首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
利用水生生态系统治理水体污染是污水处理领域的研究热点之一.综述了水生生态系统在处理污水中的应用现状,分析了影响处理效果的主要因素,并探讨了水生生态系统处理废水的运行机理,展望了水生生态系统的发展前景.  相似文献   

2.
水生生态系统在污水处理中的应用   总被引:2,自引:0,他引:2  
利用水生生态系统治理水体污染是污水处理领域的研究热点之一.综述了水生生态系统在处理污水中的应用现状,分析了影响处理效果的主要因素,并探讨了水生生态系统处理废水的运行机理,展望了水生生态系统的发展前景.  相似文献   

3.
Climate change is likely to act as a multiple stressor, leading to cumulative and/or synergistic impacts on aquatic systems. Projected increases in temperature and corresponding alterations in precipitation regimes will enhance contaminant influxes to aquatic systems, and independently increase the susceptibility of aquatic organisms to contaminant exposure and effects. The consequences for the biota will in most cases be additive (cumulative) and multiplicative (synergistic). The overall result will be higher contaminant loads and biomagnification in aquatic ecosystems. Changes in stratospheric ozone and corresponding ultraviolet radiation regimes are also expected to produce cumulative and/or synergistic effects on aquatic ecosystem structure and function. Reduced ice cover is likely to have a much greater effect on underwater UV radiation exposure than the projected levels of stratospheric ozone depletion. A major increase in UV radiation levels will cause enhanced damage to organisms (biomolecular, cellular, and physiological damage, and alterations in species composition). Allocations of energy and resources by aquatic biota to UV radiation protection will increase, probably decreasing trophic-level productivity. Elemental fluxes will increase via photochemical pathways.  相似文献   

4.
Polychlorinated bornanes, the main components of Toxaphene, are bioconcentrated in aquatic organisms to a high extent. However, up to this time no bioconcentration tests with individual chlorinated bornanes in aquatic organisms have been performed. Therefore, the bioconcentration factors (BCFs) of seven selected persistent chlorinated bornane congeners which are regularly found in aquatic organisms, were predicted from their n-octanol/water partition coefficients (log Kow). Furthermore, these BCF values were compared with the measured bioaccumulation factors (BAFs) in zooplankton and different fish species from the aquatic environment.  相似文献   

5.
Bioassays with unicellular algae are frequently used as ecotoxicological test systems to evaluate the toxicity of contaminated environmental samples or chemicals. In contrast, aquatic macrophyte test systems are still rarely used as they are laborious to handle because species exhibit distinct ecological requirements. The aim of this study was to establish a fast and reproducible measuring system for aquatic macrophyte species to overcome those limitations for use. Thus, a newly developed pulse-amplitude modulated chlorophyll fluorometer (Imaging-PAM) was applied as an effect detection in short-term bioassays with aquatic macrophyte species. This multiwell-plate-based measuring device enables the incubation and measurement of up to 24 samples in parallel. The Imaging-PAM was used (i) to establish and validate the sensitivity of the test systems to three Photosystem II (PSII) inhibitors (atrazine, prometryn, isoproturon), (ii) to compare the test systems with established biotests for macrophytes and (iii) to define necessary time scales in aquatic macrophyte testing. The results showed that fluorescence-based measurements with the Imaging-PAM allow rapid and parallel analysis of large amounts of aquatic macrophyte samples and of toxicants effects of the PSII inhibitors tested on aquatic macrophytes. Measurements revealed a good correlation between obtained median effective concentrations (EC50s) for the new and the established biotest systems. Hence, the Imaging-PAM measuring device is a promising tool to allow fast chemical effect screening for high amounts of samples with little time and material and thus offers scope for high-throughput biotesting using aquatic macrophyte species.  相似文献   

6.
E.V. Kalmaz  G.D. Kalmaz 《Chemosphere》1981,10(10):1163-1175
During the past several years, chlorine residuals and chlorinated organic compounds in drinking waters and aquatic environments have become a significant topic of study for scientists concerned about the quality of life in aquatic ecosystems as well as general public health. The effects of direct toxicity and/or carcinogenicity to human and aquatic life are the focal points for this concern.The effects of chloramines and chlorinated organic compounds present in the water distribution system after chlorination treatments are reviewed. Also discussed are the effects of chlorinated discharges from municipal secondary treatment plants and power plants on human health and aquatic life. The toxic significance of environmental chemicals are described.  相似文献   

