首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Rare royal families in honeybees, Apis mellifera   总被引:1,自引:0,他引:1  
The queen is the dominant female in the honeybee colony, Apis mellifera, and controls reproduction. Queen larvae are selected by the workers and are fed a special diet (royal jelly), which determines caste. Because queens mate with many males a large number of subfamilies coexist in the colony. As a consequence, there is a considerable potential for conflict among the subfamilies over queen rearing. Here we show that honeybee queens are not reared at random but are preferentially reared from rare “royal” subfamilies, which have extremely low frequencies in the colony's worker force but a high frequency in the queens reared.  相似文献   

3.
In many social taxa, reproductively dominant individuals sometimes use aggression to secure and maintain reproductive status. In the social insects, queen aggression towards subordinate individuals or workers has been documented and is predicted to occur only in species with a small colony size and a low level of queen–worker dimorphism. We report queen aggression towards reproductive workers in the ant species Aphaenogaster cockerelli, a species with a relatively large colony size and a high level of reproductive dimorphism. Through analysis of cuticular hydrocarbon profiles, we show that queens are aggressive only to reproductively active workers. Non-reproductive workers treated with a hydrocarbon typical for reproductives are attacked by workers but not by queens, which suggests different ways of recognition. We provide possible explanations of why queen aggression is observed in this species.  相似文献   

4.
During social evolution, the ovary size of reproductively specialized honey bee queens has dramatically increased while their workers have evolved much smaller ovaries. However, worker division of labor and reproductive competition under queenless conditions are influenced by worker ovary size. Little comparative information on ovary size exists in the different honey bee species. Here, we report ovariole numbers of freshly dissected workers from six Apis species from two locations in Southeast Asia. The average number of worker ovarioles differs significantly among species. It is strongly correlated with the average mating number of queens, irrespective of body size. Apis dorsata, in particular, is characterized by numerous matings and very large worker ovaries. The relation between queen mating number and ovary size across the six species suggests that individual selection via reproductive competition plays a role in worker ovary size evolution. This indicates that genetic diversity, generated by multiple mating, may bear a fitness cost at the colony level.  相似文献   

5.
Nestmate recognition is a critical element in social insect organization, providing a means to maintain territoriality and close the colony to parasites and predators. Ants detect the colony chemical label via their antennae and respond to the label mismatch of an intruder with aggressive behavior. In the fire ant, Solenopsis invicta, worker ability to recognize conspecific nonnestmates decreases if the colony queen is removed, such that they do not recognize conspecific nonnestmates as different. Here, we tested the hypothesis that the presence of the colony queen influences the concentration of octopamine, a neuromodulator, in worker ants, which in turn has an effect on nestmate recognition acuity in workers. We demonstrate that queenless workers exhibit reduced brain octopamine levels and reduced discriminatory acuteness; however, feeding queenless workers octopamine restored both. Dopamine levels are influenced by honeybee queen pheromones; however, levels of this biogenic amine were unchanged in our experiments. This is the first demonstration of a link between the presence of the colony queen, a worker biogenic amine, and conspecific nestmate recognition, a powerful expression of colony cohesion and territoriality.  相似文献   

6.
 Queenless workers of the Cape honeybee (Apis mellifera capensis) can develop into reproductives termed pseudoqueens. Although they morphologically remain workers they become physiologically queenlike, produce offspring, and secrete mandibular gland pheromones similar to those of true queens. However, after queen loss only very few workers gain pseudoqueen status. A strong intracolonial selection governs which workers start oviposition and which remain sterile. The “queen substance”, 9-keto-2(E)-decenoic acid (9-ODA), the dominant compound of the queen's mandibular gland pheromones, suppresses the secretion of queenlike mandibular gland pheromones in workers. It may act as an important signal in pseudoqueen selection. By analysing the mandibular gland pheromones of workers kept in pairs, we found that A. m. capensis workers compete to produce the strongest queen-like signal. Received: 2 July 2000 / Accepted in revised form: 28 July 2000  相似文献   

