首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Environmental pollution by mercury (Hg) is a considerable environmental problem world-wide. Due to the occurrence of Hg volatilization from their soils, floodplains can function as an important source of volatile Hg. Soil temperature and soil water content related to flood dynamics are considered as important factors affecting seasonal dynamics of total gaseous mercury (TGM) fluxes. We quantified seasonal variations of TGM fluxes and conducted a laboratory microcosm experiment to assess the effect of temperature and moisture on TGM fluxes in heavily polluted floodplain soils. Observed TGM emissions ranged from 10 to 850 ng m−2 h−1 and extremely exceeded the emissions of non-polluted sites. TGM emissions increased exponentially with raised air and soil temperatures in both field (R2: 0.49-0.70) and laboratory (R2: 0.99) experiments. Wet soil material showed higher TGM fluxes, whereas the role of soil water content was affected by sampling time during the microcosm experiments.  相似文献   

2.
To investigate the characteristics of mercury exchange between soil and air in the heavily air-polluted area, total gaseous mercury (TGM) concentration in air and Hg exchange flux were measured in Wanshan Hg mining area (WMMA) in November, 2002 and July–August, 2004. The results showed that the average TGM concentrations in the ambient air (17.8–1101.8 ng m−3), average Hg emission flux (162–27827 ng m−2 h−1) and average Hg dry deposition flux (0–9434 ng m−2 h−1) in WMMA were 1–4 orders of magnitude higher than those in the background area. It is said that mercury-enriched soil is a significant Hg source of the atmosphere in WMMA. It was also found that widely distributed roasted cinnabar banks are net Hg sources of the atmosphere in WMMA. Relationships between mercury exchange flux and environmental parameters were investigated. The results indicated that the rate of mercury emission from soil could be accelerated by high total soil mercury concentration and solar irradiation. Whereas, highly elevated TGM concentrations in the ambient air can restrain Hg emission from soil and even lead to strongly atmospheric Hg deposition to soil surface. A great amount of gaseous mercury in the heavily polluted atmosphere may cycle between soil and air quickly and locally. Vegetation can inhibit mercury emission from soil and are important sinks of atmospheric mercury in heavily air-polluted area.  相似文献   

3.
A two-resistance exchange interface model (TREIM) was developed to simulate gaseous mercury (Hg) emissions from soils measured by dynamic flux chamber (DFC) operations. The model is based on mass balance principles and a Hg air/soil exchange theory that considers the influence of flushing flow rate on Hg air/soil exchange. We used this model to examine the effect of the flushing flow rate and understand the optimum conditions for DFC measurements of Hg emission fluxes over soils. Our model simulations indicate that the flushing flow rate is a most critical operation condition. We recommend adoption of high flushing flow rates (e.g., ∼15–40 l min−1 for DFCs of common design) based on our simulation findings that underestimation of actual emission fluxes can occur at low flushing flow rates. The biased low fluxes are caused by suppression of emission potential resulting from internal accumulation of emitted Hg and by higher exchange resistance both at low flushing flow rates. This model provides a useful means for estimating maximum steady-state fluxes and soil air Hg concentrations and for adjustment of the fluxes measured under different operating conditions. The model also finds its value in understanding mechanical processes of Hg emissions from soils.  相似文献   

4.
Huang J  Liu CK  Huang CS  Fang GC 《Chemosphere》2012,87(5):579-585
Total gaseous mercury (Hg) (TGM), gaseous oxidized Hg (GOM), and particulate-bound Hg (PBM) concentrations and dry depositions were measured at an urban site in central Taiwan. The concentrations were 6.14 ± 3.91 ng m−3, 332 ± 153, and 71.1 ± 46.1 pg m−3, respectively. These results demonstrate high Hg pollution at the ground level in Taiwan. A back trajectory plot shows the sources of the high TGM concentration were in the low atmosphere (<500 m) and approximately 50% of the air masses coming from upper troposphere (>500 m) were associated with low TGM concentrations. This finding implies that Hg is trapped in the low atmosphere and comes from local Hg emission sources. The conditional probability function (CPF) reveals that the plumes of high TGM concentrations come from the south and northwest of the site. The plume from the south comes from two municipal solid waste incinerators (MSWIs). However, no significant Hg point source is located to the northwest of the site; therefore, the plumes from the northwest are hypothesized to be related to the combustion of agricultural waste. Dry deposition fluxes of Hg measured at this site considerably exceeded those measured in North America. Overall, this area is regarded as a highly Hg contaminated area because of local Hg emission sources.  相似文献   

