首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

Construction and demolition (C&D) debris is generated at the site of various construction activities. However, the amount of the debris is usually so large that it is necessary to estimate the amount of C&D debris as accurately as possible for effective waste management and control in urban areas. In this paper, an effective estimation method using a statistical model was proposed. The estimation process was composed of five steps: estimation of the life span of buildings; estimation of the floor area of buildings to be constructed and demolished; calculation of individual intensity units of C&D debris; and estimation of the future C&D debris production. This method was also applied in the city of Seoul as an actual case, and the estimated amount of C&D debris in Seoul in 2021 was approximately 24 million tons. Of this total amount, 98% was generated by demolition, and the main components of debris were concrete and brick.  相似文献   

2.
Environmental Science and Pollution Research - Construction and demolition (C&D) waste diminishes scarce land resources and endangers human health and the surrounding environment....  相似文献   

3.

This study evaluates carbon emissions of construction and demolition (C&D) waste generated by building refurbishment, using a life cycle assessment approach through a case study project in China. Three waste management scenarios were developed for a building refurbishment project in the city of Suzhou. Scenario 1 is under the business-as-usual C&D waste management practice in China; scenario 2 is based on the open-ended 3R strategy, which focuses on the downstream impact of waste; and scenario 3 considers both the upstream and downstream impact of waste. The results reveal that the composition of the waste generated from building refurbishment projects is different from construction and demolition projects. In the life cycle of C&D waste management of building refurbishment projects, the refurbishment material stage generates the highest carbon emissions compared to the dismantlement, refurbishment construction, and refurbishment material end of life stages. Scenario 1 produces higher carbon emissions than scenario 2, but the difference is not significant in the whole life cycle of the building refurbishment project, whereas carbon emissions for scenario 3 are significantly less than both scenario 1 and scenario 2. The study finds the reason for this difference is that scenario 1 and scenario 2 are based on a linear economy that relies on unsustainable demand for raw materials, whereas scenario 3 is based on a circular economy that uses upcycled materials to substitute for raw materials and considers waste management from a cradle to cradle perspective. This study fills a research gap by evaluating carbon emissions of different waste management strategies for building refurbishment projects, which are expected to be an increasing portion of overall construction activity in China for the foreseeable future.

  相似文献   

4.
Abstract

Hydrogen sulfide (H2S) generation in construction and demolition (C&D) debris landfills has been associated with the biodegradation of gypsum drywall. Laboratory research was conducted to observe H2S generation when drywall was codisposed with different C&D debris constituents. Two experiments were conducted using simulated landfill columns. Experiment 1 consisted of various combinations of drywall, wood, and concrete to determine the impact of different waste constituents and combinations on H2S generation. Experiment 2 was designed to examine the effect of concrete on H2S generation and migration. The results indicate that decaying drywall, even alone, leached enough sulfate ions and organic matter for sulfate-reducing bacteria (SRB) to generate large H2S concentrations as high as 63,000 ppmv. The codis-posed wastes show some effect on H2S generation. At the end of experiment 1, the wood/drywall and drywall alone columns possessed H2S concentrations >40,000 ppmv. Conversely, H2S concentrations were <1 ppmv in those columns containing concrete. Concrete plays a role in decreasing H2S by increasing pH out of the range for SRB growth and by reacting with H2S. This study also showed that wood lowered H2S concentrations initially by decreasing leachate pH values. Based on the results, two possible control mechanisms to mitigate H2S generation in C&D debris landfills are suggested.  相似文献   

5.
Environmental Science and Pollution Research - To overcome the scarcity of river sand and dumping of construction and demolition wastes, the fine recycled aggregate (FRA) collected from C&amp;D...  相似文献   

6.
McMahon V  Garg A  Aldred D  Hobbs G  Smith R  Tothill IE 《Chemosphere》2008,71(9):1617-1628
The suitability of using bioremediation and composting techniques for diverting construction and demolition (C&D) waste from landfill has been validated in this study. Different timber products from C&D waste have been composted using various composting approaches. The present work demonstrates the quality of compost produced as a result of composting of mixed board product wood waste, which is frequently obtained from the construction and demolition industry. Three compost mixes were prepared by mixing shredded chip board, medium density fibre, hardboard and melamine. Poultry manure, Eco-Bio mixture and green waste were used as nutrient supplements. The results revealed that compost produced from mixtures of poultry manure and green waste used as nutrient supplements improved the performance in plant growth trials (phytotoxicity tests). Results obtained from the experimental study clearly indicate that the composts produced comply with the criterion suggested in BSI PAS 100 (A specification for compost materials) for use in different applications. Composting can also be demonstrated to be a very practical approach to material management including transport reduction to and from the site. The economic suitability of the process will be improved with the increase in landfill tax. In the current regulatory scenario, it is recommended that these materials should be composted at a centralised facility.  相似文献   

