首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Environmental Science and Pollution Research - This paper summarises a study of the application of the synthetic chelate ethylenediaminetetraacetic acid (EDTA), and the natural chelates...  相似文献   

2.
The mechanism of accumulation of copper(II) by Pseudomonas aeruginosa was investigated. Uptake consisted of a rapid process (likely to be extracellular binding) followed by a slow phase (possibly cellular uptake). The sorption capacity of the microbe was found to be 50 mg/g, and sorption followed the Langmuir isotherm. The presence of mild mineral acids (0.1 N HCl) led to destructive desorption of 95% of sorbed metal, whereas citrate buffer (pH 4) desorbed 80% of the accumulated metal ions non-destructively. Spectroscopic and microscopic studies indicated the accumulation of metal inside the cell, though the maximum uptake was by the cell wall.  相似文献   

3.
Severe eutrophication of surface water has been a major problem of increasing environmental concern worldwide. In the present study, economic plant annual ryegrass (Lolium multiflorum) was grown in floating mats as an economic plant-based treatment system to evaluate its potential after ion implantation for removing nutrients in simulated eutrophic water. The specific weight growth rate of L. multiflorum with ion implantation was significantly greater than that of the control, and the peroxidase, nitrate reductase, and acid phosphatase activities of the irradiated L. multiflorum were found to be greater than those plants without ion implantation. Higher total nitrogen (TN) and total phosphorus (TP) removal efficiencies were obtained for the L. multiflorum irradiated with 25 keV 5.2?×?1016 N+ ions/cm2 and 30 keV 4.16?×?1016 N+ ions/cm2, respectively (p?L. multiflorum itself was directly responsible for 39–49 and 47–58 % of the overall N and P removal in the experiment, respectively. The research results suggested that ion implantation could become a promising approach for increasing phytoremediation efficiency of nutrients from eutrophic water by L. multiflorum.  相似文献   

4.
In a compartmented cultivation system, white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.), with their roots freely intermingled, or separated by 37 microm nylon mesh or plastic board, were grown together in an arsenic (As) contaminated soil. The influence of AM inoculation on plant growth, As uptake, phosphorus (P) nutrition, and plant competitions were investigated. Results showed that both plant species highly depended on mycorrhizas for surviving the As contamination. Mycorrhizal inoculation substantially improved plant P nutrition, and in contrast markedly decreased root to shoot As translocation and shoot As concentrations. It also showed that mycorrhizas affected the competition between the two co-existing plant species, preferentially benefiting the clover plants in term of nutrient acquisition and biomass production. Based on the present study, the role of AM fungi in plant adaptation to As contamination, and their potential use for ecological restoration of As contaminated soils are discussed.  相似文献   

5.
Sorption of copper, zinc and lead on soil mineral phases   总被引:3,自引:0,他引:3  
Sipos P  Németh T  Kis VK  Mohai I 《Chemosphere》2008,73(4):461-469
Soil mineral phases play a significant role in controlling heavy metal mobility in soils. The effective study of their relation needs the integrated use of several analytical methods. In this study, analytical electron microscopy analyses were combined with sequential chemical extractions on soils spiked with Cu, Zn and Pb. Our aims were to study the metal sorption capacity of soil mineral phases and the effect of presence of iron oxide and carbonate on this property of soil minerals. Copper and Pb were found to be characterized by higher and stronger sorption on the studied samples than Zn. Only the former two metals showed significant differences in their immobilized metal amounts on the studied samples and soil mineral particles. Highest metal amounts were sorbed on the swelling clay mineral particles (smectites and vermiculites), but iron-oxide phases may also have similar lead sorption capacity. Alkaline conditions due to the carbonate content of soils resulted both in increased sorption on the mineral particles for Cu and in enhanced role of precipitation for all the studied metals. On the other hand, the intimate association of phyllosilicates and iron resulted in significant increase in metal sorption capacity of the given particle. The results of sequential extractions could be successfully completed by the analytical electron microscopy analyses for studying the sorption capacity of discrete mineral particles. Their integrated use helps us in better understanding the heavy metal-mineral interactions in soils.  相似文献   