5.
Eleven laboratories from North America and Europe met at Mace Head, Ireland for the period 11–15 September 1995 for the first international field intercomparison of measurement techniques for atmospheric mercury species in ambient air and precipitation at a marine background location. Different manual methods for the sampling and analysis of total gaseous mercury (TGM) on gold and silver traps were compared with each other and with new automated analyzers. Additionally, particulate-phase mercury (Hgpart) in ambient air, total mercury, reactive mercury and methylmercury in precipitation were analyzed by some of the participating laboratories. Whereas measured concentrations of TGM and of total mercury in precipitation show good agreement between the participating laboratories, results for airborne particulate-phase mercury show much higher differences. Two laboratories measured inorganic oxidized gaseous mercury species (IOGM), and obtained levels in the low picogram m-3 range.  相似文献   

6.
Total gaseous mercury (Hg) fluxes from large (7.3×5.5×4.5 m, L×W×D) climate-controlled gas exchange mesocosms (Ecologically Controlled Enclosed Lysimeter Laboratories or EcoCELLs) containing tallgrass prairie soil–plant monoliths were measured from 2002 to 2005. EcoCELL Hg fluxes (calculated based on the difference in air Hg concentrations inside mesocosms and in incoming air, soil area of the monoliths, and airflow through the system) indicated a net annual emission of 102 μg m−2, while soil Hg fluxes measured simultaneously using a dynamic flux chamber were an order of magnitude lower. Since Hg fluxes measured from empty EcoCELLs in winter and when housing the soil–plant monoliths at the same time of year were similar, we hypothesized that the Hg signal generated by the tallgrass prairie soil–plant monoliths was too low to be detected using the EcoCELL technology. Because mesocosm Hg exchange was correlated with solar radiation and temperature, with the largest emissions occurring at midday and in the summer, we also hypothesized that the flux from mesocosm infrastructure would change over time. Limited by the ongoing experiment, the EcoCELLs were manipulated to test the above hypotheses. When monoliths were completely covered and excluded from the exchange with the surrounding air, mesocosm Hg exchange was unaffected. Furthermore, removal of vegetation at the end of each growing season did not affect mesocosm Hg fluxes. Tests with changing mesocosm airflow also indicated that the signal from the tallgrass prairie monoliths was not being measured. These results suggest that, although EcoCELLs performed well in a study using Hg contaminated soils and have been successfully applied to understand processes controlling Hg fluxes, there are limitations of this technology for quantifying Hg exchange from background substrates. Prior to the use of similar systems the detection limit and Hg exchange from an empty system need to be carefully quantified.  相似文献   

7.
Floodplain soils at the Elbe river are frequently polluted with metals and arsenic. High contents of these pollutants were detected down to subsoil layers. NH4NO3-extractable (phytoavailable) Cd, Ni, and Zn were elevated in horizons with high acidity. Among five common floodplain plant species, Artemisia vulgaris showed highest concentrations of Cd, Cu, and Hg, Alopecurus pratensis of As and Phalaris arundinacea of Ni, Pb, and Zn. Relationships were weak between metal concentrations in plants and phytoavailable stocks in soil. As and Hg uptake seems to be enhanced on long submerged soils. Enrichments of Cd and Hg are linked to a special plant community composition. Grassland herbage sampled in July/August revealed higher concentrations of As (+122%), Hg (+124%), and Pb (+3723%) than in May. To limit harmful transfers into the food chain, low-lying terraces and flood channels revealing highest contaminations or phytoavailabilities should be excluded from mowing and grazing.  相似文献   