7.
In Melipona quadrifasciata, about 10 % of the females develop into queens, almost all of which are killed. Occasionally, a new queen replaces or supersedes the mother queen or heads a new colony. We investigated virgin queen fate in queenright and queenless colonies to determine the effects of queen behaviour, body mass, nestmate or non-nestmate status, queenright or queenless colony status, and, when queenless, the effect of the time a colony had been queenless, on survival duration and acceptance. None of 220 virgin queens observed in four observation hives ever attacked another virgin queen nor did any of 88 virgin queens introduced into queenright colonies ever attack the resident queen. A new queen was only accepted in a queenless colony. Factors increasing survival duration and acceptance of virgin queens were to emerge from its cell at 2 h of queenlessness, to hide, and to avoid fights with workers. In this way, a virgin queen was more likely to be available when a colony chooses a new queen, 24-48 h after resident queen removal. Running, walking or resting, antennating or trophallaxis, played little or no role, as did the factors body mass or nestmate. “Queen choice” took about 2 h during which time other virgin queens were still being killed by workers. During this agitated process, the bees congregated around the new queen. She inflated her abdomen and some of the workers deposited a substance on internal nest surfaces including the glass lid of the observation hive.  相似文献   

8.
Gigantism in honeybees: Apis cerana queens reared in mixed-species colonies   总被引:1,自引:1,他引:0  
The development of animals depends on both genetic and environmental effects to a varying extent. Their relative influences can be evaluated in the social insects by raising the intracolonial diversity to an extreme in nests consisting of workers from more than one species. In this study, we studied the effects of mixed honeybee colonies of Apis mellifera and Apis cerana on the rearing of grafted queen larvae of A. cerana. A. mellifera sealed worker brood was introduced into A. cerana colonies and on emergence, the adults were accepted. Then, A. cerana larvae were grafted for queen rearing into two of these mixed-species colonies. Similarly, A. cerana larvae and A. mellifera larvae were also grafted conspecifically as controls. The success rate of A. cerana queen rearing in the test colonies was 64.5%, surpassing all previous attempts at interspecific queen rearing. After emergence, all virgin queens obtained from the three groups (N=90) were measured morphometrically. The A. cerana queens from the mixed-species colonies differed significantly in size and pigmentation from the A. cerana control queens and closely approximated the A. mellifera queens. It is inferred that these changes in the A. cerana queens reared in the mixed-species colonies can be attributed to feeding by heterospecific nurse bees and/or chemical differences in royal jelly. Our data show a strong impact of environment on the development of queens. The results further suggest that in honeybees the cues for brood recognition can be learned by heterospecific workers after eclosion, thereby providing a novel analogy to slave making in ants.  相似文献   

9.
The effect of queen pheromones on worker honey bee ovary development   总被引:11,自引:4,他引:11  
We report results that address a long-standing controversy in honey bee biology, the identity of the queen-produced compounds that inhibit worker honey bee ovary development. As the honey bee is the only organism for which identities have been proposed for any pheromone that regulates reproduction, the resolution of its identity is of broad significance. We examined the effects of synthetic honey bee queen mandibular pheromone (QMP), four newly identified queen retinue pheromone components, and whole-queen extracts on the ovary development of caged worker bees. The newly identified compounds did not inhibit worker ovary development alone, nor did they improve the efficacy of QMP when applied in combination. QMP was as effective as queen extracts at ovary regulation. Caged workers in the QMP and queen extract treatments had better developed ovaries than did workers remaining in queenright colonies. We conclude that QMP is responsible for the ovary-regulating pheromonal capability of queens from European-derived Apis mellifera subspecies.  相似文献   