7.
Climate change is projected to cause significant alterations to aquatic biogeochemical processes, (including carbon dynamics), aquatic food web structure, dynamics and biodiversity, primary and secondary production; and, affect the range, distribution and habitat quality/quantity of aquatic mammals and waterfowl. Projected enhanced permafrost thawing is very likely to increase nutrient, sediment, and carbon loadings to aquatic systems, resulting in both positive and negative effects on freshwater chemistry. Nutrient and carbon enrichment will enhance nutrient cycling and productivity, and alter the generation and consumption of carbon-based trace gases. Consequently, the status of aquatic ecosystems as carbon sinks or sources is very likely to change. Climate change will also very likely affect the biodiversity of freshwater ecosystems across most of the Arctic. The magnitude, extent, and duration of the impacts and responses will be system- and location-dependent. Projected effects on aquatic mammals and waterfowl include altered migration routes and timing; a possible increase in the incidence of mortality and decreased growth and productivity from disease and/or parasites; and, probable changes in habitat suitability and timing of availability.  相似文献   

8.
Sources of mercury contamination in aquatic systems were studied in a comprehensive literature review. The results show that the most important anthropogenic sources of mercury pollution in aquatic systems are: (1) atmospheric deposition, (2) erosion, (3) urban discharges, (4) agricultural materials, (5) mining, and (6) combustion and industrial discharges. Capping and dredging are two possible remedial approaches to mercury contamination in aquatic systems, and natural attenuation is a passive decontamination alternative. Capping seems to be an economical and effective remedial approach to mercury-contaminated aquatic systems. Dredging is an expensive remedial approach. However, for heavily polluted systems, dredging may be more effective. Natural attenuation, involving little or no cost, is a possible and very economical choice for less contaminated sites. Proper risk assessment is necessary to evaluate the effectiveness of remedial and passive decontamination methods as well as their potential adverse environmental effects. Modeling tools have a bright future in the remediation and passive decontamination of mercury contamination in aquatic systems. Existing mercury transport and transformation models were reviewed and compared.  相似文献   

9.
While factors influencing perceptions of drinking water have been well studied, those of aquatic ecosystems have been to lesser extent. We conducted a review to improve awareness of these factors. Environmental factors found to influence public perceptions of aquatic ecosystems were presence/absence of water plants and algae, presence/absence of floating debris, the odor, movement (for flowing waters) and clarity/turbidity of the water, and the type, condition, setting, naturalness, and overall aesthetic appeal of the ecosystem. Sociocultural factors found to influence public perceptions of aquatic ecosystems included age, education, gender, and place-based knowledge. We provide perspectives of how managers can better meet the diverse social demands placed on aquatic ecosystems. The importance and benefits of considering these perspectives may be especially beneficial where significant multi-generational and culturally relevant place-based knowledge exist.  相似文献   

10.
纳米材料的水生态毒理学研究进展   总被引:2,自引:0,他引:2  
纳米材料特殊的理化特性,使它们被广泛地应用到各个生活领域中,但纳米材料给人们生活带来巨大改变的同时,其对水环境引起的负面效应也引起了人们广泛的关注.纳米材料可通过多种途径进入水体,对水生生物产生毒理效应,其生态学影响不可忽视.目前,还很缺乏对纳米材料的水生态毒理学研究,众多不确定的生态安全性问题还有待更深入的研究.总结了国内外现有的相关研究,简要综述了纳米材料的水环境行为、水生态毒理学研究现状,分析了该研究领域的未来需要.  相似文献   

11.

Introduction and background

Primary producers play critical structural and functional roles in aquatic ecosystems; therefore, it is imperative that the potential risks of toxicants to aquatic plants are adequately assessed in the risk assessment of chemicals. The standard required macrophyte test species is the floating (non-sediment-rooted) duckweed Lemna spp. This macrophyte species might not be representative of all floating, rooted, emergent, and submerged macrophyte species because of differences in the duration and mode of exposure; sensitivity to the specific toxic mode of action of the chemical; and species-specific traits (e.g., duckweed's very short generation time).