8.
Mercury-bearing material has been placed in municipal landfills from a wide array of sources including fluorescent lights, batteries, electrical switches, thermometers, and general waste. Despite its known volatility, persistence, and toxicity in the environment, the fate of mercury in landfills has not been widely studied. The nature of landfills designed to reduce waste through generation of methane by anaerobic bacteria suggests the possibility that these systems might also serve as bioreactors for the production of methylated mercury compounds. The toxicity of such species mandates the need to determine if they are emitted in municipal landfill gas (LFG). In a previous study, we had measured levels of total gaseous mercury (TGM) in LFG in the μg/m3 range in two Florida landfills, and elevated levels of monomethyl mercury (MMM) were identified in LFG condensate, suggesting the possible existence of gaseous organic Hg compounds in LFG. In the current study, we measured TGM, Hg0, and methylated mercury compounds directly in LFG from another Florida landfill. Again, TGM was in the μg/m3 range, MMM was found in condensate, and this time we positively identified dimethyl mercury (DMM) in the LGF in the ng/m3 range. These results identify landfills as a possible anthropogenic source of DMM emissions to air, and may help explain the reports of MMM in continental rainfall.  相似文献   

9.
The concentrations of total gaseous mercury (TGM) in air over the southern Baltic Sea and dissolved gaseous mercury (DGM) in the surface seawater were measured during summer and winter. The summer expedition was performed on 02–15 July 1997, and the winter expedition on 02–15 March 1998. Average TGM and DGM values obtained were 1.70 and 17.6 ng m−3 in the summer and 1.39 and 17.4 ng m−3 in the winter, respectively. Based on the TGM and DGM data, surface water saturation and air-water fluxes were calculated. The results indicate that the seawater was supersaturated with gaseous mercury during both seasons, with the highest values occurring in the summer. Flux estimates were made using the thin film gas-exchange model. The average Hg fluxes obtained for the summer and winter measurements were 38 and 20 ng m−2 d−1, respectively. The annual mercury flux from this area was estimated by a combination of the TGM and DGM data with monthly average water temperatures and wind velocities, resulting in an annual flux of 9.5 μg m−2 yr−1. This flux is of the same order of magnitude as the average wet deposition input of mercury in this area. This indicates that reemissions from the water surface need to be considered when making mass-balance estimates of mercury in the Baltic Sea as well as modelling calculations of long-range transboundary transport of mercury in northern Europe.  相似文献   

10.
Both field and laboratory tests demonstrated that soil Hg emission fluxes measured by dynamic flux chamber (DFC) operations strongly depend on the flushing air flow rates used. The general trend is an increase in the fluxes with increasing flushing flow rates followed by an asymptotic approach to flux maximum at sufficiently high (optimum) flushing flow rates. This study indicates that the DFC measurements performed at low flushing flow rates can underestimate Hg emission fluxes over soils, especially Hg-enriched soils. High flushing flow rates therefore are recommended for accurate estimation of soil Hg emission fluxes by DFC operations. The dependence of DFC-measured soil Hg emission fluxes on flushing flow rate is a physical phenomenon inherent in DFC operations, regardless of DFC design and soil physical characteristics. Laboratory tests using DFCs over different soils confirmed the predictions of a two-resistance exchange interface model and demonstrated the capability of this model in quantitatively simulating Hg emissions from soils measured by DFC operations.  相似文献   

11.
To investigate the extent of Hg contamination due to artisanal Zn smelting activities in Weining County, northwestern Guizhou, China, total Hg and methyl mercury (MeHg) concentrations in soil and surface water were determined. Samples of corn plants growing in the study area were also collected for total Hg analysis. A high geometric mean Hg emission factor of 75gHgt(-1)Zn was estimated and significantly elevated total gaseous mercury (TGM) concentrations were found in the atmosphere adjacent to the Zn smelting sites, ranging from 30 to 3814ngm(-3). Total Hg and MeHg concentrations in topsoil samples ranged from 62 to 355microgkg(-1) and from 0.20 to 1.1microgkg(-1), respectively. Total Hg Concentrations in corn plant tissues increased in the order of grains相似文献   

