首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Over the next decade, use of chlorinated solvents, a widely employed class of chemicals, will decline significantly because of increasingly stringent environmental regulations. These solvents pose certain health and environmental problems and they have been heavily scrutinized. The alternatives to the solvents are being adopted without controls. In some cases, these substances will pose other health and environmental problems that are likely to be as serious; in other cases, the alternatives have not been examined for their health and environmental effects at all. This case study demonstrates that regulations on chlorinated solvents and their potential alternatives are inconsistent with one another and conflicting.  相似文献   

2.
Metzger JO 《Chemosphere》2001,43(1):83-87
The use of organic solvents should be minimized as far as possible to reduce atmospheric volatile organic compounds (VOCs). Examples of solvent-free organic syntheses are described. The increasing usage of renewable feedstocks taking advantage of the synthetic potential of nature is another way to avoid organic solvents. Most important is the development of chemical products, i.e., coatings that can be processed without organic solvents.  相似文献   

3.
Carbon tetrachloride (CTC), tetrachloroethylene (PCE), trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) were four of the most widely used cleaning and degreasing solvents in the United States. These compounds were also used in a wide variety of other applications. The history of the production and use of these four compounds is linked to the development and growth of the United States' synthetic organic chemical industry, and historical events that affected the development and use of chlorinated solvents in general. Part 1 of this article includes a discussion of the historical background common to each of the four solvents, followed by discussion on the history of CTC and PCE. In the early years of the 20th century, CTC became the first of the four solvents to come into widespread use. CTC was used as a replacement for petroleum distillates in the dry-cleaning industry, but was later replaced by PCE. In the 1990s, CTC was phased out under the Montreal Protocol due to its role in stratospheric ozone depletion.  相似文献   

4.
Solvent extraction of contaminated soils, sludges and sediments has been successfully completed at a number of Superfund sites. Each commercialized process uses a unique operating system to extract organic contaminants from solids. These operating systems may be classified by the properties of the solvents each utilizes: (1) standard solvents, (2) near-critical fluids/liquified gases, and (3) critical solution temperature solvents. Pretreatment and post-treatment requirements vary depending upon the operating systems of the solvent extraction system. Future demonstrations of these technologies by the U.S. EPA’s Superfund Innovative Technology Evaluation Program will provide additional information regarding the efficacy of these processes.  相似文献   

5.
光源和溶剂对十溴联苯醚光降解的影响   总被引:2,自引:0,他引:2  
研究了不同光源和溶剂对十溴联苯醚(DecaBDE)光降解特性的影响,并对其降解产物进行了探讨.结果表明,在所试光源和溶剂条件下,DecaBDE均有一定程度的光降解,且都近似符合一级降解动力学.同一光源下,不同溶剂对DecaBDE降解表现出不同的影响.在太阳光照射下,DecaBDE降解速率为甲苯>甲醇>正己烷>正己烷/丙酮>甲醇/水>乙醇/水;在模拟光源照射下,DecaBDE降解速率为甲苯>甲醇>甲醇/水>乙醇/水>正己烷>正己烷/丙酮;在紫外光照射下,DecaBDE降解速率为甲苯>甲醇>正己烷/丙酮>正己烷>甲醇/水>乙醇/水.同一溶剂中,DecaBDE降解速率均为紫外光>太阳光>模拟光源.尽管光源和溶剂对DecaBDE降解速率产生了一定影响,但降解途径基本一致,均为DecaBDE经光解脱溴产生低溴联苯醚.  相似文献   

6.
Chen S  Nyman MC 《Chemosphere》2007,66(8):1523-1534
The sorption and desorption behavior of benzidine in eight solvent-sediment systems were studied using a batch method. The solvents tested included deionized water (DI), calcium chloride solution (CaCl2), sodium hydroxide solution (NaOH), acetonitrile (ACN), a mixture of acetonitrile and ammonium acetate solution (ACN-NH4OAc), methanol (MeOH), ammonium acetate solution (NH4OAc) and hydrochloric acid solution (HCl). Three sets of sorption isotherm experiments were conducted separately in these eight solvents with seven days, three weeks, and two months of contact times, respectively. The results demonstrated nonlinear benzidine sorption phenomena in all eight solvents with higher sorption affinities for sediment sites in the aqueous solvents than in the organic solvents. The results from the desorption experiments revealed that the benzidine desorption efficiencies in the solvents decreased in an order, which was approximately the reverse order of its sorption affinity. Results also suggested that hydrophobic partitioning and covalent binding processes dominated in the desorption experiments, while cation exchange process had little effect on desorption of benzidine. A three-stage model was subsequently applied to simulate the desorption data in the selected solvents of ACN, ACN-NH4OAc and NaOH, respectively. The rapidly desorbing initial fractions were about 0.13-0.20, 0.15-0.26, and 0.18-0.25 for ACN, ACN-NH4OAc and NaOH, respectively. Finally, the sorbed concentrations of benzidine in slowly and very slowly desorbing domains in the selected solvents were correlated with the maximum sorption capacities obtained from the Langmuir sorption isotherm model. The maximum sorption capacities of benzidine were found to be comparable to the amount of benzidine residing in the slowly and very slowly desorbing domains.  相似文献   