10.
In a recent study, Denny et al. (2004a) showed that queens of the army ant, Eciton burchellii, mate with multiple males and presented estimates suggesting that they mate with more males than queens of any other ant species so far investigated. They also inferred that data were consistent with queens being inseminated repeatedly throughout their life, which would be exceptional among the social Hymenoptera and contradictory to predictions from kin selection theory. In the present study, we reanalyze these data using new software and supplement them with similar microsatellite data from other colonies of the same species. Mating frequencies in E. burchellii are indeed very high (mean observed and effective queen-mating frequencies of 12.9 each) but considerably lower than the previous estimates. We show that the number of patrilines represented in the first worker offspring of a young queen is lower than in older queens but suggest that this may be due to initial sperm clumping in the queen’s sperm storage organ, rather than to repeated inseminations. Moreover, we found no evidence for repeated mating by genotyping sequential worker generations produced by a single old queen, showing that she did not obtain new inseminations despite ample opportunities for mating.  相似文献   

11.
In eusocial Hymenoptera, queen control over workers is probably inseparable from the mechanism of queen recognition. In primitively eusocial bumblebees (Bombus), worker reproduction is controlled not only by the presence or absence of a dominant queen but also by other dominant workers. Furthermore, it was shown that the queen dominance is maintained by pheromonal cues. We investigated whether there is a similar odor signal released by egg-laying queens and workers that may have a function as a fertility signal. We collected cuticular surface extracts from nest-searching and breeding Bombus terrestris queens and workers that were characterized by their ovarian stages. In chemical analyses, we identified 61 compounds consisting of aldehydes, alkanes, alkenes, and fatty acid esters. Nest-searching queens and all groups of breeding females differed significantly in their odor bouquets. Furthermore, workers before the competition point (time point of colony development where workers start to develop ovaries and lay eggs) differed largely from queens and all other groups of workers. Breeding queens showed a unique bouquet of chemical compounds and certain queen-specific compounds, and the differences toward workers decrease with an increasing development of the workers' ovaries, hinting the presence of a reliable fertility signal. Among the worker groups, the smallest differences were found after the competition point. Egg-laying females contained higher total amounts of chemical compounds and of relative proportions of wax-type esters and aldehydes than nest-searching queens and workers before the competition point. Therefore, these compounds may have a function as a fertility signal present in queens and workers.  相似文献   

12.
The potential for reproductive conflict among colony members exists in all social insect societies. For example, queens and workers may be in conflict over the production of males within colonies. Kin selection theory predicts that in a colony headed by a multiply-mated queen, worker reproduction is prevented by worker policing in the form of differential oophagy. However, few studies have demonstrated that workers actually lay eggs within queenright colonies. The purpose of this study was to determine if workers laid male eggs within unmanipulated queen-right colonies of the polyandrous social wasps Vespula maculifrons and V. squamosa. We focused our analysis on an unusual brood pattern within colonies, multiple egg cells. We were primarily interested in determining if individuals reared in these irregular circumstances were queen or worker offspring. To address this question, we genotyped 318 eggs from eight V. maculifrons and two V. squamosa colonies. No worker‑reproduction was detected in any of the queenright colonies; all of the eggs found in multiple egg cells were consistent with being queen‑produced. However, the frequency of multiple egg cells differed among colonies, suggesting that queens vary in the frequency of errors they make when laying eggs within cells. Finally, we suggest that workers may not be laying eggs within queenright colonies and that worker reproduction may be controlled through mechanisms other than differential oophagy in polyandrous Vespula wasps.  相似文献   

13.
Males of the honeybee (Apis mellifera) fly to specific drone congregation areas (DCAs), which virgin queens visit in order to mate. From the thousands of drones that are reared in a single colony, only very few succeed in copulating with a queen, and therefore, a strong selection is expected to act on adult drones during their mating flights. In consequence, the gathering of drones at DCAs may serve as an indirect mate selection mechanism, assuring that queens only mate with those individuals having a better flight ability and a higher responsiveness to the queen’s visual and chemical cues. Here, we tested this idea relying on wing fluctuating asymmetry (FA) as a measure of phenotypic quality. By recapturing marked drones at a natural DCA and comparing their size and FA with a control sample of drones collected at their maternal hives, we were able to detect any selection on wing size and wing FA occurring during the mating flights. Although we found no solid evidence for selection on wing size, wing FA was found to be significantly lower in the drones collected at the DCA than in those collected at the hives. Our results demonstrate the action of selection during drone mating flights for the first time, showing that developmental stability can influence the mating ability of honeybee drones. We therefore conclude that selection during honeybee drone mating flights may confer some fitness advantages to the queens.  相似文献   

