10 by means of the addition of a specific additive. The immobilisation product fulfils technological requirements for the use as a road base construction material, such as compressive strength.  相似文献   

9.
One of the environmental issues in most regions of Iran is the large number of bottles made from poly-ethylene terephthalate (PET) deposited in domestic wastes and landfills. Due to the high volume of these bottles, more than 1 million m3 landfill space is needed for disposal every year. The purpose of this experimental study was to investigate the possibility of using PET waste in asphalt concrete mixes as aggregate replacement (Plastiphalt) to reduce the environmental effects of PET disposal. For this purpose the mechanical properties of plastiphalt mixes were compared with control samples. This study focused on the parameters of Marshall stability, flow, Marshall quotient (stability-to-flow ratio) and density. The waste PET used in this study was in the form of granules of about 3 mm diameter which would replace (by volume) a portion of the mineral coarse aggregates of an equal size (2.36-4.75 mm). In all prepared mixes the determined 6.6% optimum bitumen content was used. In this investigation, five different percentages of coarse aggregate replacement were used. The results showed that the aggregate replacement of 20% by volume with PET granules would result in a reduction of 2.8% in bulk compacted mix density. The value of flow in the plastiphalt mix was lower than that of the control samples. The results also showed that when PET was used as partial aggregate replacement, the corresponding Marshall stability and Marshall quotient were almost the same as for the control samples. According to most of specification requirement, these results introduce an asphalt mix that has properties that makes it suitable for practical use and furthermore, the recycling of PET for asphalt concrete roads helps alleviate an environmental problem and saves energy.  相似文献   

10.
In this study, the potential re-use of waste foundry sand in high-strength concrete production was investigated. The natural fine sand is replaced with waste foundry sand (0%, 5%, 10%, and 15%). The findings from a series of test program has shown reduction in compressive and tensile strengths, and the elasticity modulus which is directly related to waste foundry inclusion in concrete. Nevertheless the concrete with 10% waste foundry sand exhibits almost similar results to that of the control one. The slump and the workability of the fresh concrete decreases with the increase of the waste foundry sand ratio. Although the freezing and thawing significantly reduces the mechanical and physical properties of the concrete. The obtained results satisfies the acceptable limits set by the American Concrete Institute (ACI).  相似文献   

11.
This study investigated the type and amount of medical waste generated from small clinical facilities in Taiwan. We sampled 200 small medical establishments, with few or no patient beds, to survey the wastes generated and disposed. The surveyed medical facilities consisted of four groups including private clinics, medical laboratories, blood centers and public clinics. Private clinics providing surgical, dental, obstetrical, and dialysis services were included in this survey because they may generate higher amounts of infectious waste than other specialties. The overall mean general waste production rate was 3.97 kg/bed/day (or 0.075 kg/patient/day) at all the surveyed facilities, higher than that obtained from larger hospitals in Taiwan, which ranged from 2.41 to 3.26 kg/bed/day. The highest amount of infectious wastes generated among the four groups of facilities were from blood centers (3.14 kg/bed/day), followed by private clinics, medical laboratories and public clinics (1.91, 1.07, and 0.053 kg/bed/day, respectively). The overall average was 2.08 kg/bed/day. This study suggests that the waste generated at small medical facilities ranged widely.  相似文献   

12.
采用润湿好气-腐解培养法,研究有机物料对废碱锰电池的溶解作用,分析了培养时间对pH值,N,K,Zn和Mn溶出的影响。结果表明,稻草、鸡粪和鸽子粪处理培养过程中产生腐殖酸对废电池干粉均有溶解作用,其pH值明显降低;所有处理TN,Zn,Mn都呈现先增加后减小的趋势,15 d时溶量最大,以鸽子粪处理溶出较多;TK的溶出较慢,培养到10 d后才有溶出,均呈现逐渐增大的趋势;而TP溶出则规律性不强。  相似文献   

13.
The present study focuses on the use of solid waste generated by the steel works in Brazil for manufacturing clay-based structural products. The waste sample was characterized regarding chemical composition, X-ray diffraction, particle size, morphology, specific surface and plastic properties. The waste was added in gradual proportions to a kaolinitic clay from zero up to 3 wt.%. Ceramic bodies were formed by vacuum extrusion and fired at 950 degrees C. The physical-mechanical properties (linear shrinkage, water absorption, apparent density and flexural strength) of the resulting clay/solid waste mixtures were determined. In addition, leaching tests were performed according Brazilian Standards as well as a preliminary analysis of gases evolved during the thermal process. It was found that the solid waste is formed by irregular particles, ranging in size from 1 to 500 microm. The test results indicate that solid wastes generated by steel works can be used as filler in construction materials, thereby increasing reuse in an environmentally safe manner.  相似文献   

14.
The sheer amount of disposable bottles being produced nowadays makes it imperative to identify alternative procedures for recycling them since they are non-biodegradable. This paper describes an innovative use of consumed plastic bottle waste as sand-substitution aggregate within composite materials for building application. Particularly, bottles made of polyethylene terephthalate (PET) have been used as partial and complete substitutes for sand in concrete composites. Various volume fractions of sand varying from 2% to 100% were substituted by the same volume of granulated plastic, and various sizes of PET aggregates were used. The bulk density and mechanical characteristics of the composites produced were evaluated. To study the relationship between mechanical properties and composite microstructure, scanning electron microscopy technique was employed. The results presented show that substituting sand at a level below 50% by volume with granulated PET, whose upper granular limit equals 5mm, affects neither the compressive strength nor the flexural strength of composites. This study demonstrates that plastic bottles shredded into small PET particles may be used successfully as sand-substitution aggregates in cementitious concrete composites. These new composites would appear to offer an attractive low-cost material with consistent properties; moreover, they would help in resolving some of the solid waste problems created by plastics production and in saving energy.  相似文献   

