首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Will species that are sensitive/tolerant to Zn pollution still have the same sensitivity/tolerance in a future climate? To answer this question we analysed the response of constructed grassland communities to five levels of zinc (Zn) supply, ranging from 0 to 354 mg Zn kg−1 dry soil, under a current climate and a future climate (elevated CO2 and warming). Zn concentrations increased in roots and shoots with Zn addition but this increase did not differ between climates. Light-saturated net CO2 assimilation rate (Asat) of the species, on the other hand, responded differently to Zn addition depending on climate. Still, current and future climate communities have comparable biomass responses to Zn, i.e., no change in root biomass and a 13% decrease of above-ground biomass. Provided that the different response of Asat in a future climate will not compromise productivity and survival on the long term, sensitivity is not altered by climate change.  相似文献   

2.
Concentration of heavy metals and natural gross radioactivity were measured in the surface water and sediment of Hazar Lake (Elazi?, Turkey). Eight sampling sites were pre-defined in different locations of the lake. A preliminary study on heavy metals (Zn, Fe, Mn, Ni, Cu, Cr, Co and Pb), major elements (Na, K, Ca, Mg) concentrations and natural radioactivity related to 226Ra, gross-alpha and gross-beta radiations in the surface water and deep sediments were determined. The obtained results showed that, in general, the heavy metals (Zn, Fe, Mn, Ni, Cu and Pb) and major elements (Na, K, Ca, Mg) concentrations in water did not exceed WHO (World Health Organization, 1999), EC (Europe Community, 1998), EPA (Environment Protection Agency, 2002) and TSE-266 (Turkish Standard, 1997) guidelines. Generally, heavy metals and major elements concentration of the sediments were found decrease in sequence of Fe>Mg>Ca>Mn>Zn>Ni>Cr>Cu>Co>Pb. The results of this study indicated that a general absence of serious pollution in the Hazar Lake. The results obtained from the radioactivity determination indicate that the surface water radioactivity concentration of 226Ra, gross-alpha and gross-beta were ranging from 0.52+/-0.02 to 2.02+/-0.06 Bq/l and from 0.65+/-0.03 to 2.52+/-0.07 Bq/l and from 0.01+/-0.01 to 0.14+/-0.01 Bq/l, respectively. Deep sediment radioactivity concentrations of 226Ra is ranging from 0.07+/-0.03 to 0.32+/-0.07 Bq/g.  相似文献   

3.
Environmental Science and Pollution Research - Long-term exposure to environmental neurotoxic metals is implicated in the induction of dementia and cognitive decline. The present study aims to...  相似文献   

4.
In this paper the time evolution of heavy metal concentration of Pb, Zn, Cd and Hg, in the sediments of the Bay of Cádiz (southwest of Spain) is studied during the past century, as a result of the industrial influence in the zone. The study has been performed using sedimentary profiles that have been extracted from the seabed. The measurement of 210Pb and 137Cs radionuclides has provided the dating of the sediment layers, up to a depth corresponding to the age of 115 years. The relative sedimentation rates obtained are around 0.2 cm/year. The 137Cs activity profile reflects the concentration of this radionuclide in the atmosphere and into aquatic systems during the second half of the twentieth century. This profile has been used to ratify the results provided by the 210Pb dating method.  相似文献   

5.
6.
To elucidate the role of phenotype in stress-tolerant bloom-forming cyanobacterium Microcystis, two phenotypes of M. aeruginosa - unicellular and colonial strains were selected to investigate how they responded to copper stress. Flow cytometry (FCM) examination indicated that the percents of viable cells in unicellular and colonial Microcystis were 1.92-2.83% and 72.3-97.51%, respectively, under 0.25 mgl(-1) copper sulfate treatment for 24h. Upon exposure to 0.25 mgl(-1) copper sulfate, the activities of antioxidative enzyme, such as superoxide dismutase (SOD) and catalase (CAT), were significantly increased in colonial Microcystis compared to unicellular Microcystis. Meanwhile, the values of the photosynthetic parameters (F(v)/F(m), ETR(max), and oxygen evolution rate) decreased more rapidly in unicellular Microcystis than in colonial Microcystis. The results indicate that colonial Microcystis has a higher endurance to copper than unicellular Microcystis. This suggests that the efficient treatment concentration of copper sulfate as algaecides will be dependent on the phenotypes of Microcystis.  相似文献   