14.
Reproductive division of labour is a characteristic trait of social insects. The dominant reproductive individual, often the queen, uses chemical communication and/or behaviour to maintain her social status. Queens of many social insects communicate their fertility status via cuticle-bound substances. As these substances usually possess a low volatility, their range in queen–worker communication is potentially limited. Here, we investigate the range and impact of behavioural and chemical queen signals on workers of the ant Temnothorax longispinosus. We compared the behaviour and ovary development of workers subjected to three different treatments: workers with direct chemical and physical contact to the queen, those solely under the influence of volatile queen substances and those entirely separated from the queen. In addition to short-ranged queen signals preventing ovary development in workers, we discovered a novel secondary pathway influencing worker behaviour. Workers with no physical contact to the queen, but exposed to volatile substances, started to develop their ovaries, but did not change their behaviour compared to workers in direct contact to the queen. In contrast, workers in queen-separated groups showed both increased ovary development and aggressive dominance interactions. We conclude that T. longispinosus queens influence worker ovary development and behaviour via two independent signals, both ensuring social harmony within the colony.  相似文献   

15.
Social insects use complex chemical communication systems to govern many aspects of their life. We studied chemical changes in Dufours gland secretions associated with ovary development in several genotypes of honeybees. We found that C28–C38 esters were associated only with cavity nesting honeybee queens, while the alcohol eicosenol was associated only with their non-laying workers. In contrast, both egg-laying anarchistic workers and all parasitic Cape workers from queenright colonies showed the typical queen pattern (i.e. esters present and eicosenol absent), while egg-laying wild-type and anarchistic workers in queenless colonies showed an intermediate pattern, producing both esters and eicosenol but at intermediate levels. Furthermore, neither esters nor eicosenol were found in aerial nesting honeybee species. Both esters and eicosenol are biosynthetically similar compounds since both are recognizable products of fatty acid biosynthesis. Therefore, we propose that in honeybees the biosynthesis of esters and eicosenol in the Dufours gland is caste-regulated and this pathway has been conserved over evolutionary time.  相似文献   

16.
In ants, nest relocations are frequent but nevertheless perilous, especially for the reproductive caste. During emigrations, queens are exposed to predation and face the risk of becoming lost. Therefore the optimal strategy should be to move the queen(s) swiftly to a better location, while maintaining maximum worker protection at all times in the new and old nests. The timing of that event is a crucial strategic issue for the colony and may depend on queen number. In monogynous colonies, the queen is vital for colony survival, whereas in polygynous colonies a queen is less essential, if not dispensable. We tested the null hypothesis that queen movement occurs at random within the sequence of emigration events in both monogynous and polygynous colonies of the ponerine ant Pachycondyla obscuricornis. Our study, based on 16 monogynous and 16 polygynous colony emigrations, demonstrates for the first time that regardless of the number of queens per colony, the emigration serial number of a queen occurs in the middle of all emigration events and adult ant emigration events, but not during brood transport events. It therefore appears that the number of workers in both nests plays an essential role in the timing of queen movement. Our results correspond to a robust colony-level strategy since queen emigration is related neither to colony size nor to queen number. Such an optimal strategy is characteristic of ant societies working as highly integrated units and represents a new instance of group-level adaptive behaviors in social insect colonies.  相似文献   