Discussion and perspectives

These topics were addressed during the workshop entitled “Aquatic Macrophyte Risk Assessment for Pesticides” (AMRAP) where a risk assessment scheme for aquatic macrophytes was proposed. Four working groups evolved from this workshop and were charged with the task of developing Tier 1 and higher-tier aquatic macrophyte risk assessment procedures. Subsequently, a SETAC Advisory Group, the Macrophyte Ecotoxicology Group (AMEG) was formed as an umbrella organization for various macrophyte working groups. The purpose of AMEG is to provide scientifically based guidance in all aspects of aquatic macrophyte testing in the laboratory and field, including prospective as well as retrospective risk assessments for chemicals. As AMEG expands, it will begin to address new topics including bioremediation and sustainable management of aquatic macrophytes in the context of ecosystem services.  相似文献   

12.
Sood A  Uniyal PL  Prasanna R  Ahluwalia AS 《Ambio》2012,41(2):122-137
Aquatic macrophytes play an important role in the structural and functional aspects of aquatic ecosystems by altering water movement regimes, providing shelter to fish and aquatic invertebrates, serving as a food source, and altering water quality by regulating oxygen balance, nutrient cycles, and accumulating heavy metals. The ability to hyperaccumulate heavy metals makes them interesting research candidates, especially for the treatment of industrial effluents and sewage waste water. The use of aquatic macrophytes, such as Azolla with hyper accumulating ability is known to be an environmentally friendly option to restore polluted aquatic resources. The present review highlights the phytoaccumulation potential of macrophytes with emphasis on utilization of Azolla as a promising candidate for phytoremediation. The impact of uptake of heavy metals on morphology and metabolic processes of Azolla has also been discussed for a better understanding and utilization of this symbiotic association in the field of phytoremediation.  相似文献   

13.
The fate of hydrophobic organic pollutants in the aquatic environment is controlled by a variety of physical, chemical and biological processes. Some of the most important are physical transport, chemical and biological transformations, and distribution of these compounds between the various environmental compartments (atmosphere, water, sediments and biota). The major biogeochemical processes that control the fate of hydrophobic organic compounds in the aquatic environment are reviewed. These processes include evaporation, solubilization, interaction with dissolved organic matter, sediment-water partitioning, bioaccumulation and degradation. Physico-chemical parameters used to predict the aquatic fate of such compounds are also discussed.  相似文献   

14.
Sorption of imidazolium-based ionic liquids to aquatic sediments   总被引:1,自引:0,他引:1  
Beaulieu JJ  Tank JL  Kopacz M 《Chemosphere》2008,70(7):1320-1328
Ionic liquids (ILs) have received much attention as "green" alternatives to traditional solvents because they do not evaporate, eliminating concerns over fugitive emissions. However, if ionic liquids are used in industrial applications, they may enter aquatic systems via effluent, and their fate and transport may be influenced by sorption to sediments. In this study, we conducted batch mixing experiments with four alkylmethylimidizolium-based ILs and four types of aquatic sediments to asses the capacity for natural aquatic sediments to remove these chemicals from the water column. The concentration isotherms were non linear with point estimates of the distribution coefficient (K(d)) decreasing with increasing concentration. Apparent distribution coefficients ranged from 7.9 to 95.7l kg(-1) at an initial concentration of 0.5mM and were positively related to sediment organic matter (SOM) content. These K(d) values indicate that the ILs did not sorb strongly to the tested sediments. Increased alkyl chain length did not lead to increased sorption suggesting that hydrophobic interactions were not the most important sorption mechanism. We conclude that aquatic sediments have a limited capacity to sorb alkylmethylimidazolium ILs and that the transport of these contaminants in aquatic systems will not be strongly attenuated by sediments.  相似文献   

