首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Research has shown that many chemicals form persistent and permanently bound residues in soils and sediments that play an important role in soil and sediment detoxification processes, long-term compound partitioning behaviour and compound bioavailability and toxicity in soil and sediment. This article reviews the methodological approaches that have been applied to determine the nature of bound residues in soil and sediment, the application of specific analytical techniques, the type of information they generate, and their relative advantages and disadvantages. It begins by defining bound residues and discussing soil-compound interactions. The application of model compound studies for elucidating specific binding interactions is reviewed along with long-term laboratory and field soil incubation experiments. The use of radiolabelled compounds, isotopically labelled compounds and combinations of both in these experiments are outlined by examples from the literature, along with sequential extraction schemes for releasing bound residues from soil, sediment and humic materials. The importance of spectroscopic methods, and particularly nuclear magnetic resonance techniques for characterising the structure of bound residues in soil and sedimentary humic substances is discussed and illustrated by examples from the literature on the subject. The process of bound residue formation is highly complex and requires further research to establish the mechanisms of bound residue formation and their subsequent environmental and toxicological fate. Much of the uncertainty regarding the elucidation of bound residue formation arises from our poor understanding of the structure of soil and sedimentary organic matter. Significant advances in our understanding of the formation and fate of bound residues will be made when we develop a deeper insight into the complex and heterogeneous structure of soil and sedimentary organic matter.  相似文献   

2.
Gao Y  Zhu L 《Chemosphere》2004,55(9):1169-1178
Uptake, accumulation and translocation of phenanthrene and pyrene by 12 plant species grown in various treated soils were comparatively investigated. Plant uptake and accumulation of phenanthrene and pyrene were correlated with their soil concentrations and plant compositions. Root or shoot accumulation of phenanthrene and pyrene in contaminated soils was elevated with the increase of their soil concentrations. Significantly positive correlations were shown between root concentrations or root concentration factors (RCFs) of phenanthrene and pyrene and root lipid contents. The RCFs of phenanthrene and pyrene for plants grown in contaminated soils with initial phenanthrene concentration of 133 mgkg(-1) and pyrene of 172 mgkg(-1) were 0.05-0.67 and 0.23-4.44, whereas the shoot concentration factors of these compounds were 0.006-0.12 and 0.004-0.12, respectively. For the same soil-plant treatment, shoot concentrations and concentration factors of phenanthrene and pyrene were generally much lower than root. Translocations of phenanthrene and pyrene from shoots to roots were undetectable. However, transport of these compounds from roots to shoots usually was the major pathway of shoot accumulation. Plant off-take of phenanthrene and pyrene only accounted for less than 0.01% of dissipation enhancement for phenanthrene and 0.24% for pyrene in planted versus unplanted control soils, whereas plant-promoted biodegradation was the predominant contribution of remediation enhancement of soil phenanthrene and pyrene in the presence of vegetation.  相似文献   

3.
Hu X  Ding Z  Chen Y  Wang X  Dai L 《Chemosphere》2002,48(6):621-629
Through short-term exposure (7-d exposure), long-term exposure (16-d exposure) and exposure-recovery (7-d exposure + 9-d recovery), the bioaccumulation and distribution of La and Ce and their effects on growth of wheat seedlings were studied. Addition of La (0.5-25 mg/l) and Ce (0.5-25 mg/l) to the culture medium individually and in combination inhibited primary root elongation, reduced the dry weight of roots and shoots and the content of mineral elements (Ca, Mg, K, Cu, Zn). The damage increased with an increase in the concentrations of La and Ce in culture medium. Relative damage ratio increased with an increase in concentrations of La and Ce in the culture medium and with exposure time. Comparing exposure-recovery groups with long-term exposure groups, primary root lengths, dry weight of roots and shoots and the content of five mineral elements were higher. The accumulation of La and Ce in the seedlings was positively correlated with the concentrations of La and Ce in the culture medium and with exposure time. Bioaccumulation factors of La and Ce in roots were much higher than those of shoots. The uptake rates of La and Ce by the plants were much higher than the translocation rates from roots to shoots. The accumulation and distribution of La and Ce in the seedlings in exposure-recovery groups showed that there was very little excretion through metabolism during the recovery period, but redistribution occurred throughout the whole plant. No apparent selective uptake was found between La and Ce by the plants when they were applied in combination.  相似文献   