7.
Over the next decade, use of chlorinated solvents, a widely employed class of chemicals, will decline significantly because of increasingly stringent environmental regulations. These solvents pose certain health and environmental problems and they have been heavily scrutinized. The alternatives to the solvents are being adopted without controls. In some cases, these substances will pose other health and environmental problems that are likely to be as serious; in other cases, the alternatives have not been examined for their health and environmental effects at all. This case study demonstrates that regulations on chlorinated solvents and their potential alternatives are inconsistent with one another and conflicting.  相似文献   

8.
P K Lau  A Koenig 《Chemosphere》2001,44(1):9-15
An attempt has been made to establish a mass balance of industrial organic solvents in Hong Kong. It is estimated that only a small portion, less than 4%, of all the organic solvents consumed in Hong Kong are collected as waste solvents and properly treated, while the remainder are used either in the formulation of solvent containing products, or are lost to the environment through vapour emissions, leaks and spills, or dumped illegally. It was found that solvent recycling has been a common practice in some industries but the existing level of solvent recycling in Hong Kong is difficult to estimate. About 87.4% of all the waste organic solvents disposed of at the licensed facilities are potentially recyclable although whether they can be recycled in practice depends on many factors. Examples of existing waste organic solvent management and recycling practices from selected industries in Hong Kong are presented. The economic feasibility of current and future potential recycling systems is evaluated for a few selected cases. An integrated waste organic solvent management strategy is proposed to minimize adverse impacts of organic solvents to the environment and human health.  相似文献   

9.
The widespread use of industrial chemicals in our highly industrialized society has often caused contamination of large terrestrial and marine areas due to the deliberate and accidental release of organic pollutants into the soil and groundwater. In this review, environmental problems arising from the use of chlorinated solvents and BTEX compounds are described, and an overview about active management strategies for remediation with special emphasis on phytoremediation are presented to achieve a reduction of the total mass of chlorinated solvents and BTEX compounds in contaminated areas. Phytoremediation has been proposed as an efficient, low-cost remediation technique to restore areas contaminated with chlorinated solvents and BTEX compounds. The feasibility of phytoremediation as a remediation tool for these compounds is discussed with particular reference to the uptake and metabolism of these compounds, and a future perspective on the use of phytoremediation for the removal of chlorinated solvents and BTEX compounds is given.  相似文献   

10.
The ever-increasing demand for determining pesticides at low concentration levels in different food matrices requires a preliminary step of pre-concentration which is considered a crucial stage. Recently, the parameter of “greenness” during sample pre-concentration of pesticides in food matrices is as important as selectivity in order to avoid using harmful organic solvents during sample preparation. Developing new green pre-concentration techniques is one of the key subjects. Thus, to reduce the impact on the environment during trace analysis of pesticides in food matrices, new developments in pre-concentration have gone in three separate directions: the search for more environmentally friendly solvents, miniaturization and development of solvent-free pre-concentration techniques. Eco-friendly solvents such as supercritical fluids, ionic liquids and natural deep eutectic solvents have been developed for use as extraction solvents during pre-concentration of pesticides in food matrices. Also, miniaturized pre-concentration techniques such as QuEChERS, dispersive liquid–liquid micro-extraction and hollow-fiber liquid-phase micro-extraction have been used during trace analysis of pesticides in food samples as well as solvent-free techniques such as solid-phase micro-extraction and stir bar sorptive extraction. All these developments which are aimed at ensuring that pesticide pre-concentration in different food matrices is green are critically reviewed in this paper.  相似文献   

11.
Environmental Science and Pollution Research - Betaine-based natural deep eutectic solvents (NADESs), a new class of green solvents, were immobilized into a porous polyvinylidene fluoride (PVDF)...  相似文献   

