首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acute and chronic toxicity of benzotriazoles to aquatic organisms   总被引:2,自引:1,他引:2  

Purpose

Resulting from their intensive use as corrosion inhibitors in aircraft deicing and anti-icing fluids (ADAF) and for silver protection in dishwasher detergents benzotriazoles (BTs) are widespread in European surface waters. The current study aimed on an ecotoxicological characterization of 1H-benzotriazole (1H-BT) and 5-methyl-1H-benzotriazole (5MBT).

Methods

Acute and chronic OECD guideline tests were conducted with primary producers (Desmodesmus subspicatus, Lemna minor) and two daphnia species (Daphnia magna, Daphnia galeata) to characterize the hazard of these chemicals. Additionally, the estrogenic activity of both BTs was analyzed in vitro using a recombinant yeast estrogen screen (YES).

Results

Both BTs revealed significant effects in acute and chronic experiments, but exhibited no estrogenic activity in the YES. The algal growth test displayed an inhibited cell number increase with effect concentration (EC) values of EC10 1.18 and 2.86?mg?l-1 for 1H-BT and 5MBT, respectively. In the Lemna test, EC10 values were 3.94?mg?l-1 (1H-BT) and 2.11?mg?l-1 (5MBT). D. magna was also affected with EC50 (48?h) values of 107?mg?l-1 for 1H-BT and 51.6?mg?l-1 for 5MBT. D. galeata was more sensitive with an EC50 (48?h) of 14.7?mg 1H-BT l-1 and 8.13?mg 5MBT l-1. In the 21-day reproduction tests with D. magna, the EC10 for 5MBT was 5.93?mg?l-1 while 1H-BT showed no adverse effects. D. galeata turned out to be more sensitive in the chronic study with EC10 values of 0.97?mg?l-1 for 1H-BT and 0.40?mg?l-1 for 5 MBT.

Conclusion

Because BTs are regularly found in the aquatic environment at lower ??g l-1 concentrations reflecting their persistence and poor elimination during wastewater treatment processes, a preliminary risk assessment was conducted. There is little indication that BTs pose a risk for aquatic ecosystems at current exposure levels during most of the year. However, it cannot be excluded that in winter with a higher usage of ADAFs environmental concentrations may well exceed the level that is considered safe for aquatic organisms.  相似文献   

2.
3.
Traditionally, regulatory approaches to the bioaccumulation of hydrophobic organic chemicals (HOCs) have emphasized the direct accumulation of these chemicals from solution across biological membranes, leading to the development of the bioconcentration factor as a measure of direct uptake of freely dissolved HOCs. However, an often larger fraction of the total amount of many HOCs in the water column is not freely dissolved, but is partitioned among suspended sediments and particulate matter in the water column. Partitioned HOCs are available for accumulation by organisms ingesting the contaminated particulate matter. The net accumulation of HOCs from water through consumption and direct uptake of dissolved HOC is termed bioaccumulation, quantified using a bioaccumulation factor. In order to develop recommendations designed to close the gap between current knowledge concerning bioaccumulation and regulations, the Institute of Evaluating Health Risks organized a working conference, 'The Bioaccumulation of Hydrophobic Organic Chemicals by Aquatic Organisms'. This paper reflects the view of workshop participants that the bioaccumulation paradigm can be used in a number of practical applications.  相似文献   

4.
An in situ toxicity and bioaccumulation assessment approach is described to assess stressor exposure and effects in surface waters (low and high flow), the sediment-water interface, surficial sediments and pore waters (including groundwater upwellings). This approach can be used for exposing species, representing major functional and taxonomic groups. Pimephales promelas, Daphnia magna, Ceriodaphnia dubia, Hyalella azteca, Hyalella sp., Chironomus tentans, Lumbriculus variegatus, Hydra attenuatta, Hexagenia sp. and Baetis tibialis were successfully used to measure effects on survival, growth, feeding, and/or uptake. Stressors identified included chemical toxicants, suspended solids, photo-induced toxicity, indigenous predators, and flow. Responses varied between laboratory and in situ exposures in many cases and were attributed to differing exposure dynamics and sample-processing artifacts. These in situ exposure approaches provide unique assessment information that is complementary to traditional laboratory-based toxicity and bioaccumulation testing and reduce the uncertainties of extrapolating from the laboratory to field responses.  相似文献   