4.
Food irradiation     
The use of irradation to improve the safety, protect the nutritional benefits, and preserve the quality of fresh and processed foods is a well established and proven technology. Over the past 30 years, the United States Government has invested in the science to confirm safety and in the technology to show application. The United States Department of Agriculture and the Food and Drug Administration have approved sources of ionizing radiation for the treatment of foods, and their application to most meats, fruits, vegetables, and spices. Despite the value of this technology to the food industry and to the health and welfare of the public, only minimal application of this technology occurs. This underscorces the importance of increasing the public’s understanding of radiation risks relative to other hazards. Accordingly, the Committee on Interagency Radiation Research and Policy Coordination of the Executive Office of the President has made recommendations for the creation of a centralized National Radiation Information Center that would work closely with Federal departments and agencies in responding to public queries about radiation issues and Federal programs.  相似文献   

5.
The sources and sinks of dissolved and particulate Pb, Cu and Zn were determined for the main basin of Puget Sound to understand the effect man has had on metal concentrations in both the water column and in the sediments. Municipal, industrial and atmospheric sources contributed about 66% of the total Pb added to the main basin of Puget Sound during the early 1980s. Advective inputs were the major sources of total Cu and Zn (approximately 40%) while riverine and erosional sources contributed about 30%. The discharge of the particle-bound trace metals from rivers minimized the influence of particulate anthropogenic sources, which constituted 50%, 23% and 18% of the total particulate Pb, Cu and Zn inputs, respectively. While advective transport was the major source of dissolved Cu and Zn (approximately 60% of all dissolved inputs), industrial, municipal and atmospheric inputs contributed about 85%, 30% and 38% of the dissolved Pb, Cu and Zn inputs, respectively. The sources of dissolved and particulate Cu and Zn were comparable with the sinks within the errors of the analyses indicating their quasi-conservative nature. Advection removed about 60% of the total Cu and Zn added to the main basin while 40% was deposited in the sediments of Puget Sound. Because of this quasi-conservative nature of Cu and Zn, anthropogenic inputs of Cu and Zn were dispersed from the system more than they were contained within main basin sediments. About 75% of the dissolved Pb discharged into the main basin of Puget Sound was lost from the dissolved phase and was balanced by a similar gain in the particulate phase. Because of this extensive scavenging and the effective retention of particles within the main basin, about 70% of the total Pb added to the main basin was retained within its sediments. These separate mass balances have utility in management decisions because they show the relative contributions from different sources and demonstrate whether the influences of dissolved and particulate inputs are reflected solely in the water column or the sediments, respectively.  相似文献   

6.
- DOI: http:/dx.doi.org/10.1065/espr2005.06.262 Goal, Scope and Background The anthropogenic environmental emissions of chloroacetic acids and volatile organochlorines have been under scrutiny in recent years because the two compound groups are suspected to contribute to forest dieback and stratospheric ozone destruction, respectively. The two organochlorine groups are linked because the atmospheric photochemical oxidation of some volatile organochlorine compounds is one source of phytotoxic chloroacetic acids in the environment. Moreover, both groups are produced in higher amounts by natural chlorination of organic matter, e.g. by soil microorganisms, marine macroalgae and salt lake bacteria, and show similar metabolism pathways. Elucidating the origin and fate of these organohalogens is necessary to implement actions to counteract environmental problems caused by these compounds. Main Features While the anthropogenic sources of chloroacetic acids and volatile organochlorines are relatively well-known and within human control, knowledge of relevant natural processes is scarce and fragmented. This article reviews current knowledge on natural formation and degradation processes of chloroacetic acids and volatile organochlorines in forest soils, with particular emphasis on processes in the rhizosphere, and discusses future studies necessary to understand the role of forest soils in the formation and degradation of these compounds. Results and Discussion Reviewing the present knowledge of the natural formation and degradation processes of chloroacetic acids and volatile organochlorines in forest soil has revealed gaps in knowledge regarding the actual mechanisms behind these processes. In particular, there remains insufficient quantification of reliable budgets and rates of formation and degradation of chloroacetic acids and volatile organochlorines in forest soil (both biotic and abiotic processes) to evaluate the strength of forest ecosystems regarding the emission and uptake of chloroacetic acids and volatile organochlorines, both on a regional scale and on a global scale. Conclusion It is concluded that the overall role of forest soil as a source and/or sink for chloroacetic acids and volatile organochlorines is still unclear; the available laboratory and field data reveal only bits of the puzzle. Detailed knowledge of the natural degradation and formation processes in forest soil is important to evaluate the strength of forest ecosystems for the emission and uptake of chloroacetic acids and volatile organochlorines, both on a regional scale and on a global scale. Recommendation and Perspective As the natural formation and degradation processes of chloroacetic acids and volatile organochlorines in forest soil can be influenced by human activities, evaluation of the extent of this influence will help to identify what future actions are needed to reduce human influences and thus prevent further damage to the environment and to human health caused by these compounds.  相似文献   