7.
The impact of heavy metal levels (Cd, Cu, and Zn) on the reproductive parameters in natural populations of the Mediterranean killifish Aphanius fasciatus was monitored in four sites of the Tunisian coast. Our study covered a period of the reproductive cycle, from April to November 2009. The significantly higher levels of Cd, Cu, and Zn in the liver and gonads for both sexes (p?<?0.05) were observed in the most polluted site (Sfax coast). During the reproductive cycle of A. fasciatus, an unbalanced sex ratio in favor to females was observed for all the studied populations. The progression of the hepato- (HSI), gonadosomatic (GSI), and K-factor revealed a spatio-temporal variation between populations during the sampling period. Estradiol-17β amounts in the gonad tissues of females captured from the studied sites showed a significant difference, and the highest concentrations were noticed in the control site (Luza). Taking together, our data provide the first evidence of a physiologically stress and a disturbance of the reproductive status in natural populations of A. fasciatus.  相似文献   

8.
9.
Environmental Science and Pollution Research - As an energy-intensive industry in China, it is critical to promote energy conservation and carbon emission reduction in the nonferrous metal industry...  相似文献   

10.
Stream sediments from the mining and smelting district of Príbram, Czech Republic, were studied to determine the degree, sources and dispersal of metal contamination using a combination of bulk metal and mineralogical determinations, sequential extractions and Pb isotopic analyses. The highest metal concentrations were found 3-4 km downstream from the main polymetallic mining site (9800 mg Pb kg(-1), 26 039 mg Zn kg(-1), 316.4 mg Cd kg(-1), 256.9 mg Cu kg(-1)). The calculated enrichment factors (EFs) confirmed the extreme degree of contamination by Pb, Zn and Cd (EF>40). Lead, Zn and Cd are bound mainly to Fe oxides and hydroxides. In the most contaminated samples Pb is also present as Pb carbonates and litharge (PbO). Lead isotopic analysis indicates that the predominant source of stream sediment contamination is historic Pb-Ag mining and primary Pb smelting (206Pb/207Pb=1.16), while the role of secondary smelting (car battery processing) is negligible.  相似文献   

11.
Environmental Science and Pollution Research - Coliform mastitis is a worldwide serious disease of the mammary gland. Curcumin is a pleiotropic polyphenol obtained from turmeric, but it is...  相似文献   

12.
Do earthworms impact metal mobility and availability in soil? - A review   总被引:3,自引:0,他引:3  
The importance of earthworms to ecosystem functioning has led to many studies on the impacts of metals on earthworms. Far less attention has been paid to the impact that earthworms have on soil metals both in terms of metal mobility and availability. In this review we consider which earthworms have been used in such studies, which soil components have been investigated, which types of soil have been used and what measures of mobility and availability applied. We proceed to review proposed reasons for effects: changes in microbial populations, pH, dissolved organic carbon and metal speciation. The balance of evidence suggests that earthworms increase metal mobility and availability but more studies are required to determine the precise mechanism for this.  相似文献   

