首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Davies TD 《Chemosphere》2007,66(3):444-451
The aquatic moss, Fontinalis antipyretica was exposed to elevated sulphate concentrations for 21-days. Gametophores were sectioned to 2 cm lengths and exposed to sulphate concentrations up to 1500 mg/l, in waters of different water hardness. Significant reductions in shoot length, dry weight, and chlorophyll a and b concentrations (per gram dry weight) were observed in soft water (19 mg/l as CaCO3); however, effects were significantly reduced in waters of increasing hardness (up to 105 mg/l as CaCO3). The substantial reduction of sulphate toxicity in waters of increasing hardness suggests water chemistry plays a significant role in affecting sulphate toxicity and should be considered when setting sulphate discharge limits.  相似文献   

2.
3.
To determine the extent of metal accumulation in some aquatic macrophytes from contaminated urban streams in southeast Queensland, plants were sampled from six sites, along with contiguous sediments. In all, 15 different species were collected, the most common genera being Typha (Cattails or Bulrushes) and Persicaria (Knotweeds). Before heavy metal analysis, plants were further separated into various morphological tissues, and five selected samples were separated into various physiological tissues. The cadmium, copper, lead and zinc content of the plants were analysed using flames AAS. In general, plant roots exhibited higher metal concentrations than the contiguous sediments. Of the metals of interest, only for zinc was there a relatively clear pattern of increasing accumulation in aquatic macrophytes with increasing sediment metal concentrations. Comparison between morphological tissues of the sampled plants found that roots consistently presented higher metal concentrations than either the stems or leaves, however unlike previous studies, this investigation revealed no consistent trend of stems accumulating more metals than the leaves. For Typha spp., metal concentrations followed the order of roots > rhizomes > leaves, while for Persicaria spp. the order was roots > leaves > stems. The submerged species Myriophyllum aquaticum accumulated the highest levels of metals overall (e.g. Zn 4300 micrograms g-1 dry weight and Cd 6.5 micrograms g-1), and the emergent macrophytes also exhibited relatively high metal contents in their roots. The leaves of the submerged and floating-leafed species collected contained relatively high quantities of the four metals of interest, compared with the leaves of emergent aquatic macrophytes. In the Typha rhizome and Persicaria stem samples analysed for internal variation in metal content, there was a pattern of increasing metal concentrations towards the external sections of the stem, both for subterranean stems (rhizomes) and above-substrate stems. For Persicaria stems, no clear pattern was observed for cadmium and lead, the two metals investigated that are not required by plants for survival.  相似文献   

4.
The ability of aquatic macrophytes to accumulate lead was examined in the context of sample site, sample date, depth, organ and species. Considerable variations in lead concentrations were found between the 11 species of macrophytes studied. The mean lead concentration for all species sampled was 16 microg/g (dry weight) ranging from 0-78 microg/g. Analysis of variance indicated that there were significant differences in the mean lead content of macrophytes collected from different sample sites. Similarly, significantly higher values were observed for plants collected from the upper 2m of water. Seasonal trends in lead accumulation were not observed for Shoal Lake macrophytes.  相似文献   

5.
Nitrogen in aquatic ecosystems   总被引:6,自引:0,他引:6  
Rabalais NN 《Ambio》2002,31(2):102-112
Aquatic ecosystems respond variably to nutrient enrichment and altered nutrient ratios, along a continuum from fresh water through estuarine, coastal, and marine systems. Although phosphorus is considered the limiting nutrient for phytoplankton production in freshwater systems, the effects of atmospheric nitrogen and its contribution to acidification of fresh waters can be detrimental. Within the estuarine to coastal continuum, multiple nutrient limitations occur among nitrogen, phosphorus, and silicon along the salinity gradient and by season, but nitrogen is generally considered the primary limiting nutrient for phytoplankton biomass accumulation. There are well-established, but nonlinear, positive relationships among nitrogen and phosphorus flux, phytoplankton primary production, and fisheries yield. There are thresholds, however, where the load of nutrients to estuarine, coastal and marine systems exceeds the capacity for assimilation of nutrient-enhanced production, and water-quality degradation occurs. Impacts can include noxious and toxic algal blooms, increased turbidity with a subsequent loss of submerged aquatic vegetation, oxygen deficiency, disruption of ecosystem functioning, loss of habitat, loss of biodiversity, shifts in food webs, and loss of harvestable fisheries.  相似文献   