7.
Payet R  Obura D 《Ambio》2004,33(1-2):24-33
The complex interactions between human activities and the environment at the interface of land and water is analyzed with a focus on the Somali Current (East Africa), and Indian Ocean Island States, subregions of the Global International Waters Assessment (GIWA). These 2 subregions contain some of the world's richest ecosystems, including the high biodiversity forests of Madagascar and the diverse coastal habitats of the eastern African coast. These ecosystems support local communities and national and regional economies. Current and future degradation of these systems, from water basins to continental shelves, affects the livelihoods and sustainability of the countries in the region, and long-term efforts to reduce poverty. The assessments determined that pollution and climate change are the primary environmental and social concerns in the Islands of the Indian Ocean, while freshwater shortage and unsustainable exploitation of fisheries and other living resources are the primary environmental and social concerns in East Africa. The GIWA approach, through assessing root causes of environmental concerns, enables the development of policy approaches for mitigating environmental degradation. This paper explores policy frameworks for mitigating the impacts, and reducing the drivers, of 3 environmental concerns--freshwater shortage; solid waste pollution; and climate change--addressing social and institutional causes and effects, and linking the subregions to broad international frameworks. The common theme in all 3 case studies is the need to develop integrated ecosystem and international waters policies, and mechanisms to manage conflicting interests and to limit threats to natural processes.  相似文献   

8.
The precursors used to conduct and the results of a cost-effectiveness study of photochemical oxidant episode control actions for the State of Illinois are analyzed. The method is general enough to be used in analyzing short-term episode regulations in other geographical areas and for other types of pollutants. Real costs and the probable emission reductions of the precursor compounds to oxidant formation, hydrocarbons and nitrogen oxides, are estimated for each of twenty-two control actions and for sets of control actions that are implemented at four episode stages. Control actions affect the use of motor vehicles and parking facilities; scheduling of road repairs; and the operation of manufacturing and other facilities having process emissions, electric power plants, commercial establishments, and refuse incinerators. The actions are analyzed and compared on the basis of relative economic efficiency. The expected annual cost of the regulation and the distribution of cost across sectors are also discussed. The annual cost of the oxidant episode regulation in the Chicago SMSA Is estimated to be $12.9 million; expected annual emission reductions are 1180 ton hydrocarbons and 970 ton nitrogen oxide. It is concluded that the expected cost of the regulation is not overly restrictive if the frequency of major curtailments in manufacturing and transportation is low; the cost is relatively small compared with the estimated annual cost of sulfur dioxide and particulate controls.  相似文献   

9.
We investigated PCDDs and related compounds in the blood of young Japanese women, approximately 20 years of age, who had not yet had children, and discussed how the TEQ level of PCDDs and related compounds in their blood may affect the next generation. Means of total TEQ levels were 0.063 pg/g for whole blood basis and 21 pg/g for lipid basis. TEQ of PCDDs, PCDFs and coplanar PCBs accounted for about 43, 34 and 23% of the total TEQ in the whole blood basis, respectively. In the lipid basis, their values were about 44, 34 and 22%, respectively. Previously, we investigated PCDDs and related compounds levels in mother's breast milk, lymphocyte subpopulation and thyroid function of their children, and found negative correlations between the TEQ level of PCDDs and related compounds and CD4+/CD8+, and/or the TEQ level of PCDDs and related compounds and the T4 level in 36 mothers and children. Of these cases, the average age was approximately 28 years. PCDDs and related compounds may be related to immunopathy, such as atopic dermatitis. The effects of PCDDs and related compounds on babies of young Japanese women are important and must be further evaluated.  相似文献   