12.
Air-surface exchange of mercury (Hg) was measured from soil low in Hg (0.013 mg/kg) amended with four different ash materials: a wood ash containing -10% coal ash (0.070 mg/kg Hg), a mixture of two subbituminous coal fly ashes (0.075 mg/kg Hg), a subbituminous coal ash containing -10% petroleum coke ash (1.2 mg/kg Hg), and an ash from incinerated municipal sewage sludge (4.3 mg/kg Hg) using a dynamic flux chamber. Ash was added to soil to simulate agricultural supplements, soil stabilization, and pad layers used in livestock areas. For the agricultural amendment, -0.4% ash was well mixed into the soil. To make the stabilized soil that could be used for construction purposes, -20% ash was mixed into soil with water. The pad layer consisted of a wetted 1-cm layer of ash material on the soil surface. Diel trends of Hg flux were observed for all of the substrates with significantly higher Hg emissions during the day and negligible flux or deposition of Hg during the night. Hg fluxes, which were measured in the summer months, were best correlated with solar radiation, temperature, and air O3 concentrations. Mean Hg fluxes measured outdoors for unamended soils ranged from 19 to 140 ng/m2 day, whereas those for soil amended with ash to simulate an agricultural application ranged from 7.2 to 230 ng/m2 day. Fluxes for soil stabilized with ash ranged from 77 to 530 ng/m2 day and for soil with pads constructed of ash ranged from -50 to 90 ng/m2 day. Simple analytical tests (i.e., total Hg content, synthetic precipitation leaching procedure, heating, and indoor gas-exchange experiments) were performed to assess whether algorithms based on these tests could be used to predict Hg fluxes observed outdoors using the flux chamber. Based on this study, no consistent relationships could be developed. More work is needed to assess long-term and seasonal variations in Hg flux from (intact and disturbed) substrates before annual estimates of emissions can be developed.  相似文献   

13.
An intercomparison for sampling and analysis of atmospheric mercury species was held in Tuscany, June 1998. Methods for sampling and analysis of total gaseous mercury (TGM), reactive gaseous mercury (RGM) and total particulate mercury (TPM) were used in parallel sampling over a period of 4 days. The results show that the different methods employed for TGM compared well whereas RGM and TPM showed a somewhat higher variability. Measurement results of RGM and TPM improved over the time period indicating that activities at the sampling site during set-up and initial sampling affected the results. Especially the TPM measurement results were affected. Additional parallel sampling was performed for two of the TPM methods under more controlled conditions which yielded more comparable results.  相似文献   

14.
Ambient speciated mercury concentrations including total gaseous mercury (TGM), gaseous divalent mercury (Hg(II)), and particulate mercury (Hg(p)) were measured on the roof of the Graduate School of Public Health building in Seoul, Korea from February 2005 to February 2006. The average concentrations were 3.22 ± 2.10 ng m?3, 27.2 ± 19.3 pg m?3, and 23.9 ± 19.6 pg m?3 for TGM, Hg(II), and Hg(p), respectively. Hg(II) and Hg(p) concentrations were higher during the daytime than during the nighttime, probably because of high photochemical activity. Hg0 concentrations were not significantly correlated with ozone however a positive correlation between ozone and Hg(II) was found during periods of high humidity. Eighteen days were characterized as pollution events with 24 h average PM2.5 concentrations >65 μg m?3. The average concentrations of TGM and Hg(p) during these events were 1.4–2 times higher than those during non-pollution events. In order to identify the contribution of long-range transported mercury to the enhanced mercury concentrations in Korea, an episode was defined as a period with hourly average TGM and CO concentrations higher than the monthly average TGM and CO concentrations and with significant enhancement of both TGM and CO concentrations for at least 10 h. A total of 70 episodes were identified during the sampling period: 36 local episodes and 34 long-range transport episodes. The mean ΔTGM/ΔCO slope for all episodes was 0.0063 ng m?3 ppbv?1 which agreed well with the slope (0.0036–0.0074 ng m?3 ppbv?1) found in previous studies that identified long-range transport of TGM from China. The mean slope during non-events was 0.0011 ng m?3 ppbv?1. Back-trajectory analysis showed that during episodes, air parcels arrived mostly from the major industrial areas in China (n = 25, 73%), followed by Japan (n = 4, 12%), Yellow Sea (n = 3, 9%), and Russia (n = 2, 6%).  相似文献   