13.
Altindağ A  Yiğit S 《Chemosphere》2005,60(4):552-556
The accumulation of heavy metals (Cd, Pb, Hg and Cr) was measured by atomic absorption spectrophotometry in water, sediment, plankton and fish samples collected from Lake Bey?ehir, which is important bird nesting and visiting areas, and irrigation and drinking water sources. In Lake Bey?ehir, the accumulation orders of heavy metals were Cd>Pb>Cr>Hg in water, Pb>Cd>Cr>Hg in sediment, Pb>Cd>Cr>Hg in plankton, and Cd>Pb>Cr>Hg in the muscles and gills of chub, carp, tench, except for the muscle of pikeperch, in which it was Pb>Cd>Cr>Hg (P<0.05). In addition to this, accumulation orders of heavy metals in the food web was also found to be water>plankton>sediment>fish tissues, except for Cr. According to international criterias and Turkish regulations, heavy metal concentrations especially Cd and Pb in Lake Bey?ehir were markedly above the permissible levels for drinking water.  相似文献   

14.
Environmental Science and Pollution Research - Metal–organic frameworks (MOFs) are a polymer hybrid family of compounds comprising metal ions that have been deliberately incorporated in...  相似文献   

15.
Abstract

The binding site interactions of IHSS humic substances, Suwannee River Humic Acid, Suwannee River Fulvic Acid, Nordic Fulvic Acid, and Aldrich Humic Acid with various metals ions and a herbicide, methyl viologen were investigated using fluorescence emission and synchronous‐scan spectroscopy. The metal ions used were, Fe(III), Cr(III), Cr(VI), Pb(II), Cu(II) and Ni(II). Stern‐Volmer constants, KSV for these quenchers were determined at pH 4 and 8 using an ionic strength of 0.1M. For all four humic substances, and at both pH studied, Fe(III) was found to be the most efficient quencher. Quenching efficiency was found to be 3–10 times higher at pH 8. The bimolecular quenching rate constants were found to exceed the maximum considered for diffusion controlled interactions, and indicate that the fluorophore and quencher are in close physical association. Synchronous‐scan spectra were found to change with pH and provided useful information on binding site interactions between humic substances and these quenchers.  相似文献   

16.
Oxygen is the most essential molecule for life; since it is a strong oxidizing agent, it can aggravate the damage within the cell by a series of oxidative events including the generation of free radicals. Antioxidative agents are the only defense mechanism to neutralize these free radicals. Free radicals are not only generated internally in our body system but also trough external sources like environmental pollution, toxic metals, cigarette smoke, pesticides, etc., which add damage to our body system. Inhaling these toxic chemicals in the environment has become unavoidable in modern civilization. Antioxidants of plant origin with free radical scavenging properties could have great importance as therapeutic agents in several diseases caused by environmental pollution. This review summarizes the generation of reactive oxygen species and damage to cells by exposure to external factors, unhealthy lifestyle, and role of herbal plants in scavenging these reactive oxygen species.  相似文献   

17.

This study was carried out to evaluate the effects of dietary supplementation of aqueous extract of Withania somnifera (W. somnifera) against cadmium chloride–induced toxicity in the Nile tilapia, Oreochromis niloticus. Five experimental groups were designed: group (I) was free from cadmium chloride and W. somnifera and served as a control, group (II) was exposed to 1.775 mg L?1 of cadmium chloride only (which is equivalent to 1/4 96-h LC50), while groups (III), (IV), and (V) were exposed to 1.775 mg cadmium chloride L?1 with co-supplementation of dietary W. somnifera in doses of 1.0, 2.0, and 3.0 mL kg?1 body weight (bwt), respectively. The experiment lasted for 4 weeks. In the second and fourth weeks of the experiment, the following indicators were evaluated: hematological (hemogram and blood protein profile), biochemical (activities of serum liver enzymes, namely alanine transaminase (ALT) and aspartate transaminase (AST)), immunological (immunoglobulin M (IgM), serum lysozyme), and tissue antioxidant changes (malondialdehyde (MDA) levels and activities of catalase (CAT) and superoxide dismutase (SOD)). Additionally, gene expressions of glutathione-S-transferase (GST) in the liver were assessed. At the end of the experiment, all fish in all groups were experimentally challenged with Aeromonas hydrophila and the relative protection survival (RPS) was demonstrated. The results revealed that groups exposed to cadmium chloride toxicity and co-supplemented with dietary aqueous extract of W. somnifera at high doses showed significant ameliorative effects in hemogram parameters, total protein, globulin, IgM, and lysozyme against cadmium chloride–induced toxicity compared to the control group and the group exposed to a sublethal dose of cadmium chloride without co-suplemntation of W. somnifera. The results showed also that groups supplemented orally with W. somnifera at high doses have higher antioxidant activities of CAT and SOD and reduction of MDA formation. Levels of gene expressions of GST in the liver were higher in W. somnifera extract-supplemented groups more than those in the group exposed to cadmium chloride–induced toxicity without W. somnifera supplementation. In addition, the results revealed improved RPS with the dietary supply of W. somnifera extract in high doses. In conclusion, this study showed that the dietary supplementation of W. somnifera extract to diets of O. niloticus could be suggested as an effective way to overcome cadmium chloride–induced toxicity because it improves blood parameters and antioxidants, and it can be used as an immunostimulant against the invading bacterial pathogens.