6.
铜、镉复合污染红壤对黑麦草生长和土壤酶活性的影响   总被引:2,自引:0,他引:2  
采用石灰石调节红壤酸性后,利用对铜、镉具有一定耐性的高产牧草黑麦草修复铜、镉复合污染土壤。分析黑麦草的生长、生理生化指标以及土壤中酶活性的变化,探索在修复铜、镉复合污染红壤的同时又满足饲料作物安全种植的土地利用方式。结果表明,对于弱酸性红壤(pH 6.0左右),土壤铜全量较低时(〈50 mg/kg),黑麦草的生物量、叶...  相似文献   

7.
The biodegradation of polycyclic aromatic hydrocarbons in microecosystems containing long-term contaminated soil was investigated. Soil was contaminated by different chemicals, including PAHs since World War II. Aging of the soil was expected to act as a principal factor limiting biodegradation. Half of the microecosystems contained ryegrass (Lolium perenne) and long-term selected natural soil microflora originally present in contaminated soil. The others contained contaminated soil with natural microflora only. Half of the microecosystems in each parallel experiment was fertilised with N-P-K fertiliser. Cultivation was carried out at 12 and 18 months in a greenhouse with a natural photoperiod and the ability to degrade 15 chosen PAH was investigated. For analysis, the soil from each pot was divided into three horizontal layers for mutual comparison among layers and each layer was further divided into four equal samples. Soil extracts were analysed using HPLC. After a one-year-cultivation period the content of the monitored PAHs declined to 50%. Mostly, there were no significant differences between the microecosystems. Best degraded were fluoranthene and pyrene, which were the major contaminants present in original soil. Also, other compounds were successfully degraded, even benzo[a]pyrene and benzo[ghi]perylene. Dibenz[a,h]anthracene and indeno[1,2,3-cd]pyrene were the only PAHs, examined that showed no significant degradation. Although some differences between the soil layers were detected, no conclusive trends could be found. However, significantly lower concentrations of PAHs were determined mostly in the bottom layer of the analysed profiles. In vegetated microecosystems the decline of PAHs concentrations was more remarkable after 18 months cultivation.  相似文献   

8.
《环境污染与防治》2011,33(10):55-58,100
利用实验室分离获得铜绿假单胞菌GF31(Pseudomonas aeruginosa GF31,简称菌株GF31),采用气相色谱/质谱联用(GC/MS)分析技术,开展菌株GF31在实际土壤环境中对氯氰菊酯的降解特性和降解产物研究,并进行了模拟田间实验.结果表明,在土壤中菌株GF31降解氯氰菊酯的主要产物为二氯菊酸和间苯...  相似文献   

9.
蜡质油污泥(WOS)成分复杂,含大量老化原油、蜡质油、沥青质及其他化学药剂,属危险性固体废弃物,大量排放已成为石化企业可持续发展的障碍。研究利用铜绿假单胞菌NY3处理高浓度WOS的条件,结果表明,WOS:木屑(m/m)(d=0.30 mm) 7:1并结合热熔分散为最佳油污泥预处理条件;液相降解体系含油量为24.5 g/L时,6 d内,油泥中C20以下的正构烷烃完全被去除,C21~C34和C35~C38大分子量正构烷烃去除率分别在91%~99%和78%~89%之间。添加鼠李糖脂能明显提高长链烃和多环芳烃的降解率。6 d内210 mg/L鼠李糖脂使C29~C38的降解率提高17.27%~36.65%,芘、菲分别提高13.67%和16.12%。添加葡萄糖和Fe2+的条件下,NY3菌可将油污泥转化成为糖蛋白,产量达28 g/L。  相似文献   

10.
Environmental Science and Pollution Research - Cadmium (Cd) pollution has led to a serious deterioration in soil quality, plant growth, and human health. Therefore, restoration of soil quality is...  相似文献   