15.
In the aquatic environment, polycyclic aromatic hydrocarbon (PAH) contamination can result from several anthropogenic sources such as petroleum runoff, industrial processes, and petroleum spills. When ultraviolet light (UV) is present at sufficient intensity, the acute toxicity of some PAHs to aquatic biota is greatly enhanced. This photo-induced toxicity of PAHs is directly influenced by the amount of PAH and by the level of UV intensity present in the aquatic environment. Thus, behavioral responses and habits that affect an aquatic organism's exposure to UV as well as exposure to PAHs can influence the extent to which damage due to photo-induced toxicity occurs. Experiments demonstrated the effects of photo-induced toxicity of anthracene and fluoranthene on the survival of two benthic macroinvertebrates, the midge Chironomus tentans and the freshwater amphipod Hyalella azteca. This study further investigated the survival and behavior of the test organisms in different substrates (no substrate, a sand monolayer, leaf discs, and sediment) with and without UV. The free-swimming, epibenthic H. azteca avoided the effects of photo-induced toxicity of PAHs to some extent by hiding in leaves when this substrate was available. Results emphasize the importance of organisms' behavior in affecting the photo-induced toxicity of PAHs in the aquatic environment.  相似文献   

16.
Environmental Science and Pollution Research - Microplastics (MPs) and chemical pollutants usually coexist in aquatic environments. The bioaccumulation and metabolism of pollutants in aquatic...  相似文献   

17.
Biodegradable polymers are designed to resist a number of environmental factors during use, but to be biodegradable under disposal conditions. The biodegradation of polylactide (PLLA) was studied at different elevated temperatures in both aerobic and anaerobic, aquatic and solid state conditions. In the aerobic aquatic headspace test the mineralisation of PLLA was very slow at room temperature, but faster under thermophilic conditions. The clear effect of temperature on the biodegradability of PLLA in the aquatic tests indicates that its polymer structure has to be hydrolysed before microorganisms can utilise it as a nutrient source. At similar elevated temperatures, the biodegradation of PLLA was much faster in anaerobic solid state conditions than in aerobic aquatic conditions. The behaviour of PLLA in the natural composting process was similar to that in the aquatic biodegradation tests, biodegradation starting only after the beginning of the thermophilic phase. These results indicate that PLLA can be considered as a compostable material, being stable during use at mesophilic temperatures, but degrading rapidly during waste disposal in compost or anaerobic treatment facilities.  相似文献   

18.
Environmental Science and Pollution Research - The stability of nanoparticles (NPs) in aquatic environments is important to evaluate their adverse effects on aquatic ecosystems and human health....  相似文献   

19.
Brausch JM  Rand GM 《Chemosphere》2011,82(11):1518-1532
Considerable research has been conducted examining occurrence and effects of human use pharmaceuticals in the aquatic environment; however, relatively little research has been conducted examining personal care products although they are found more often and in higher concentrations than pharmaceuticals. Personal care products are continually released into the aquatic environment and are biologically active and persistent. This article examines the acute and chronic toxicity data available for personal care products and highlights areas of concern. Toxicity and environmental data were synergized to develop a preliminary hazard assessment in which only triclosan and triclocarban presented any hazard. However, numerous PCPs including triclosan, paraben preservatives, and UV filters have evidence suggesting endocrine effects in aquatic organisms and thus need to be investigated and incorporated in definitive risk assessments. Additional data pertaining to environmental concentrations of UV filters and parabens, in vivo toxicity data for parabens, and potential for bioaccumulation of PCPs needs to obtained to develop definitive aquatic risk assessments.  相似文献   

20.
Stable nitrogen isotopic composition (δ15N) of aquatic biota increases with anthropogenic N inputs such as sewage and livestock waste downstream. Increase in δ15N of riparian spiders downstream may reflect the anthropogenic pollution exposure through predation on aquatic insects. A two-source mixing model based on stable carbon isotopic composition showed the greatest dependence on aquatic insects (84%) by horizontal web-building spiders, followed by intermediate (48%) and low (31%) dependence by cursorial and vertical web-building spiders, respectively. The spider body size was negatively correlated with the dietary proportion of aquatic insects and spider δ15N. The aquatic subsidies transported anthropogenic N to smaller riparian spiders downstream. This transport of anthropogenic N was regulated by spider’s guild designation and body size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号