7.
Chromated copper arsenate (CCA) treated wood has been used for more than 50 years. Recent attention has been focused on appropriate disposal of CCA-treated wood when its service life ends. Groups in the US and Europe concerned with the possibility of arsenic migration to groundwater from disposed CCA-treated wood have proposed that consumers be required to dispose of the wood as a hazardous waste, in the most protective of landfills. We examined available data for evidence of arsenic migration from unlined construction and demolition (C&D) debris landfills in Florida, where CCA-treated wood is disposed. Florida was chosen because soil, groundwater, landfill design, weather, and levels of CCA-treated wood use make the state a uniquely sensitive indicator for observing arsenic migration from CCA-treated wood disposal sites, should it occur. We developed and quality-checked a CCA-treated wood disposal model to estimate the amount of wood and associated arsenic disposed. By 2000, an estimated 13 million kg of arsenic in CCA-treated wood was disposed in Florida; however, groundwater monitoring data do not indicate that arsenic is migrating from unlined C&D landfills. Our results provide evidence that highly stringent regulation of CCA-treated wood disposal, such as treatment as a hazardous waste, is unnecessary.  相似文献   

8.
Hydrogen sulfide (H2S) generation in construction and demolition (C&D) debris landfills has been associated with the biodegradation of gypsum drywall. Laboratory research was conducted to observe H2S generation when drywall was codisposed with different C&D debris constituents. Two experiments were conducted using simulated landfill columns. Experiment 1 consisted of various combinations of drywall, wood, and concrete to determine the impact of different waste constituents and combinations on H2S generation. Experiment 2 was designed to examine the effect of concrete on H2S generation and migration. The results indicate that decaying drywall, even alone, leached enough sulfate ions and organic matter for sulfate-reducing bacteria (SRB) to generate large H2S concentrations as high as 63,000 ppmv. The codisposed wastes show some effect on H2S generation. At the end of experiment 1, the wood/drywall and drywall alone columns possessed H2S concentrations > 40,000 ppmv. Conversely, H2S concentrations were < 1 ppmv in those columns containing concrete. Concrete plays a role in decreasing H2S by increasing pH out of the range for SRB growth and by reacting with H2S. This study also showed that wood lowered H2S concentrations initially by decreasing leachate pH values. Based on the results, two possible control mechanisms to mitigate H2S generation in C&D debris landfills are suggested.  相似文献   

9.
It has been theoretically and experimentally shown that rate&#x002D;limited sorption/desorption can have a profound effect upon the transport of sorbing contaminants. The advection/dis&#x002D;persion equation that has been traditionally used to model contaminant transport uses a retardation factor to account for sorption, thereby implicitly assuming local equilibrium between contaminant in the sorbed and aqueous phases. This assumption fails to consider the possibly large effects of rate&#x002D;limited sorption/desorption.

The mass release characteristic of arsenic&#x002D;contaminated soils at the Crystal Chemical site in Houston, TX, was examined. Soils were collected from beneath two former waste&#x002D;water ponds that were the source of arsenic in the uppermost aquifer. Samples were typical of those found within the fine&#x002D;grained components of local alluvial overbank deposits that comprise the bulk of the site. The dynamic test applied a continuing head of water, operating in an upflow mode, through 4&#x002D;inch&#x002D;diameter by 12&#x002D;inch&#x002D;long soil columns repacked to in&#x002D;situ density. Three columns were constructed

The mass release characteristic of arsenic&#x002D;contaminated soils at the Crystal Chemical site in Houston, TX, was examined. Soils were collected from beneath two former waste&#x002D;water ponds that were the source of arsenic in the uppermost aquifer. Samples were typical of those found within the fine&#x002D;grained components of local alluvial overbank deposits that comprise the bulk of the site. The dynamic test applied a continuing head of water, operating in an upflow mode, through 4&#x002D;inch&#x002D;diameter by 12&#x002D;inch&#x002D;long soil columns repacked to in&#x002D;situ density. Three columns were constructed&#x2014;

two containing predominantly clay, and the other containing clayey silt. Leachate from the most permeable column was collected over 42 pore volumes (equivalent to 120 years of extraction). Sharp declines in arsenic concentrations in the leachate were measured after just four pore volumes. A biphasic response was evident, consistent with published research on kinetically limited mass transfer of retarding solutes. The most responsive column was pulsed to elucidate the effects of diffusion and pulsed pumpingtwo containing predominantly clay, and the other containing clayey silt. Leachate from the most permeable column was collected over 42 pore volumes (equivalent to 120 years of extraction). Sharp declines in arsenic concentrations in the leachate were measured after just four pore volumes. A biphasic response was evident, consistent with published research on kinetically limited mass transfer of retarding solutes. The most responsive column was pulsed to elucidate the effects of diffusion and pulsed pumping.