11.
12.
Mechanisms of lead, copper, and zinc retention by phosphate rock   总被引:31,自引:0,他引:31  
The solid-liquid interface reaction between phosphate rock (PR) and metals (Pb, Cu, and Zn) was studied. Phosphate rock has the highest affinity for Pb, followed by Cu and Zn, with sorption capacities of 138, 114, and 83.2 mmol/kg PR, respectively. In the Pb-Cu-Zn ternary system, competitive metal sorption occurred with sorption capacity reduction of 15.2%, 48.3%, and 75.6% for Pb, Cu, and Zn, respectively compared to the mono-metal systems. A fractional factorial design showed the interfering effect in the order of Pb>Cu>Zn. Desorption of Cu and Zn was sensitive to pH change, increasing with pH decline, whereas Pb desorption was decreased with a strongly acidic TCLP extracting solution (pH = 2.93). The greatest stability of Pb retention by PR can be attributed to the formation of insoluble fluoropyromorphite [Pb(10)(PO(4))(6)F(2)], which was primarily responsible for Pb immobilization (up to 78.3%), with less contribution from the surface adsorption or complexation (21.7%), compared to 74.5% for Cu and 95.7% for Zn. Solution pH reduction during metal retention and flow calorimetry analysis both supported the hypothesis of retention of Pb, Cu, and Zn by surface adsorption or complexation. Flow calorimetry indicated that Pb and Cu adsorption onto PR was exothermic, while Zn sorption was endothermic. Our research demonstrated that PR can effectively remove Pb from solutions, even in the presence of other heavy metals (e.g. Cu, Zn).  相似文献   

13.
The efficacy of a wastewater treatment lagoon (WWTL) at preventing the spread of Pseudomonas aeruginosa into natural aquatic habitats was investigated. A WWTL and its connected combined sewer and brook were exhaustively sampled. Physico-chemical analyses showed a stratification of the first pond according to pH, temperature and oxygen content. The P. aeruginosa counts partially matched this stratification with higher values among the bottom anaerobic waters of the first half of this pond. Genotyping of 494 WWTL P. aeruginosa strains was performed and led to the definition of 85 lineages. Dominant lineages were observed, with some being found all over the WWTL including the connected brook. IS5 was used as an indicator of genomic changes, and 1 to 12 elements were detected among 16 % of the strains. IS-driven lasR (genetic regulator) disruptions were detected among nine strains that were not part of the dominant lineages. These insertional mutants did not show significant elastase activities but showed better growth than the PAO1 reference strain in WWTL waters. Differences in growth patterns were related to a better survival of these mutants at an alkaline pH and a better ability at using some C-sources such as alanine. The opportunistic colonization of a WWTL by P. aeruginosa can involve several metabolic strategies which appeared lineage specific. Some clones appeared more successful than others at disseminating from a combined sewer toward the overflow of a WWTL.  相似文献   

14.
The toxicity and bioavailability of metals were assessed to verify the efficiency of a new chemical leaching process (METIX-AC) to minimize the risk of metals found in municipal sewage sludge. For this purpose, sludge samples were spiked with cadmium, copper and/or zinc before being treated using METIX-AC. The sludge decontamination resulted in a removal of spiked metals (79-89%), in a decrease of the more labile fractions, and in a corresponding increase of the residual fraction. The toxicity observed after exposure of two plant species, barley (Hordeum vulgare) and ryegrass (Lolium perenne), and a terrestrial invertebrate, Eisenia andrei, to sludge-soil mixtures, disappeared after treatment, although the adverse effects were minor before treatment. The sludge treatment also significantly decreased the bioaccumulation of cadmium, copper, and zinc in the exposed species. For cadmium, maximum tissue concentrations of 0.45+/-0.08 mg/kg in barley, 0.79+/-0.27 mg/kg in ryegrass, and 21.82+/-1.85 mg/kg in earthworm exposed to sludge before treatment decreased after treatment to values similar to those observed with negative controls.  相似文献   

15.

Purpose

The major aromatic constituents of petroleum products viz. benzene, toluene, and mixture of xylenes (BTX) are responsible for environmental pollution and inflict serious public concern. Therefore, BTX biodegradation potential of individual as well as formulated bacterial consortium was evaluated. This study highlighted the role of hydrogen peroxide (H2O2), nitrate, and phosphate in stimulating the biodegradation of BTX compounds under hypoxic condition.