5.
A number of mechanisms have been identified that can lead to (acute) aquatic toxicity. The assignment of compounds to a particular mechanism of action is important in the development and utilisation of (quantitative) structure-activity relationships ((Q)SARs) for ecotoxicity. Assignment to a mechanism can be difficult; however in 1992 Verhaar et al. published a series of structural rules which aimed to classify compounds according to mechanism of action. Recent interest has seen the Verhaar rules coded into freely available software such as Toxtree available from the European Chemicals Bureau. To date, a complete critical evaluation of these rules has been lacking. Therefore, the aim of this study was to evaluate the Toxtree implementation of the Verhaar rules using two well characterised aquatic toxicity datasets (Pimephales promelas and Tetrahymena pyriformis phenol databases) for which mechanisms of toxic action are well established. The present study highlights rule, and possible coding, errors that may lead to misclassifications. Improvements to both the rules and prediction architecture are suggested. In particular further rules to improve predictions for polar narcosis (class 2) are suggested.  相似文献   

6.
Farah MA  Ateeq B  Ali MN  Sabir R  Ahmad W 《Chemosphere》2004,55(2):257-265
Three widely used xenobiotics pentachlorophenol (PCP), 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-chloro-2,6-diethyl-N-(butoxymethyl) acetanilide (Butachlor) are evaluated for acute toxicity and stress behavior on freshwater fish (Heteropneustes fossilis, Clarias batrachus, Channa punctatus) and mosquito larvae (Culex pipiens fatigans). The experiment was carried out by medium treatment using intermittent flow-through system. Median lethal concentrations (LC50) were calculated by probit analysis. The LC50 values and 95% confidence intervals showed variable range for tested chemicals. Mosquito larvae generally appeared resistant than fish, while H. fossilis was found to be most sensitive. Stress signs in the form of behavioral changes are also observed. Both types of organisms are recommended as good bioindicator for the risk assessment of aquatic environment due to chemicals tested.  相似文献   

7.
QSARs for the aquatic toxicity of aromatic aldehydes from Tetrahymena data   总被引:2,自引:0,他引:2  
Netzeva TI  Schultz TW 《Chemosphere》2005,61(11):1632-1643
  相似文献   

8.
Traditional single species toxicity tests and multiple component laboratory-scaled microcosm assays were combined to assess the toxicological hazard of diesel oil, a model complex mixture, to a model aquatic environment. The immediate impact of diesel oil dosed on a freshwater community was studied in a model pond microcosm over 14 days: a 7-day dosage and a 7-day recovery period. A multicomponent laboratory microcosm was designed to monitor the biological effects of diesel oil (1.0 mg litre(-1)) on four components: water, sediment (soil + microbiota), plants (aquatic macrophytes and algae), and animals (zooplanktonic and zoobenthic invertebrates). To determine the sensitivity of each part of the community to diesel oil contamination and how this model community recovered when the oil dissipated, limnological, toxicological, and microbiological variables were considered. Our model revealed these significant occurrences during the spill period: first, a community production and respiration perturbation, characterized in the water column by a decrease in dissolved oxygen and redox potential and a concomitant increase in alkalinity and conductivity; second, marked changes in microbiota of sediments that included bacterial heterotrophic dominance and a high heterotrophic index (0.6), increased bacterial productivity, and the marked increases in numbers of saprophytic bacteria (10 x) and bacterial oil degraders (1000 x); and third, column water acutely toxic (100% mortality) to two model taxa: Selenastrum capricornutum and Daphnia magna. Following the simulated clean-up procedure to remove the oil slick, the recovery period of this freshwater microcosm was characterized by a return to control values. This experimental design emphasized monitoring toxicological responses in aquatic microcosm; hence, we proposed the term 'toxicosm' to describe this approach to aquatic toxicological hazard evaluation. The toxicosm as a valuable toxicological tool for screening aquatic contaminants was demonstrated using diesel oil as a model complex mixture.  相似文献   