12.
不同洗脱剂对有机氯农药污染场地土壤修复效果比较   总被引:4,自引:1,他引:3  
为了筛选出能有效修复有机氯农药污染土壤的洗脱剂,选取了16种洗脱剂对2种复合有机氯农药(六六六(HCHs)和滴滴涕(DDTs)、氯丹和灭蚁灵)污染场地土壤进行超声洗脱修复。结果表明,对于HCHs和DDTs复合污染土壤,乙酸乙酯和丙酮对HCHs的洗脱率最高,分别为87.6%和87%,其余有机溶剂对其洗脱率也在70%以上。乙酸乙酯和丙酮对于DDT仍为最优,分别为86.9%与78.4%,其余有机试剂对DDT的洗脱率在60%以上。相对于有机溶剂,表面活性剂对HCHs和DDTs复合污染土壤的洗脱效果不好,总洗脱率均低于4%。同样,对于氯丹和灭蚁灵复合污染土壤,有机溶剂的洗脱效果也明显优于表面活性剂。有机溶剂对灭蚁灵的洗脱率,除了正丙醇较低(63.5%)外,其余均在80%左右。对氯丹的洗脱率,除石油醚(59.6%)、正己烷(49.3%)和正丙醇(42%),其余均在70%以上。相同摩尔浓度的表面活性剂中,吐温80对氯丹的洗脱率为54%,环糊精为20%,鼠李糖脂和曲拉通100为13%左右,其余则小于5%,吐温80对灭蚁灵的洗脱率为29.6%,曲拉通100的为12.4%,鼠李糖脂为5.7%,其余则更低。因此,高效低毒的有机试剂,如乙酸乙酯、丙酮和乙醇等可作为有机氯农药污染土壤修复的首选。  相似文献   

13.

With the rapid industrialization, especially offshore oil exploitation, frequent leakage incidents of oils/organic solvents have adversely affected ecological systems and environmental resources. Therefore, great interest has been shown in developing new materials to eliminate these organic pollutants, which have become worldwide problems. In this study, a cost-effective, environmentally friendly porous aerogel with three-dimensional (3D) structure was prepared from grapefruit peel by a facile hydrothermal method as the adsorbent of oils/organic solvents. The as-prepared modified grapefruit peel aerogel (M-GPA) showed mesoporous structure with high specific surface area of 36.42 m2/g and large pore volume of 0.0371 cm3/g. The excellent hydrophobicity of M-GPA with a water contact angle of 141.2° indicated a strong potential for adsorption of oils and organic solvents. The high adsorption capacity of M-GPA for a series of oils and organic solvents was 8 to 52 times as much as its own weight. Moreover, the M-GPA was easily regenerated and a high adsorption capacity recovery above 97% was maintained after five adsorption–regeneration cycles. Therefore, the M-GPA is a promising recyclable adsorbent for the removal of oils/organic solvents from polluted water.

  相似文献   

14.
Carbon tetrachloride (CTC), tetrachloroethylene (PCE), trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) were four of the most widely used cleaning and degreasing solvents in the United States. These compounds were also used in a wide variety of other applications. The history of the production and use of these four compounds is linked to the development and growth of the United States' synthetic organic chemical industry, and historical events that affected the development and use of chlorinated solvents in general. Part 1 of this article includes a discussion of the historical background common to each of the four solvents, followed by discussion on the history of CTC and PCE. In the early years of the 20th century, CTC became the first of the four solvents to come into widespread use. CTC was used as a replacement for petroleum distillates in the dry-cleaning industry, but was later replaced by PCE. In the 1990s, CTC was phased out under the Montreal Protocol due to its role in stratospheric ozone depletion.  相似文献   

15.

Introduction  

Chlorobenzenes are used as solvents or as feedstocks in the production of pesticide formulations, dyes, room deodorizers, moth-proofing agents, and de-inking solvents. Chlorobenzenes were produced by the Dow Chemical Company in Midland, Michigan, for several decades. In this study, concentrations of 12 chlorobenzene (CBz) congeners, from mono- to hexachlorobenzenes, were measured in more than 150 floodplain soil (FPS), surface sediment, and sediment core (SC) samples collected during 2002–2004 from the Pine River, Tittabawassee River, Shiawassee River, Saginaw River, and Saginaw Bay, Michigan.  相似文献   

16.
Organic solvents, such as dimethylsulfoxide (DMSO) and methanol are widely used as vehicles to solubilise lipophilic test compounds in toxicity testing. However, the effects of such solvents upon innate detoxification processes in aquatic organisms are poorly understood. This study assessed the effect of solvent exposure upon cytochrome P450 (CYP)-mediated xenobiotic metabolism in Daphnia magna and zebrafish larvae (4 d post fertilisation). Adult D. magna were demonstrated to have a low, but detectable, metabolism of ethoxyresorufin in vivo and this activity was not modulated by pre-exposure to DMSO or methanol (24 h, up to 0.1% and 0.05% v/v, respectively). In contrast, the metabolism of ethoxyresorufin in zebrafish larvae was significantly reduced by both solvents (0.1% and 0.05% v/v, respectively) after 24 h of exposure. In zebrafish, these observed decreases in activity towards ethoxyresorufin were accompanied by decreased expression of a variety of genes coding for drug metabolising enzymes (corresponding to CYP1, CYP2, CYP3 and UDP-glucuronyl transferase [UGT] family enzymes), measured by quantitative PCR. Reduction of gene expression and CYP1 enzyme activities by methanol (0.05% v/v) in zebrafish larvae was partially reversed by co-exposure with Aroclor 1254 (100 μg L−1). Overall this study suggests that relatively low concentrations of organic solvents can impact upon the biotransformation of certain xenobiotics in zebrafish larvae, and that this warrants consideration when assessing compounds for metabolism and toxicity in this species.  相似文献   