10.
- DOI: http://dx.doi.org/10.1065/espr2006.01.006 Background The use of vegetal organisms as indicators of contamination of the environment is partially replacing traditional monitoring techniques. Amongst the vegetal organisms available, mosses appear to be good bioindicators and are used for monitoring anthropogenic and natural fall-out on soils. This study has two objectives: the evaluation of the concentrations of heavy metals in soils and mosses of the Sicily Region, in Italy and the identification of the origin of fall-out of heavy metals. Methods Mosses and the surface soil were sampled at 28 sites, only the youngest segments of Hylocomium splendens and Hypnum cupressiforme, corresponding to the plant tissues produced during the last 3 years, were taken. The elements Cd, Cu, Ni, Pb and Zn were analysed by ICP-MS and Hg by AAS. Statistical analysis was by PCA and spatial representation by GIS. Results and Discussion In the mosses sampled in Sicily, the highest concentrations of Cd were found around the cities of Palermo and Messina. The highest concentrations of Hg were recorded in the northern part of the island between Trapani and Messina, similar to the distribution of Cu. Different areas with the highest concentrations of Ni were found near the south coast, in the vicinity of Palermo and around the Volcano Etna. The highest concentrations of Pb were found in the south-west coast near Agrigento, where important chemical plants and petroleum refineries are located. Except for a few locations, Zn fall-out was found to be evenly distributed throughout Sicily. Conclusion The sites where the concentrations of heavy metals cause greatest concern have been revealed by the PCA analysis and portrayed using GIS. Also of some concern is the diffuse and anthropogenic origin of Hg and Cd. The combined approach of using soil and mosses, together with pedological interpretation and application of multivariate statistical techniques has provided valuable insight into the environmental aspects of heavy metal deposition in a region of southern Europe. Recommendations and Outlook Further insight into the deposition of heavy metals will require more detailed sampling of soils and mosses in both new and previous study areas. This needs to be complemented by detailed pedological investigations in the study areas. Future research programmes will address these issues.  相似文献   

11.
Luo W  Lu Y  Wang T  Hu W  Jiao W  Naile JE  Khim JS  Giesy JP 《Ambio》2010,39(5-6):367-375
Distributions of arsenic and metals in surface sediments collected from the coastal and estuarine areas of the northern Bohai and Yellow Seas, China, were investigated. An ecological risk assessment of arsenic and metals in the sediments was evaluated by three approaches: the Sediment Quality Guidelines (SQGs) of the United States Environmental Protection Agency (USEPA), the degree of contamination, and two sets of SQGs indices. Sediments from the estuaries of the Wuli and Yalu Rivers contained some of the greatest concentrations of arsenic, cadmium, copper, mercury, lead, and zinc. Median concentrations of cadmium and mean concentrations of lead and zinc were greater than background concentrations determined for the areas. All sediments were considered to be heavily polluted by arsenic, but moderately polluted by chromium, lead, and cadmium. Current concentrations of arsenic and metals are unlikely to be acutely toxic, but chronic exposures would be expected to cause adverse effects on benthic invertebrates at 31.4% of the sites.  相似文献   

12.
In certain hydrogeological situations, fluid density variations occur because of changes in the solute or colloidal concentration, temperature, and pressure of the groundwater. These include seawater intrusion, high-level radioactive waste disposal, groundwater contamination, and geothermal energy production. When the density of the invading fluid is greater than that of the ambient one, density-driven free convection can lead to transport of heat and solutes over larger spatial scales and significantly shorter time scales than compared with diffusion alone. Beginning with the work of Lord Rayleigh in 1916, thermal and solute instabilities in homogeneous media have been studied in detail for almost a century. Recently, these theoretical and experimental studies have been applied in the study of groundwater phenomena, where the assumptions of homogeneity and isotropy rarely, if ever, apply. The critical role that heterogeneity plays in the onset as well as the growth and/or decay of convective motion is discussed by way of a review of pertinent literature and numerical simulations performed using a variable-density flow and solute transport numerical code. Different styles of heterogeneity are considered and range from continuously "trending" heterogeneity (sinusoidal and stochastic permeability distributions) to discretely fractured geologic media. Results indicate that both the onset of instabilities and their subsequent growth and decay are intimately related to the structure and variance of the permeability field. While disordered heterogeneity tends to dissipate convection through dispersive mixing, an ordered heterogeneity (e.g., sets of vertical fractures) allows instabilities to propagate at modest combinations of fracture aperture and separation distances. Despite a clearer understanding of the processes that control the onset and propagation of instabilities, resultant plume patterns and their migration rates and pathways do not appear amenable to prediction at present. The classical Rayleigh number used to predict the occurrence of instabilities fails, in most cases, when heterogeneous conditions prevail. The incorporation of key characteristics of the heterogeneous permeability field into relevant stability criteria and numerical models remains a challenge for future research.  相似文献   