  相似文献   

18.
We report the evaluation of changes in water quality, increasing pollution level, of a section of Suquía River basin (Córdoba, Argentina) by using Myriophyllum quitense as bioindicator in addition to the measurement of chemical parameters, combined with chemometrics (ANOVA, Cluster and Discriminant Analysis). Myriophyllum quitense was collected upstream from Córdoba city at an unpolluted site of Suquía River basin. After collection plants were transplanted to different sites with different pollution levels. Subsequent to transplantation plants were weekly collected from the original site as well as from transplantation stations. Water quality was evaluated throughout the transplantation experiment, while the use of this macrophyte as bioindicator was verified through the activation of its antioxidant defenses and biotransformation system. Myriophyllum quitense reacts to the pollution stress increasing the activity of glutathione-S-transferases (CDNB and Fluorodifen), glutathione reductase (GR) and peroxidase (POD). Elevated enzyme activities agreed to different pollution levels, especially inorganic nitrogen loads combined with elevated lead and aluminum concentrations, all of them originated by anthropogenic activities, thus presenting Myriophyllum quitense as a good biomonitor for assessment of water quality in this polluted aquatic ecosystem.  相似文献   

19.
Background, aim, and scope  Dye pollutants are a major class of environmental contaminants. Over 100,000 dyes have been synthesized worldwide and more than 700,000 tons are produced annually and over 5% are discharged into aquatic environments. The adsorption or sorption is one of the most efficient methods to remove dye and heavy metal pollutants from wastewater. However, most of the present sorbents often bear some disadvantages, e.g. low sorption capacity, difficult separation of spoil, complex reproduction, or secondary pollution. Development of novel sorbents that can overcome these limitations is desirable. Materials and methods  On the basis of the chemical coprecipitation of calcium oxalate (CaC2O4), bromopyrogallol red (BPR) was embedded during the growing of CaC2O4 particles. The ternary C2O4 2––BPR–Ca2+ sorbent was yielded by the centrifugation. Its composition was determined by spectrophotometry and AAS, and its structure and morphology were characterized by powder X-ray diffraction (XRD), laser particle-size analysis, and scanning electron microscopy (SEM). The adsorption of ethyl violet (EV) and heavy metals, e.g. Cu(II), Cd(II), Ni(II), Zn(II), and Pb(II) were carried out and their removal rate determined by spectrophotometry and ICP-OES. The adsorption performance of the sorbent was compared with powder activated carbon. The Langmuir isothermal model was applied to fit the embedment of BPR and adsorption of EV. Results  The saturation number of BPR binding to CaC2O4 reached 0.0105 mol/mol and the adsorption constant of the complex was 4.70 × 105 M–1. Over 80% of the sorbent particles are between 0.7 and 1.02 μm, formed by the aggregation of the global CaC2O4/BPR inclusion grains of 30–50 nm size. Such a material was found to adsorb cationic dyes selectively and sensitively. Ethyl violet (EV) was used to investigate the adsorption mechanism of the material. One BPR molecule may just bind with one EV molecule. The CaC2O4/BPR inclusion material adsorbed EV over two times more efficiently than the activated carbon. The adsorption of EV on the CaC2O4/BPR inclusion sorbent was complete in only 5 min and the sedimentation complete in 1 h. However, those of EV onto activated carbon took more than 1.5 and 5 h, respectively. The treatment of methylene blue and malachite green dye wastewaters indicated that only 0.4% of the sorbent adsorbed over 80% of color substances. Besides, the material can also adsorb heavy metals by complexation with BPR. Over 90% of