Materials and methods

The individual bacterium viz. Bacillus subtilis DM-04 and Pseudomonas aeruginosa M and NM strains and a consortium comprising of the above bacteria were inoculated to BTX-containing liquid medium and in soil. The bioremediation experiment was carried out for 120?h in BTX-containing liquid culture and for 90?days in BTX-contaminated soil. The kinetics of BTX degradation either in presence or absence of H2O2, nitrate, and phosphate was analyzed using biochemical and gas chromatographic (GC) technique.

Results

Bacterial consortium was found to be superior in degrading BTX either in soil or in liquid medium as compared to degradation of same compounds by individual strains of the consortium. The rate of BTX biodegradation was further enhanced when the liquid medium/soil was exogenously supplemented with 0.01?% (v/v) H2O2, phosphate, and nitrate. The GC analysis of BTX biodegradation (90?days post-inoculation) in soil by bacterial consortium confirmed the preferential degradation of benzene compared to m-xylene and toluene.

Conclusions

It may be concluded that the bacterial consortium in the present study can degrade BTX compounds at a significantly higher rate as compared to the degradation of the same compounds by individual members of the consortium. Further, addition of H2O2 in the culture medium as an additional source of oxygen, and nitrate and phosphate as an alternative electron acceptor and macronutrient, respectively, significantly enhanced the rate of BTX biodegradation under oxygen-limited condition.  相似文献   

16.
A fungal bioremediation method using P. frequentans removed up to 75% of phenanthrene with the addition of water and nutrients over a period of 30 d. During the bioremediation process, changes in metal behavior were monitored by an in situ technique (diffusive gradients in thin-films, DGT) and by soil solution chemistry. DGT provided absolute data on fluxes from the solid phase to the DGT device and relative trends of concentrations of the most labile metal species. DGT response indicated that bioremediation increases metal mobilization from the solid phase. Filtration provided data on the concentrations of solution phase (<0.45 microm) metal. In all case, metal fluxes and concentrations significantly increased after the bioremediation process began. Fluxes increased from <0.1 pg cm(-2)s(-1) before bioremediation to between 0.2 and 0.5 pg cm(-2)s(-1) after bioremediation. Metal concentrations in the soils solution (filtration at 0.45 microm) increased from 2 to 10 microg l(-1) (Cu), 1-4 microgl(-1) (Pb) and from 40 to 140 microg l(-1) (Ni) after bioremediation. Although over a short time period, these data strongly indicated that there was remobilization of metal from solid to solution (and thus to the DGT device) directly due to the bioremediation process. Although the mechanism was not unambiguously identified, it was shown not to be related to small changes in bulk pH over time and was attributed to the microbial action on the surface of the soil solid phase, releasing metal into solution. Additionally, differences in metal concentration and flux were observed in sterilized and non-sterilized soils and in the absence or presence of phenanthrene. The results indicated that the bioremediation of soil by P. frequentans increased the flux, lability and mobility of trace metal species and therefore the likely metal bioavailability to plants.  相似文献   

17.
Several iron-bearing additives, selected for their potential ability to adsorb anions, were evaluated for their effectiveness in attenuation of arsenic (As) in three soils with different sources of contamination. Amendments used were lime, goethite (alpha-FeOOH) (crystallised iron oxide) and three iron-bearing additives, iron grit, Fe(II) and Fe(III) sulphates plus lime, applied at 1% w/w. Sequential extraction schemes conducted on amended soils determined As, Cu, Zn and Ni fractionation. Plant growth trials using perennial ryegrass (Lolium perenne var. Elka) assessed shoot As uptake. This was grown in the contaminated soils for 4 months, during which time grass shoots were successively harvested every 3 weeks. Goethite increased biomass yields, but clear differences were observed in As transfer rates with the various iron oxides. In conclusion, whilst Fe-oxides may be effective in situ amendments, reducing As bioavailability, their effects on plant growth require careful consideration. Soil-plant transfer of As was not completely halted by any amendment.  相似文献   