13.
Climate change is projected to cause significant alterations to aquatic biogeochemical processes, (including carbon dynamics), aquatic food web structure, dynamics and biodiversity, primary and secondary production; and, affect the range, distribution and habitat quality/quantity of aquatic mammals and waterfowl. Projected enhanced permafrost thawing is very likely to increase nutrient, sediment, and carbon loadings to aquatic systems, resulting in both positive and negative effects on freshwater chemistry. Nutrient and carbon enrichment will enhance nutrient cycling and productivity, and alter the generation and consumption of carbon-based trace gases. Consequently, the status of aquatic ecosystems as carbon sinks or sources is very likely to change. Climate change will also very likely affect the biodiversity of freshwater ecosystems across most of the Arctic. The magnitude, extent, and duration of the impacts and responses will be system- and location-dependent. Projected effects on aquatic mammals and waterfowl include altered migration routes and timing; a possible increase in the incidence of mortality and decreased growth and productivity from disease and/or parasites; and, probable changes in habitat suitability and timing of availability.  相似文献   

14.
科学制定和实施有效的水污染防治规划,是改善中国流域水环境质量的主要措施之一.对中国"九五"和"十五"期间的流域水污染防治规划实施状况进行了评估,分析了规划制订与实施过程中存在的相关问题,提出了改进中国流域水污染防治规划制定和实施的相关对策.分析结果表明,中国重点流域水污染防治规划实施状况较差,突出表现为控制目标没有达到、投资额不能到位和项目实施率较低等现象.通过对制约规划实施效果的主要因素的深入分析,发现规划目标可达性较差、数据可靠性较低、规划技术方法以及监管体制、环境标准和法律法规等不完善问题是制约规划成功实施的关键性要素.针对上述问题,分别提出了规划体系、管理体制、投资方式、监督管理、标准体系建设以及法律法规完善等方面的改善建议与对策.  相似文献   

15.
Many food, fiber, forage, and forest crops and a number of animals are adversely affected by a variety of air pollutants. The more important and generally occurring of these pollutants are ethylene, fluorides, ozone, peroxyacyl nitrates (PAN), and sulfur oxides. Their effects upon animals and plants can best be judged by criteria which describe the reaction of biologic materials to pollutant concentration and exposure time. Four criteria are recognized: (1) interference with enzyme systems; (2) change in cellular chemical constituents and physical structure; (3) retardation of growth and reduction in production from altered metabolism; and (4) acute immediate tissue degeneration. Information on tissue degenerative effects due to these pollutants is the most common; there are some reports on growth and productivity reduction; but little data are available on cellular alterations and interference with enzymes. Determination and measurement of the latter two criteria are essential to the ultimate definition and prediction of the significance of the effects of pollutants on growth and productivity of agriculture. Dosage data are available which indicate the degenerative effects of some specific pollutants on certain tissues of hosts. Political-social judgments can be made because of the knowledge of the effects of these specific pollutants; this knowledge thus permits the establishment of standards which define air quality necessary for the protection of agriculture. The importance of combined pollutant effects mitigates against the ready setting of standards on an airshed or significant regional basis. The setting of standards for a single polluiant effects upon crops and animals effectively serves as a precedent and indicates the necessity of establishing air quality values for pollutant mixtures emitted into and produced within the air resource at different geographic locations as the polluted air moves throughout the typically multigovernment jurisdictions of the airsheds.  相似文献   

16.
Schindler DW  Smol JP 《Ambio》2006,35(4):160-168
Despite their generally isolated geographic locations, the freshwaters of the north are subjected to a wide spectrum of environmental stressors. High-latitude regions are especially sensitive to the effects of recent climatic warming, which have already resulted in marked regime shifts in the biological communities of many Arctic lakes and ponds. Important drivers of these limnological changes have included changes in the amount and duration of snow and ice cover, and, for rivers and lakes in their deltas, the frequency and extent of spring floods. Other important climate-related shifts include alterations in evaporation and precipitation ratios, marked changes in the quality and quantity of lake and river water inflows due to accelerated glacier and permafrost melting, and declining percentages of precipitation that falls as snow. The depletion of stratospheric ozone over the north, together with the clarity of many Arctic lakes, renders them especially susceptible to damage from ultraviolet radiation. In addition, the long-range atmospheric transport of pollutants, coupled with the focusing effects of contaminant transport from biological vectors to some local ecosystems (e.g., salmon nursery lakes, ponds draining seabird colonies) and biomagnification in long food chains, have led to elevated concentrations of many persistent organic pollutants (e.g., insecticides, which have never been used in Arctic regions) and other pollutants (e.g., mercury). Rapid development of gas and oil pipelines, mining for diamonds and metals, increases in human populations, and the development of all-season roads, seaports, and hydroelectric dams will stress northern aquatic ecosystems. The cumulative effects of these stresses will be far more serious than those caused by changing climate alone.  相似文献   