17.
Dichloromethane, perchloroethylene, and trichloroethylene are commercially important chlorinated solvents whose health and environmental impacts are under scrutiny in the industrial world. Their distributions in the global atmosphere have been computed based on data from the Reactive Chlorine Emissions Inventory (RCEI) project using the Global Balance Environment (GLOBE) model, a 3-D radiative-dynamical-chemical model. Their atmospheric lifetimes, scaled to an observed methyl chloroform lifetime of 4.8 years, are 158 days, 105 days, and 4.3 days, respectively. They have strong interhemispheric gradients, with maximum zonal mean surface concentrations in the winter mid-latitude northern hemisphere of approximately 40 ppt, 9 ppt, and 2.5 ppt, respectively. Their spatial distributions show significant seasonal variability, and are sensitive to vertical mixing by cumulus convection and horizontal mixing by synoptic-scale turbulence. While the model interhemispheric exchange time (1.0 years) and computed atmospheric lifetimes are very sensitive to sub-grid scale diffusion, interhemispheric gradients of the chlorinated solvents are not. The simulated results suggest a greater importance for oceanic emissions of perchloroethylene and trichloroethylene than has previously been assumed.  相似文献   

18.
Hoekstra EJ 《Chemosphere》2003,52(2):355-369
This paper reviews the concentrations of trichloroacetate (TCA) in the atmosphere-plant-soil system. Data originate mainly from Europe. The median TCA concentration in rainwater and canopy drip decreased until 1995. From then the median TCA concentration in rainwater remains rather constant while for canopy drip later data are not available. The same seems to hold for concentrations in air although a very limited data set is available. The median concentrations in coniferous needles and groundwater are constant for the period observed. The median TCA concentrations in soil decreased until 1992 and then remained constant.The TCA formation from chlorinated solvents in the atmosphere may explain a substantial percentage of the TCA amount in the atmosphere. The TCA concentrations in rainwater and canopy drip indicate that there will be other sources contributing to 10-50%. Waste incineration, biomass burning and natural formation in the marine boundary layer are potential candidate sources of TCA, but nothing can be said as yet on their TCA emission rates. Anthropogenic emissions of chlorine could also be a source.TCA can be formed from chlorinated solvents by biota. However, for coniferous trees the uptake of TCA from soil may be the predominant route. Biotic and abiotic reactions can cause to formation of TCA in soil, but also formation of TCA from chlorinated solvents by biota that excrete TCA, may contribute. Mass balance calculations of the bioactive soil top layer show that the production rate of TCA in certain soil types could be substantial. The mass balance calculations could not distinguish between natural and anthropogenic sources in soil.  相似文献   

19.
《Environmental Forensics》2013,14(3):179-184
The historical record does not support the argument that the cause of widespread groundwater contamination by chlorinated solvents in southern California was an inability to anticipate or detect the problem. The propensity of industrial wastes, including chlorinated solvents, to contaminate groundwater was understood by the 1940s in southern California. This understanding was not limited to a small group of specialists, but extended to regulators, industry, and the interested public. Industrial waste disposal was deregulated in 1949 as a result of lobbying by industry, despite a warning from the director of the State Health Department that such action would create "a backlog of water pollution over the State that will constitute a plague comparable to the air pollution in Los Angeles". Regulators warned specifically about the danger that groundwater pollution in the San Fernando and San Gabriel valleys would result from improper disposals of industrial chemicals, and solvents were identified as major contaminants in the scientific literature. Analytical methods to detect chlorinated solvents in groundwater at the concentrations found near the DNAPL (dense non-aqueous phase liquids) source zones have been well known since at least 1950, and a method with a detection limit of 10 w g/L was published as early as 1953.  相似文献   

20.
薄膜干燥法再生聚苯乙烯树脂的研究   总被引:2,自引:0,他引:2  
利用溶剂溶解回收的聚苯乙烯塑料,将其涂布于不锈钢传送带上,以水蒸气为加热介质,经薄膜干燥法获得再生聚苯乙烯树脂.再生的聚苯乙烯树脂性能优异,溶剂回收率达97%以上.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号