Arsenic concentrations returned to baseline levels in less than three pore volumes.

These studies ultimately led to a joint assessment between Southern Pacific Lines (SPL) and EPA Region VI, which concluded that extraction and treatment of the shallow aquifer beneath the site was not feasible, in light of the aggressive restoration goal.  相似文献   

10.
Abstract

Superfund sites frequently contain both heavy metals and organic hazardous waste. If not properly controlled, the metals may be changed to a more leachable form and may also be emitted to the atmosphere via the exhaust stack. This paper documents a batch kiln R&D test program to solve these metal-related problems. It was performed under the U.S. EPA’s SITE (Superfund Innovative Technology Evaluation) Emerging Technology Program. Allis Mineral Systems has developed the Thermal Encapsulation Process. Metals with limits set by EPA’s TCLP (Toxicity Characteristic Leaching Procedure) test and BIF (boiler and industrial furnace) stack emission regulations, such as cadmium, chromium, and lead, are the initial target of this process. This process, while unproven in these areas, may also apply to mixed waste (EPA hazardous waste/low-level radioactive wastes) and may also benefit commercial hazardous waste or Superfund thermal treatment systems. The results of the SITE tests were positive: strong, durable nodules were produced with excellent crush strength and improved resistance to leaching. Feed preparation, particularly control of moisture content, was found to be a key element in initiation of agglomeration. A good correlation was found between decreasing TCLP metals leachate levels and increasing crush strength.  相似文献   

11.
Ambient aerosols were sampled at three selected sites in the coastal region of central Taiwan to obtain composition data for use in receptor modeling. All the samples were analyzed for 20 elements with an x&#x002D;ray fluorescence spectrometer. The mass percentage of sulfates in particle samples was determined by ion chromatography, and mass percentages of elemental carbon (EC) and organic carbon (OC) were determined by an elemental analyzer.

Because the three sampling sites were located within 25 km of each other, the average chemical compositions were similar for particle samples taken at the three sites on the same day. However, the variation in composition from day to day was significantly influenced by wind direction and change in local sources, such as the burning of agricultural wastes. The abundant species in the coarse fraction (2.5&#x002D;10 µm) were Al (0.5&#x002D;4.0 µg/m3), Cl (0.1&#x002D;4.8 µg/m3), Ca (0.2&#x002D;3.4 µg/m3), Fe (0.2&#x002D;2.8 µg/ m3), and K (0.1&#x002D;1.4 µg/m3), while the abundant species in the fine fraction (&#x003C;2.5 µm) were S (0.3&#x002D;3.5 µg/m3), Cl (0.01&#x002D;1.9 µg/ m3), K (0.04&#x002D;0.98 µg/m3), organic carbon (0.01&#x002D;10.5 µg/m3), elemental carbon (0&#x002D;10.7 µg/m3), and sulfates (1.2&#x002D;15.7 µg/m3).

Calculations for source apportionment were carried out using the CMB7 software developed by the U.S. Environmental Protection Agency (EPA). The main sources for the coarse fraction of ambient aerosols in the region were found to be marine aerosol, coal and fuel oil combustion, burning of agricultural wastes, and paved road dust. The main sources for the fine fraction were burning of agricultural wastes, diesel exhaust, coal and oil combustion, and sulfates. Source apportionment for the fine fraction was relatively sensitive to the types of sources selected for calculations and the compositions of the sources. The problem can be ameliorated by careful examination of possible sources and by use of local source profiles.  相似文献   

12.
The 17th annual Government Affairs Seminar of the Air & Waste Management Association was held March 16-17,1989 in Washington, DC. The overall theme was "Environmental Challenges of the 1990s," and included among the challenges were two issues in waste management: managing municipal waste and paying for cleanup. Summaries of the remarks of four panelists appear on the following pages.  相似文献   

13.
Ambient aerosols were sampled at three selected sites in the coastal region of central Taiwan to obtain composition data for use in receptor modeling. All the samples were analyzed for 20 elements with an x&#x0002D;ray fluorescence spectrometer. The mass percentage of sulfates in particle samples was determined by ion chromatography, and mass percentages of elemental carbon (EC) and organic carbon (OC) were determined by an elemental analyzer.