6.
Lafabrie C  Major KM  Major CS  Cebrián J 《Chemosphere》2011,82(10):1393-1400
Arsenic (As) and mercury (Hg) are among the most toxic metals/metalloids. The overall goal of this study was to investigate the bioaccumulation of these trace elements in Vallisneria neotropicalis, a key trophic species in aquatic environments. For this purpose, As and Hg concentrations were determined in sediments and natural populations of V. neotropicalis in sub-estuaries of Mobile Bay (Alabama, USA), differing with respect to past and present anthropogenic impact. Analyses indicate that the Fish River is the most contaminated among the sub-estuaries investigated; levels of As found in Fish River sediments fall within a range that could potentially cause adverse effects in biota. Sediment As concentrations were only moderately correlated with those in V. neotropicalis; no correlation was found between sediment and plant Hg levels. However, several parameters could have masked such potential relationships (e.g., differences in sediment characteristics and “biological dilution” phenomena). Results presented herein highlight the numerous parameters that can influence metal/metalloids accumulation in aquatic plants as well as species-specific responses to trace element contamination. Finally, this study underscores the need for further investigation into contaminant bioaccumulation in ecologically and economically important coastal environments.  相似文献   

7.
Climate change is projected to cause significant alterations to aquatic biogeochemical processes, (including carbon dynamics), aquatic food web structure, dynamics and biodiversity, primary and secondary production; and, affect the range, distribution and habitat quality/quantity of aquatic mammals and waterfowl. Projected enhanced permafrost thawing is very likely to increase nutrient, sediment, and carbon loadings to aquatic systems, resulting in both positive and negative effects on freshwater chemistry. Nutrient and carbon enrichment will enhance nutrient cycling and productivity, and alter the generation and consumption of carbon-based trace gases. Consequently, the status of aquatic ecosystems as carbon sinks or sources is very likely to change. Climate change will also very likely affect the biodiversity of freshwater ecosystems across most of the Arctic. The magnitude, extent, and duration of the impacts and responses will be system- and location-dependent. Projected effects on aquatic mammals and waterfowl include altered migration routes and timing; a possible increase in the incidence of mortality and decreased growth and productivity from disease and/or parasites; and, probable changes in habitat suitability and timing of availability.  相似文献   

8.
Light exposure of aqueous suspensions of prednisolone and dexamethasone causes their partial phototransformation. The photoproducts, isolated by chromatographic techniques, have been identified by spectroscopic means. Prednisolone, dexamethasone and their photoproducts have been tested to evaluate their acute and chronic toxic effects on some freshwater chain organisms. The rotifer Brachionus calyciflorus and the crustaceans Thamnocephalus platyurus and Daphnia magna were chosen to perform acute toxicity tests, while the alga Pseudokircheneriella subcapitata (formerly known as Selenastrum capricornutum) and the crustacean Ceriodaphnia dubia to perform chronic tests. The photochemical derivatives are more toxic than the parent compounds. Generally low acute toxicity was found. Chronic exposure to this class of pharmaceuticals caused inhibition of growth population on the freshwater crustacean C. dubia while the alga P. subcapitata seems to be less affected by the presence of these drugs.  相似文献   

9.
Elodea canadensis has been proposed as a potential biomonitor due to its wide distribution and apparent ability to accumulate pollutants in aquatic ecosystems. We investigated the effects of copper sulfate on growth in E. canadensis to determine its effectiveness as a biomonitor of copper pollution in aquatic systems and whether growth is a suitable index of sub-lethal stress. Copper sulfate significantly slowed or stopped growth at all concentrations (low: 1 ppm, medium: 5 ppm, high: 10 ppm of copper sulfate) used. Final plant drymass was significantly lower in medium and high copper treatments compared with controls. E. canadensis appears to be very sensitive to copper levels, and may be useful as a biomonitor of copper levels in aquatic systems. However, its utility as a bioaccumulator may be limited, because we observed senescence of most leaves in all copper-treated plants following 4 weeks of treatment.  相似文献   

10.
Environmental Science and Pollution Research - Streptomycin used in human and veterinary medicine is released into the environment mainly through excretions. As such, its elimination in water...  相似文献   

11.
Contaminants are ubiquitous in the environment and their impacts are of increasing concern due to human population expansion and the generation of deleterious effects in aquatic species. Oxidative stress can result from the presence of persistent organic pollutants, metals, pesticides, toxins, pharmaceuticals, and nanomaterials, as well as changes in temperature or oxygen in water, the examined species, with differences in age, sex, or reproductive cycle of an individual. The antioxidant role of glutathione (GSH), accompanied by the formation of its disulfide dimer, GSSG, and metabolites in response to chemical stress, are highlighted in this review along with, to some extent, that of glutathione S-transferase (GST). The available literature concerning the use and analysis of these markers will be discussed, focusing on studies of aquatic organisms. The inclusion of GST within the suite of biomarkers used to assess the effects of xenobiotics is recommended to complement that of lipid peroxidation and mixed function oxygenation. Combining the analysis of GSH, GSSG, and conjugates would be beneficial in pinpointing the role of contaminants within the plethora of causes that could lead to the toxic effects of reactive oxygen species.  相似文献   