15.
To establish the per capita household waste arisings, door-to-door measurement of discharged waste was carried out. Survey was done in four 2-week phases over a period of 13 months. A questionnaire survey was also carried out to obtain data on household size and other household characteristics as well as the extent of reduce and recycle activities. The results showed that there is a big variance among households on waste arisings, and that household size is an important socio-economic factor in determining per capita waste generation.  相似文献   

16.
The distribution between hardened cement paste and cement pore water of selected concrete admixtures (BZMs), i.e., sulfonated naphthalene-formaldehyde condensate (NS), lignosulfonate (LS) and a gluconate-containing plasticiser used at the Paul Scherrer Institute for waste conditioning, was measured. Sorption data were fitted to a single-site Langmuir isotherm with affinity constants K=(19+/-4)dm(3)g(-1) for NS, K=(2.1+/-0.6) dm(3)g(-1) for LS and sorption capacities q=(81+/-16)g kg(-1) for NS, q=(43+/-8)g kg(-1) for LS. In the case of gluconate, a two-site Langmuir sorption model was necessary to fit the data satisfactorily. Sorption parameters for gluconate were K(1)=(2+/-1)x10(6)dm(3)mol(-1) and q(1)=(0.04+/-0.02)mol kg(-1) for the stronger binding site and K(2)=(2.6+/-1.1)x10(3)dm(3)mol(-1) and q(2)=(0.7+/-0.3)mol kg(-1) for the weaker binding site. Desorption of these BZMs from cement pastes and pore water in cement specimens prepared in the presence of the BZMs were then used to test the model. It was found that only minor parts of NS and LS could be mobilised as long as the cement composition was intact, whereas the sorption of gluconate was found to be reversible. The Langmuir model makes valuable predictions in the qualitative sense in that the pore water concentration of the BZMs is reduced by several orders of magnitude as compared to the initial concentrations. In view of the necessity for conservative predictions used in the safety analysis for disposal of radioactive waste, however, the predictions are unsatisfactory in that the measured pore water concentrations of NS and LS were considerably larger than the predicted values. This conclusion does not apply for gluconate, because its concentration in cement pore water was below the detection limit of approximately 50 nM.  相似文献   

17.
Reuse of thermosetting plastic waste for lightweight concrete   总被引:1,自引:0,他引:1  
This paper presents the utilization of thermosetting plastic as an admixture in the mix proportion of lightweight concrete. Since this type of plastic cannot be melted in the recycling process, its waste is expected to be more valuable by using as an admixture for the production of non-structural lightweight concrete. Experimental tests for the variation of mix proportion were carried out to determine the suitable proportion to achieve the required properties of lightweight concrete, which are: low dry density and acceptable compressive strength. The mix design in this research is the proportion of plastic, sand, water-cement ratio, aluminum powder, and lignite fly ash. The experimental results show that the plastic not only leads to a low dry density concrete, but also a low strength. It was found that the ratio of cement, sand, fly ash, and plastic equal to 1.0:0.8:0.3:0.9 is an appropriate mix proportion. The results of compressive strength and dry density are 4.14N/mm(2) and 1395kg/m(3), respectively. This type of concrete meets most of the requirements for non-load-bearing lightweight concrete according to ASTM C129 Type II standard.  相似文献   

18.
The increasing amount of waste tyres worldwide makes the disposition of tyres a relevant problem to be solved. In the last years over three million tons of waste tyres were generated in the EU states [ETRA, 2006. Tyre Technology International – Trends in Tyre Recycling. http://www.etra-eu.org]; most of them were disposed into landfills. Since the European Union Landfill Directive (EU Landfill, 1999) aims to significantly reduce the landfill disposal of waste tyres, the development of new markets for the tyres becomes fundamental.Recently some research has been devoted to the use of granulated rubber and steel fibres recovered from waste tyres in concrete. In particular, the concrete obtained by adding recycled steel fibres evidenced a satisfactory improvement of the fragile matrix, mostly in terms of toughness and post-cracking behaviour. As a consequence RSFRC (recycled steel fibres reinforced concrete) appears a promising candidate for both structural and non-structural applications.Within this context a research project was undertaken at the University of Salento (Italy) aiming to investigate the mechanical behaviour of concrete reinforced with RSF (recycled steel fibres) recovered from waste tyres by a mechanical process. In the present paper results obtained by the experimental work performed up to now are reported. In order to evaluate the concrete-fibres bond characteristics and to determine the critical fibre length, pull-out tests were initially carried out. Furthermore compressive strength of concrete was evaluated for different volume ratios of added RSF and flexural tests were performed to analyze the post-cracking behaviour of RSFRC. For comparison purposes, samples reinforced with industrial steel fibres (ISF) were also considered.Satisfactory results were obtained regarding the bond between recycled steel fibres and concrete; on the other hand compressive strength of concrete seems unaffected by the presence of fibres despite their irregular geometric properties. Finally, flexural tests furnished in some cases results comparable to those obtained when using ISF as concerns the post-cracking behaviour.  相似文献   

19.
20.
废旧物资税收政策是关系到再生资源行业和企业生存与发展的重要问题,也是目前在保持经济可持续发展和建设节约型社会新形势下,政府机关主管部门和相关企业高度关注的一个重要问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号