17.
Assmuth T 《Ambio》2011,40(2):158-169
Policy and research issues in the framing and qualities of uncertainties in risks are analyzed, based on the assessments of dioxin-like compounds (DLCs) and other ingredients in Baltic Sea fish, a high-profile case of governance. Risks are framed broadly, to then focus on dioxins and beneficial fatty acids, fish consumption, human health, and science-management links. Hierarchies of uncertainty (data, model, decision rule, and epistemic) and ambiguity (of values) are used to identify issues of scientific and policy contestation and opportunities for resolving them. The associated complexity of risks is illustrated by risk–benefit analyses of fish consumption and by evaluations of guideline values, highlighting value contents and policy factors in presumably scientific decision criteria, and arguments used in multi-dimensional risk and benefit comparisons. These comparisons pose challenges to narrow assessments centered, for e.g., on toxicants or on food benefits, and to more many-sided and balanced risk communication and management. It is shown that structured and contextualized treatment of uncertainties and ambiguities in a reflexive approach can inform balances between wide and narrow focus, detail and generality, and evidence and precaution.  相似文献   

18.
Mathematical models of radionuclide distribution and transport in the environment have been developed to assess the impact on people of routine and accidental releases of radioactivity from a variety of nuclear activities, including: weapons development, production, and testing; power production; and waste disposal. The models are used to estimate human exposures and doses in situations where measurements have not been made or would be impossible or impractical to make. Model results are used to assess whether nuclear facilities are operated in compliance with regulatory requirements, to determine the need for remediation of contaminated sites, to estimate the effects on human health of past releases, and to predict the potential effects of accidental releases or new facilities. This paper describes the various applications and types of models currently used to represent the distribution and transport of radionuclides in the terrestrial and aquatic environments, as well as integrated global models for selected radionuclides and special issues in the fields of solid radioactive waste disposal and dose reconstruction. Particular emphasis is placed on the issue of improving confidence in the model results, including the importance of uncertainty analysis and of model verification and validation.  相似文献   

19.
The incentives and approaches for modelling chemical fate at a continental scale are discussed and reviewed. It is suggested that a multi-media model consisting of some 20-30 regions, each of which contains typically seven environmental compartments represents a reasonable compromise between the issues of the need for detailed resolution, avoidance of excessive data demands and inherent complexity and transparency. Strategies adopted in compiling the Berkley-Trent (BETR) model for North America are discussed and used to illustrate the issues of selecting appropriate number and nature of segments, treatment of air and water flows and the acquisition of environmental data. It is suggested that GIS software can play a valuable role in gathering and processing such data and in the display and interpretation of the results of the model assessment. The BETR model will be a useful tool for describing the nature of persistence and long-range transport of chemicals of concern in the North American environment.  相似文献   

20.
The atmosphere is an important transient reservoir of selenium (Se). According to recent evaluations of the global Se budget, approximately 13,000–19,000 tons of Se is cycled through the troposphere annually. Most studies suggest that atmospheric deposition is an important source of Se contamination and it is therefore critical to evaluate the source emissions and fate of Se in the atmosphere. This paper presents a broad overview of current state of knowledge and understanding of major aspects of atmospheric Se and its natural and anthropogenic sources. The significant physical and chemical species encountered in the atmosphere are examined and special attention is paid to atmospheric speciation and its atmospheric pathways and processes. In addition, thermodynamic and kinetic data for atmospheric Se speciation are provided, which aid our understanding and the modelling of Se behaviour in the atmospheric environment. We also document how Se isotopes might be useful for tracing atmospheric sources and pathways. Important gaps in our current knowledge of Se in the atmospheric environment are identified, and suggestions for future research are offered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号