12.
N-Phenyl-1-naphthylamine (PNA) was degraded and mineralized in nonsterile aquatic and terrestrial samples. Degradation in unsupplemented sewage and lake water was detected in 3 to 6 days with half-lives of 5 and 10 days, respectively. In sewage and lake water supplemented with a readily degradable carbon source, degradation began in 1 and 5 days with half-lives of 2 and 8 days, respectively. Sewage samples converted between 20 and 30% of labeled [14C]-PNA to 14CO2 in 35 days while lake water samples reached 10% conversion to 14CO2 in 12 days. Soil samples and soil suspensions converted from 15 to 35% of [14C]-PnA to 14CO2 in 11 days. PNA was microbiologically converted in lake water to two products that were tentatively identified by gas-liquid chromatography and mass spectroscopy as dihydroxy and N-acetyl derivatives.  相似文献   

13.

Purpose  

This study was designed to assess the fate and the overall potential impacts of the widely prescribed drugs ranitidine and tramadol after their introduction into the aquatic environment.  相似文献   

14.
Fritioff A  Greger M 《Chemosphere》2006,63(2):220-227
A better understanding of metal uptake and translocation by aquatic plants can be used to enhance the performance of constructed wetland systems for stormwater treatment. Specifically, this study examines whether the uptake of Zn, Cu, Cd, and Pb by Potamogeton natans is via the leaves, stems, or roots, and whether there is translocation from organs of uptake to other plant parts. Competition between the metals at uptake and at the level of the cell wall-bound part of the metals accumulated in stem and leaf tissue was also examined. The results show that Zn, Cu, Cd, and Pb were taken up by the leaves, stems, and roots, with the highest accumulation found in the roots. At the elevated metal concentrations common in stormwater the uptake of Cu, but not of Zn, Cd, or Pb, by the roots was somewhat limited at uptake due to competition with other metals. Between 24% and 59% of the metal content was bound to the cell walls of the plant. Except in the case of Pb, the cell wall-bound fraction was generally smaller in stems than in leaves. No translocation of the metals to other parts of the plant was found, except for Cd which was translocated from leaf to stem and vice versa. Dispersion of metals from sediment to water through P. natans is therefore unlikely.  相似文献   

15.
The increased demand of alternative energy sources has created interest in biodiesel and biodiesel blends; biodiesel is promoted as a diesel substitute that is safer, produces less harmful combustion emissions, and biodegrades more easily. Like diesel spills, biodiesel can have deleterious effects on the aquatic environments. The effect of neat biodiesel, biodiesel blends, and diesel on Oncorhynchus mykiss and Daphnia magna was evaluated using acute toxicity testing. Static nonrenewal bioassays of freshwater organisms containing B100, B50, B20, B5, and conventional diesel fuel were used to compare the acute effects of biodiesel to diesel. Mortality was the significant end point measured in this study; percent mortality and lethal concentration (LC50) at different exposure times were determined from the acute toxicity tests performed. Trials were considered valid if the controls exhibited > 90% survival. Based on percentage of mortality and LC50 values, a toxicity ranking of fuels was developed.  相似文献   

16.
Procymidone, fludioxonil, and pyrimethanil are widely used to control the pathogenic fungus Botrytis cinerea in Champagne's vineyards. These fungicides may end up in surface waters and present potential risks for aquatic vascular plants and algae. Therefore, their toxicity was evaluated on Lemna minor and Scenedesmus acutus in six-day or 48-h tests, respectively. Based on growth and chlorophyll (Chl) content of L. minor and S. acutus cultures, the results showed that the alga was the most sensitive to the fungicides. Among the fungicides, pyrimethanil was the most toxic for L. minor, its nominal IC50 was 46.16 mg l(-1) and that of the other two was >100 mg l(-1). In contrast, pyrimethanil appeared the least toxic for S. acutus at low concentration, nominal IC50 were 22.81, 4.85, and 4.55 mg l(-1) for pyrimethanil, fludioxonil, and procymidone, respectively. Fate of the fungicides in the media was also investigated and acute toxicity of the agrochemicals is discussed in regard to concentration in the culture media. Poor solubility of procymidone and fludioxonil appeared to be partly responsible for the low toxicity of these fungicides. Based on these toxicity data and the concentrations found in ponds collecting vineyard runoff water, these pesticides should not impair the establishment of pioneer plants.  相似文献   