15.
Previous laboratory studies have shown that lignite-derived fly ash emitted mercury (Hg) to the atmosphere, whereas bituminous- and subbituminous-derived fly ash samples adsorbed Hg from the air. In addition, wet flue gas desulfurization (FGD) materials were found to have higher Hg emission rates than fly ash. This study investigated in situ Hg emissions at a blended bituminous-subbituminous ash landfill in the Great Lakes area and a lignite-derived ash and FGD solids landfill in the Midwestern United States using a dynamic field chamber. Fly ash and saturated FGD materials emitted Hg to atmosphere at low rates (-0.1 to 1.2 ng/ m2hr), whereas FGD material mixed with fly ash and pyrite exhibited higher emission rates (approximately 10 ng/m2hr) but were still comparable with natural background soils (-0.3 to 13 ng/ m2hr). Air temperature, solar radiation, and relative humidity were important factors correlated with measured Hg fluxes. Field study results were not consistent with corresponding laboratory observations in that fluxes measured in the latter were higher and more variable. This is hypothesized to be partially an artifact of the flux measurement methods.  相似文献   

16.
Relaxed eddy accumulation (REA) measurements of the total gaseous mercury (TGM) flux measurements were taken over a deciduous forest predominantly composed of Red Maple (Acer rubrum L.) during the growing season of 2004 and the second half of the growing season of 2005. The magnitudes of the flux estimates were in the range of published results from other micrometeorological mercury fluxes taken above a tall canopy and larger than estimates from flux chambers. The magnitude and direction of the flux were not static during the growing season. There was a significant trend (p < 0.001), from net deposition of TGM in early summer to net evasion in the late summer and early fall before complete senescence. A growing season atmosphere-canopy total mercury (TGM) compensation point during unstable daytime conditions was estimated at background ambient concentrations (1.41 ng m?3). The trend in the seasonal net TGM flux indicates that long term dry deposition monitoring is needed to accurately estimate mercury loading over a forest ecosystem.  相似文献   

17.
Soil systems are a common receptor of anthropogenic mercury (Hg) contamination. Soils play an important role in the containment or dispersion of pollution to surface water, groundwater or the atmosphere. A one-dimensional model for simulating Hg fate and transport for variably saturated and transient flow conditions is presented. The model is developed using the HP1 code, which couples HYDRUS-1D for the water flow and solute transport to PHREEQC for geochemical reactions. The main processes included are Hg aqueous speciation and complexation, sorption to soil organic matter, dissolution of cinnabar and liquid Hg, and Hg reduction and volatilization. Processes such as atmospheric wet and dry deposition, vegetation litter fall and uptake are neglected because they are less relevant in the case of high Hg concentrations resulting from anthropogenic activities. A test case is presented, assuming a hypothetical sandy soil profile and a simulation time frame of 50 years of daily atmospheric inputs. Mercury fate and transport are simulated for three different sources of Hg (cinnabar, residual liquid mercury or aqueous mercuric chloride), as well as for combinations of these sources. Results are presented and discussed with focus on Hg volatilization to the atmosphere, Hg leaching at the bottom of the soil profile and the remaining Hg in or below the initially contaminated soil layer. In the test case, Hg volatilization was negligible because the reduction of Hg2+ to Hg0 was inhibited by the low concentration of dissolved Hg. Hg leaching was mainly caused by complexation of Hg2+ with thiol groups of dissolved organic matter, because in the geochemical model used, this reaction only had a higher equilibrium constant than the sorption reactions. Immobilization of Hg in the initially polluted horizon was enhanced by Hg2+ sorption onto humic and fulvic acids (which are more abundant than thiols). Potential benefits of the model for risk management and remediation of contaminated sites are discussed.  相似文献   