17.
In ants, winged queens that are specialized for independent colony foundation can be replaced by wingless reproductives better adapted for colony fission. We studied this shift in reproductive strategy by comparing two Mystrium species from Madagascar using morphometry, allometry and dissections. Mystrium rogeri has a single dealate queen in each colony with a larger thorax than workers and similar mandibles that allow these queens to hunt during non-claustral foundation. In contrast, Mystrium ‘red’ lacks winged queens and half of the female adults belong to a wingless ‘intermorph’ caste smaller and allometrically distinct from the workers. Intermorphs have functional ovaries and spermatheca while those of workers are degenerate. Intermorphs care for brood and a few mate and reproduce making them an all-purpose caste that takes charge of both work and reproduction. However, their mandibles are reduced and inappropriate for hunting centipedes, unlike the workers’ mandibles. This together with their small thorax disallow them to perform independent colony foundation, and colonies reproduce by fission. M. rogeri workers have mandibles polymorphic in size and shape, which allow for all tasks from brood care to hunting. In M. ‘red’, colonial investment in reproduction has shifted from producing expensive winged queens to more numerous helpers. M. ‘red’ intermorphs are the first case of reproductives smaller than workers in ants and illustrate their potential to diversify their caste system for better colonial economy.  相似文献   

18.
Genetic variation in honeybee, Apis mellifera, populations can be considerably influenced by breeding and commercial introductions, especially in areas with abundant beekeeping. However, in southern Africa apiculture is based on the capture of wild swarms, and queen rearing is virtually absent. Moreover, the introduction of European subspecies constantly failed in the Cape region. We therefore hypothesize a low human impact on genetic variation in populations of Cape honeybees, Apis mellifera capensis. A novel solution to studying genetic variation in honeybee populations based on thelytokous worker reproduction is applied to test this hypothesis. Environmental effects on metrical morphological characters of the phenotype are separated to obtain a genetic residual component. The genetic residuals are then re-calculated as coefficients of genetic variation. Characters measured included hair length on the abdomen, width and length of wax plate, and three wing angles. The data show for the first time that genetic variation in Cape honeybee populations is independent of beekeeping density and probably reflects naturally occurring processes such as gene flow due to topographic and climatic variation on a microscale.  相似文献   

19.
Kin selection theory predicts that in colonies of social Hymenoptera with multiply mated queens, workers should mutually inhibit (“police”) worker reproduction, but that in colonies with singly mated queens, workers should favor rearing workers’ sons instead of queens’ sons. In line with these predictions, Mattila et al. (Curr Biol 22:2027–2031, 2012) documented increased ovary development among workers in colonies of honey bees with singly mated queens, suggesting that workers can detect and respond adaptively to queen mating frequency and raising the possibility that they facultative police. In a follow-up experiment, we test and reject the hypothesis that workers in single-patriline colonies prefer worker-derived males and are able to reproduce directly; we show that their eggs are policed as strongly as those of workers in colonies with multiply mated queens. Evidently, workers do not respond facultatively to a kin structure that favors relaxed policing and increased direct reproduction. These workers may instead be responding to a poor queen or preparing for possible queen loss.  相似文献   

20.
Primitively eusocial wasps are generally headed by behaviorally dominant queens who use their aggression to suppress worker reproduction. In contrast, queens in the primitively eusocial wasp Ropalidia marginata are strikingly docile and non-aggressive. However, workers exhibit dominance-subordinate interactions among themselves. These interactions do not appear to reflect reproductive competition because there is no correlation between the relative position of an individual in the dominance hierarchy of the colony and the likelihood that she will succeed a lost/removed queen. Based on the observation that foraging continues unaltered in the absence of the queen and the correlation between dominance behavior and foraging, we have previously suggested that dominance-subordinate interactions among workers in R. marginata have been co-opted to serve the function of decentralized, self-organized regulation of foraging. This idea has been supported by an earlier experimental study where it was found that a reduced demand for food led to a significant decrease in dominance behavior. In this study, we perform the converse experiment, demonstrate that dominance behavior increases under conditions of starvation, and thus provide further evidence in support of the hypothesis that intranidal workers signal hunger through aggression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号