共查询到4条相似文献,搜索用时 0 毫秒
1.
Conservation Planning in Forest Landscapes of Fennoscandia and an Approach to the Challenge of Countdown 2010 总被引:3,自引:0,他引:3
G. MIKUSISKI R. L. PRESSEY† L. EDENIUS‡ H. KUJALA§ A. MOILANEN§ J. NIEMELħ T. RANIUS†† 《Conservation biology》2007,21(6):1445-1454
Abstract: Effective management of biodiversity in production landscapes requires a conservation approach that acknowledges the complexity of ecological and cultural systems in time and space. Fennoscandia has experienced major loss of forest biodiversity caused by intensive forestry. Therefore, the Countdown 2010 initiative to halt the loss of biodiversity in Europe is highly relevant to forest management in this part of the continent. As a contribution to meeting the challenge posed by Countdown 2010, we developed a spatially explicit conservation-planning exercise that used regional knowledge on forest biodiversity to provide support for managers attempting to halt further loss of biological diversity in the region. We used current data on the distribution of 169 species (including 68 red-listed species) representing different forest habitats and ecologies along with forest data within the frame of modern conservation software to devise a map of priority areas for conservation. The top 10% of priority areas contained over 75% of red-listed species locations and 41% of existing protected forest areas, but only 58% of these top priorities overlapped with core areas identified previously in a regional strategy that used more qualitative methods. We argue for aggregating present and future habitat value of single management units to landscape and regional scales to identify potential bottlenecks in habitat availability linked to landscape dynamics. To address the challenge of Countdown 2010, a general framework for forest conservation planning in Fennoscandia needs to cover different conservation issues, tools, and data needs. 相似文献
2.
3.
4.
YOU-HUA CHEN 《Conservation biology》2009,23(3):537-545
Abstract: Identification of priority areas is a fundamental goal in conservation biology. Because of a lack of detailed information about species distributions, conservation targets in the Zhoushan Archipelago (China) were established on the basis of a species–area–habitat relationship (choros model) combined with an environmental cluster analysis (ECA). An environmental‐distinctness index was introduced to rank areas in the dendrogram obtained with the ECA. To reduce the effects of spatial autocorrelation, the ECA was performed considering spatial constraints. To test the validity of the proposed index, a principal component analysis–based environmental diversity approach was also performed. The priority set of islands obtained from the spatially constrained cluster analysis coupled with the environmental‐distinctness index had high congruence with that from the traditional environmental‐diversity approach. Nevertheless, the environmental‐distinctness index offered the advantage of giving hotspot rankings that could be readily integrated with those obtained from the choros model. Although the Wilcoxon matched‐pairs test showed no significant difference among the rankings from constrained and unconstrained clustering process, as indicated by cophenetic correlation, spatially constrained cluster analysis performed better than the unconstrained cluster analysis, which suggests the importance of incorporating spatial autocorrelation into ECA. Overall, the integration of the choros model and the ECA showed that the islands Liuheng, Mayi, Zhoushan, Fodu, and Huaniao may be good candidates on which to focus future efforts to conserve regional biodiversity. The 4 types of priority areas, generated from the combination of the 2 approaches, were explained in descending order on the basis of their conservation importance: hotspots with distinct environmental conditions, hotspots with general environmental conditions, areas that are not hotspots with distinct environmental conditions, and areas that are not hotspots with general environmental conditions. 相似文献