18.
Abstract

Air-surface exchange of mercury (Hg) was measured from soil low in Hg (0.013 mg/kg) amended with four different ash materials: a wood ash containing ~10% coal ash (0.070 mg/kg Hg), a mixture of two subbituminous coal fly ashes (0.075 mg/kg Hg), a subbituminous coal ash containing ~10% petroleum coke ash (1.2 mg/kg Hg), and an ash from incinerated municipal sewage sludge (4.3 mg/kg Hg) using a dynamic flux chamber. Ash was added to soil to simulate agricultural supplements, soil stabilization, and pad layers used in livestock areas. For the agricultural amendment, ~0.4% ash was well mixed into the soil. To make the stabilized soil that could be used for construction purposes, ~20% ash was mixed into soil with water. The pad layer consisted of a wetted 1-cm layer of ash material on the soil surface. Diel trends of Hg flux were observed for all of the substrates with significantly higher Hg emissions during the day and negligible flux or deposition of Hg during the night. Hg fluxes, which were measured in the summer months, were best correlated with solar radiation, temperature, and air O3 concentrations. Mean Hg fluxes measured outdoors for unamended soils ranged from 19 to 140 ng/m2 day, whereas those for soil amended with ash to simulate an agricultural application ranged from 7.2 to 230 ng/m2 day. Fluxes for soil stabilized with ash ranged from 77 to 530 ng/m2 day and for soil with pads constructed of ash ranged from ?50 to 90 ng/m2 day. Simple analytical tests (i.e., total Hg content, synthetic precipitation leaching procedure, heating, and indoor gas-exchange experiments) were performed to assess whether algorithms based on these tests could be used to predict Hg fluxes observed outdoors using the flux chamber. Based on this study, no consistent relationships could be developed. More work is needed to assess long-term and seasonal variations in Hg flux from (intact and disturbed) substrates before annual estimates of emissions can be developed.  相似文献   

19.
This paper describes total gaseous mercury (TGM) concentrations measured in Reno, Nevada from 2002 to 2005. The 3-year mean and median air Hg concentrations were 2.3 and 2.1 ng m−3, respectively. Mercury concentrations exhibited seasonality, with the highest concentrations in winter, and the lowest in summer and fall. A well-defined diel pattern in TGM concentration was observed, with maximum daily concentrations observed in the morning and minimum in the afternoon. A gradual increase of TGM concentration was observed in the evening and over night. The early morning increase in TGM was likely due to activation of local surface emission sources by rising solar irradiance and air temperature. The subsequent decline and afternoon minimum in TGM were likely related to increased vertical mixing and the buildup of atmospheric oxidants during the day resulting in increased conversion to oxidized species that are quickly deposited, coupled with weakening of the surface emissions processes. The described diel pattern was seasonally modulated with the greatest amplitude in variation of TGM concentrations occurring in the summer. It is suggested based on the comparison of diel TGM pattern with other gaseous pollutants that natural source surface emissions are a dominant source of TGM in the study area.  相似文献   

20.
In this study, we report on total gaseous mercury (TGM) field observations made in the rural area of Shanghai, Chongming Island, China, from September 2009 to April 2012. The average TGM was 2.65 ± 1.73 ng m?3 in Chongming Island, which is higher than the TGM background value of the Northern Hemisphere (1.5–1.7 ng m?3); this indicates that to some extent, the Chongming area has been affected by anthropogenic mercury emissions. The observed TGM follows a seasonal pattern; concentrations are highest in winter, followed by autumn, summer, and spring. There is also a clear diurnal variation in TGM. All peak values appear between 7:00 and 9:00 in all four seasons; this appears to be the result of the height change in the atmospheric boundary layer that occurs between day and night. TGM concentrations in Chongming remain high in the westerly wind direction, especially in the southwest direction because of its low frequency, so the greatest source contribution to TGM in Chongming lies to the northwest. Wind speed is also a significant factor affecting TGM, and was negatively correlated with TGM concentrations. TGM is also closely related to carbon monoxide (CO) concentrations, indicating that TGM is impacted by human activities. The slope of the linear fitting of TGM and CO demonstrates that the contribution of noncoal source emissions to TGM in summer is greater than in autumn, mainly because the high temperature and intensive sunlight in summer increase mercury emissions from natural sources.

Implications: Except for some studies in the coastal areas (e.g., Kang Hwa Island by Kim et al., 2006, An–Myun Island by Kim et al., 2002, and Okinawa by Chan et al., 2008), data specifically for coastal areas are lacking. Monitoring of total gaseous mercury (TGM) in the rural area of Shanghai, Chongming Island, can help us understand mercury distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号