Pb2+, and approximately 50% of Cd2+ and Cu2+, were removed in a high Zn2+-electroplating wastewater when 3% of the material was added. Eighty-six percent of Cu2+, and 60% of Ni2+ and Cd2+, were removed in a high Cd2+-electroplating wastewater. Discussion  The embedment of BPR into CaC2O4 particles responded to the Langmuir isothermal adsorption. As the affinity ligand of Ca2+, BPR with sulfonic groups may be adsorbed into the temporary electric double layer during the growing of CaC2O4 particles. Immediately, C2O4 2– captured the Ca2+ to form the CaC2O4 outer enclosed sphere. Thus, BPR may be released and embedded as a sandwich between CaC2O4 layers. The adsorption of EV on the sorbent obeyed the Langmuir isothermal equation and adsorption is mainly due to the ion-pair attraction between EV and BPR. Different from the inclusion sorbent, the activated carbon depended on the specific surface area to adsorb organic substances. Therefore, the adsorption capacity, equilibrium, and sedimentation time of the sorbent are much better than activated carbon. The interaction of heavy metals with the inclusion sorbent responded to their coordination. Conclusions  By characterizing the C2O4 2––BPR–Ca2+ inclusion material using various modern instruments, the ternary in situ embedment particle, [(CaC2O4)95(BPR)] n 2n, an electronegative, micron-sized adsorbent was synthesized. It is selective, rapid, and highly effective for adsorbing cationic dyes and heavy metals. Moreover, the adsorption is hardly subject to the impact of electrolytes. Recommendations and perspectives  The present work provides a simple and valuable method for preparing the highly effective adsorbent. If a concentrated BPR wastewater was reused as the inclusion reactant, the sorbent will be low cost. By selecting the inclusion ligand with a special structure, we may prepare some particular functional materials to recover the valuable substances from seriously polluted wastewaters. The recommended method will play a significant role in development of advanced adsorption materials. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
The study aimed to assess morphological, structural and compositional alterations in Scrobicularia plana nacre environmentally exposed to mercury in order to seek out the possibility of the assessed alterations as a monitoring tool to handle complexity and interactions of metals in the environment involving a non-invasive methodology. Bivalves were collected from a mercury contaminated site (Laranjo basin – Ria de Aveiro, Portugal) and a reference site in the same aquatic system. The combination of scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS) technique depicted a sheet like morphology of bivalve nacre collected from the reference site. Moreover, EDS plot exhibited the presence of potassium, oxygen, calcium, and carbon elements. Shells collected from the contaminated area depicted lamellar patches like structures with particle like morphology composition. SEM images corresponding to the elemental analysis by EDS plot clearly denoted the presence of mercury. SEM images from the other locations of the contaminated shells depicted large surface area, a broken or ruptured symmetry of organic matrix as well as crack-like gaps. The influence of environmental mercury affecting the surface morphology of S. plana nacre showed dimple like morphology (as proved by transmission electron microscopy, TEM). The possible explanation may be the replacement of calcium elements with other elements or alloys from the nacre composite collected from contaminated region. Therefore, the nacre fingerprint may be useful as innovative knowledge and applicable tool aiming at risk reduction from noxious mercury present in the environment. Overall results suggested the use of shell as an indelible fingerprint of metal exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号