Because the three sampling sites were located within 25 km of each other, the average chemical compositions were similar for particle samples taken at the three sites on the same day. However, the variation in composition from day to day was significantly influenced by wind direction and change in local sources, such as the burning of agricultural wastes. The abundant species in the coarse fraction (2.5&#x0002D;10 µm) were Al (0.5&#x0002D;4.0 µg/m3), Cl (0.1&#x0002D;4.8 µg/m3), Ca (0.2&#x0002D;3.4 µg/m3), Fe (0.2&#x0002D;2.8 µg/ m3), and K (0.1&#x0002D;1.4 µg/m3), while the abundant species in the fine fraction (<2.5 µm) were S (0.3&#x0002D;3.5 µg/m3), Cl (0.01&#x0002D;1.9 µg/ m3), K (0.04&#x0002D;0.98 µg/m3), organic carbon (0.01&#x0002D;10.5 µg/m3), elemental carbon (0&#x0002D;10.7 µg/m3), and sulfates (1.2&#x0002D;15.7 µg/m3).

Calculations for source apportionment were carried out using the CMB7 software developed by the U.S. Environmental Protection Agency (EPA). The main sources for the coarse fraction of ambient aerosols in the region were found to be marine aerosol, coal and fuel oil combustion, burning

of agricultural wastes, and paved road dust. The main sources for the fine fraction were burning of agricultural wastes, diesel exhaust, coal and oil combustion, and sulfates. Source apportionment for the fine fraction was relatively sensitive to the types of sources selected for calculations and the compositions of the sources. The problem can be ameliorated by careful examination of possible sources and by use of local source profiles.  相似文献   

14.
Environmental Science and Pollution Research - Electrochemical oxidation of trivalent chromium from leather tanning mud waste leachates (containing ca 6&nbsp;g.L?1 Cr(III)) to its...  相似文献   

15.
Remote sensing can advance the work of the Circumpolar Biodiversity Monitoring Program through monitoring of satellite-derived terrestrial and marine physical and ecological variables. Standardized data facilitate an unbiased comparison across variables and environments. Using MODIS standard products of land surface temperature, percent snow covered area, NDVI, EVI, phenology, burned area, marine chlorophyll, CDOM, sea surface temperature, and marine primary productivity, significant trends were observed in almost all variables between 2000 and 2017. Analysis of seasonal data revealed significant breakpoints in temporal trends. Within the terrestrial environment, data showed significant increasing trends in land surface temperature and NDVI. In the marine environment, significant increasing trends were detected in primary productivity. Significantly earlier onset of green up date was observed in bioclimate subzones C&E and longer end of growing season in B&E. Terrestrial and marine parameters showed similar rates of change with unidirectional change in terrestrial and significant directional and magnitude shifts in marine.  相似文献   

16.
Although air curtain destructors (ACDs) have been used for quite some time to dispose of vegetative debris, relatively little in-depth testing has been conducted to quantify emissions of pollutants other than CO and particulate matter. As part of an effort to prepare for possible use of ACDs to dispose of the enormous volumes of debris generated by Hurricanes Katrina and Rita, the literature on ACD emissions was reviewed to identify potential environmental issues associated with ACD disposal of construction and demolition (C&D) debris. Although no data have been published on emissions from C&D debris combustion in an ACD, a few studies provided information on emissions from the combustion of vegetative debris. These studies are reviewed, and the results compared with studies of open burning of biomass. Combustion of vegetative debris in ACD units results in significantly lower emissions of particulate matter and CO per unit of mass of debris compared with open pile burning. The available data are not sufficient to make general estimates regarding emissions of organic or metal compounds. The highly transient nature of the ACD combustion process, a minimal degree of operational control, and significant variability in debris properties make accurate prediction of ACD emissions impossible in general. Results of scoping tests conducted in preparation for possible in-depth emissions tests demonstrate the challenges associated with sampling ACD emissions and highlight the transient nature of the process. The environmental impacts of widespread use of ACDs for disposal of vegetative debris and their potential use to reduce the volume of C&D debris in future disaster response scenarios remain a considerable gap in understanding the risks associated with debris disposal options.  相似文献   

17.
Environmental Science and Pollution Research - Understanding the factors affecting R&amp;D trends in the energy sector has a key role in overcoming environmental concerns such as combating...  相似文献   

18.
Environmental Science and Pollution Research - Carrying out domestic research and development (R&amp;D) activities can improve environmental performance. However, extant studies have not...  相似文献   

19.
Environmental Science and Pollution Research - Even though higher education R&amp;D expenditures (HEEXP) are important determinants of economic growth that facilitate science, technology, new...  相似文献   

20.
Environmental Science and Pollution Research - The main objective of this study is to investigate the impact of research and development (R&amp;D) intensity on renewable energy consumption in...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号