17.
Little information is available on the environmental occurrence and ecotoxicological effects of pharmaceutical gestagens released in the aquatic environment. Since eighteen different gestagens were found to be used in France, preliminary exposure and hazard assessment were done. Predicted environmental concentrations (PECs) suggest that if parent gestagens are expected to be found in the ng l−1 range, some active metabolites could be present at higher concentrations, although limited data on metabolism and environmental fate limit the relevance of PECs. The biological effects are not expected to be restricted to progestagenic activity. Both anti-androgenic activity (mainly for cyproterone acetate, chlormadinone acetate and their metabolites) and estrogenic activity (mainly for reduced metabolites of levonorgestrel and norethisterone) should also occur. All these molecules are likely to have a cumulative effect among themselves or with other xenoestrogens. Studies on occurrence, toxicity and degradation time are therefore needed for several of these compounds.  相似文献   

18.
While factors influencing perceptions of drinking water have been well studied, those of aquatic ecosystems have been to lesser extent. We conducted a review to improve awareness of these factors. Environmental factors found to influence public perceptions of aquatic ecosystems were presence/absence of water plants and algae, presence/absence of floating debris, the odor, movement (for flowing waters) and clarity/turbidity of the water, and the type, condition, setting, naturalness, and overall aesthetic appeal of the ecosystem. Sociocultural factors found to influence public perceptions of aquatic ecosystems included age, education, gender, and place-based knowledge. We provide perspectives of how managers can better meet the diverse social demands placed on aquatic ecosystems. The importance and benefits of considering these perspectives may be especially beneficial where significant multi-generational and culturally relevant place-based knowledge exist.  相似文献   

19.
Endocrine disrupters in the aquatic environment   总被引:1,自引:0,他引:1  
Possible mechanisms to explain endocrine effects on reproduction and sex differentiation are presented for selected pharmaceuticals, agrochemicals, industrial chemicals and plant sterols which are known to be present in the aquatic environment. Disruptions of the hormonal coordination can be induced by xenobiotics on various levels of the hierachically organised endocrine system of vertebrates. Phthalate plasticisers, for example, may disrupt the pituitary control of gonadal functions; prenatal/larval exposure to synthetic estrogen impairs sex differentiation and neuroendocrine sexual determination of the central nervous system; phenylurea herbicides block the androgen receptor; the biotransformation of weakly estrogenic plant sterol components of paper mill wastewater (e.g. βsitosterol) may lead to androgenic compounds. The effect of hypolipidemic drugs on lipid homeostasis (peroxysom proliferation) is transmitted via a receptor protein that seems to be closely related to the endocrine system both functionally as well as phylogenetically; possible interferences with the neuroendocrine control of sex differentiation are also discussed. In invertebrates, tributyltin is known to effect the biosynthesis of steroidal sexual hormones. PCBs are suspected to be competitive inhibitors of the steroid catabolism. In order to identify potential risks caused by chemicals to the reproductive capacities of aquatic animals and to the quality of drinking water, methods should be established to detect endocrine disrupters at the various levels of the endocrine system.  相似文献   

20.
Li W  Shi Y  Gao L  Liu J  Cai Y 《Chemosphere》2012,89(11):1307-1315
This study investigated the presence and distribution of 22 antibiotics, including eight quinolones, nine sulfonamides and five macrolides, in the water, sediments, and biota samples from Baiyangdian Lake, China. A total of 132 samples were collected in 2008 and 2010, and laboratory analyses revealed that antibiotics were widely distributed in the lake. Sulfonamides were the dominant antibiotics in the water (0.86-1563 ng L−1), while quinolones were prominent in sediments (65.5-1166 μg kg−1) and aquatic plants (8.37-6532 μg kg−1). Quinolones (17.8-167 μg kg−1) and macrolides [from below detection limit (BDL) to 182 μg kg−1] were often found in aquatic animals and birds. Salvinia natans exhibited the highest bioaccumulation capability for quinolones among three species of aquatic plants. Geographical differences of antibiotic concentrations were greatly due to anthropogenic activities. Sewage discharged from Baoding City was likely the main source of antibiotics in the lake. Risk assessment of antibiotics on aquatic organisms suggested that algae and aquatic plants might be at risk in surface water, while animals were likely not at risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号