18.
The concentrations of cadmium, copper, lead and zinc have been measured in the leaves of a deciduous tree the horse chestnut (Aesculus hippocastanum L.) over the period of their lifetime (7 months). The average concentrations for the total sample based on ash weight are: (microg g(-1)) cadmium, 0.197; copper, 129; lead, 294; and zinc, 299. The temporal trends in the concentrations of the metals can be related to their dominant source. Copper and zinc concentrations are highest in the new leaves and decrease with time, suggesting the main source of the elements are uptake from the soil. The decrease occurs partly because of dilution by leaf material as it increases over the growing period. In the case of zinc, however, aerial deposits appear to be also a significant source. Lead concentrations, on the other hand, show an increase with time, which can be related to increasing deposits from aerosol lead arising from the combustion of petrol lead. The increase is enough to offset the dilution effect. For cadmium there is no significant trend, but the tendency is a decrease with time. It is not possible, however, to distinguish between soil uptake and aerial deposit as both are small compared with increase in leaf material.  相似文献   

19.
One-month old horsegram (Macrotyloma uniflorum (Lam.) Verdc. cv VZM1) and bengalgram (Cicer arietinum L. cv Annogiri) were exposed to different regimes of lead stress as Pb(NO3)2 at 0, 200, 500 and 800 ppm concentrations. The extent of oxidative damage as the rate of lipid peroxidation, antioxidative response and the accumulation of lead in roots and shoots of both plants were evaluated after 12 days of lead stress. Lead (Pb) treated plants showed increased levels of lipid peroxidation as evidenced from the increased malondialdehyde content coupled with the increase in the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), glutathione reductase (GR), glutathione S-transferase (GST) compared to control (untreated) plants. Lead stress caused significant changes in the activity of antioxidative enzymes. The effect of lead was found to be concentration dependent. Higher concentration of lead (800 ppm) resulted 2- to 3-fold increase in SOD, catalase and peroxidase activities, 3- to 5-fold increase in GR activity and 3- to 4-fold increase in GST activity in roots and leaves of both horsegram and bengalgram plants. Lead stress caused a significant increase in the rate of peroxidation as showed in the levels of malondialdehyde content in roots and leaves of both plant species. Horsegram registered lower Pb accumulation than bengalgram, however localization of Pb was greater in roots than leaves in both plants. In general, lipid peroxide levels and antioxidative enzyme activities were higher in horsegram than bengalgram and also more in roots than leaves which best concordance with the lead contents of both the plants and organs. These results suggest that Pb toxicity causes oxidative stress in plants and the antioxidative enzymes SOD, CAT, POD, GR, GST could play a pivotal role against oxidative injury.  相似文献   

20.

Selenium (Se) is an essential metalloid element for mammals. Nonetheless, both deficiency and excess of Se in the environment are associated with several diseases in animals and humans. Here, we investigated the interaction of Se, supplied as selenate (Se+6) and selenite (Se+4), with phosphorus (P) and sulfur (S) in a weathered tropical soil and their effects on growth and Se accumulation in Leucaena leucocephala (Lam.) de Wit. The P-Se interaction effects on L. leucocephala growth differed between the Se forms (selenate and selenite) supplied in the soil. Selenate was prejudicial to plants grown in the soil with low P dose, while selenite was harmful to plants grown in soil with high P dose. The decreasing soil S dose increased the toxic effect of Se in L. leucocephala plants. Se tissue concentration and total Se accumulation in L. leucocephala shoot were higher with selenate supply in the soil when compared with selenite. Therefore, selenite proved to be less phytoavailable in the weathered tropical soil and, at the same time, more toxic to L. leucocephala plants than selenate. Thus, it is expected that L. leucocephala plants are more efficient to phytoextract and accumulate Se as selenate than Se as selenite from weathered tropical soils, for either strategy of phytoremediation (decontamination of Se-polluted soils) or purposes of biofortification for animal feed (fertilization of Se-poor soils).

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号