9.
化学物质对发光菌的联合毒性评价方法   总被引:1,自引:0,他引:1  
毒性单位法(TU)的理论基础来源于剂量加和模型(DA),目前仅在二元联合毒性评价中广泛应用。为了确定TU模型适合评价的混合物类型,实验选取5种剂量效应曲线类型不同的物质,采用微板光度计测试了一元、二元混合物对发光菌青海弧菌-Q67(Vibrio-qinghaiensis sp.-Q67)的急性毒性。根据物质的剂量效应曲线形状将物质分为A、B、C 3类,利用毒性单位法(TU)和联合作用定义法分别对AA类、AB类、AC类、BC类混合物进行分析。结果表明,TU法仅适合于由剂量效应曲线接近直线的物质组成的混合物进行联合毒性的评价。以效应为基准、TU模型为框架建立了TU’模型,该模型可以满足对任何类型已知成分的混合物或者未知成分的实际水样之间的多元联合作用的评价。  相似文献   

10.
Dom N  Knapen D  Blust R 《Chemosphere》2012,86(1):56-64
The present study was developed to assess the chronic toxicity predictions and extrapolations for a set of chlorinated anilines (aniline (AN), 4-chloroaniline (CA), 3,5-dichloroaniline (DCA) and 2,3,4-trichloroaniline (TCA)). Daphnia magna 21 d chronic experimental data was compared to the chronic toxicity predictions made by the US EPA ECOSAR QSAR tools and to acute-to-chronic extrapolations. Additionally, Species Sensitivity Distributions (SSDs) were constructed to assess the chronic toxicity variability among different species and to investigate the acute versus chronic toxicity in a multi-species context.Since chlorinated anilines are structural analogues with a designated polar narcotic mode of action, similar toxicity responses were assumed. However, rather large interchemical and interspecies differences in toxicity were observed. Compared to the other three test compounds, TCA exposure had a significantly larger impact on growth and reproduction of D. magna. Furthermore, this study illustrated that QSARs or a fixed ACR are not able to account for these interchemical and interspecies differences. Consequently, ECOSAR was found to be inadequate to predict the chronic toxicity of the anilines and the use of a fixed ACR (of 10) led to under of certain species. The experimental ACRs determined in D. magna were substantially different among the four aromatic amines (ACR of 32 for AN, 16.9 for CA, 5.7 for DCA and 60.8 for TCA). Furthermore, the SSDs illustrated that Danio rerio was rather insensitive to AN in comparison to another fish species, Phimphales promelas. It was therefore suggested that available toxicity data should be used in an integrative multi-species way, rather than using individual-based toxicity extrapolations. In this way, a relevant overview of the differences in species sensitivity is given, which in turn can serve as the basis for acute to chronic extrapolations.  相似文献   

11.
Yu Q  Chaisuksant Y  Connell D 《Chemosphere》1999,38(4):909-918
Experimental data have shown that the internal lethal concentrations of halobenzenes for aquatic organisms decreased with exposure time. In this paper, a model based on the concept of life expectancy reduction was developed to describe this relationship. The model was verified with experimental data for fish (Gambusia affinis) and juvenile crab (Porturius pelagicus(L)). It is proposed that long term non-specific toxicity can be measured as the reduction of the life expectancy of the exposed organism per unit internal concentration (or volume fraction) of the toxic compound. The model can be used to estimate internal lethal concentration at any given exposure period and vice versa. The model can also be used to estimate chronic values of the internal concentration, of the toxicants. It provides a useful tool for assessment of environmental risk of organic compounds in aquatic ecosystems.  相似文献   

12.
Camargo JA  Alonso A  Salamanca A 《Chemosphere》2005,58(9):1255-1267
Published data on nitrate (NO3-) toxicity to freshwater and marine animals are reviewed. New data on nitrate toxicity to the freshwater invertebrates Eulimnogammarus toletanus, Echinogammarus echinosetosus and Hydropsyche exocellata are also presented. The main toxic action of nitrate is due to the conversion of oxygen-carrying pigments to forms that are incapable of carrying oxygen. Nitrate toxicity to aquatic animals increases with increasing nitrate concentrations and exposure times. In contrast, nitrate toxicity may decrease with increasing body size, water salinity, and environmental adaptation. Freshwater animals appear to be more sensitive to nitrate than marine animals. A nitrate concentration of 10 mg NO3-N/l (USA federal maximum level for drinking water) can adversely affect, at least during long-term exposures, freshwater invertebrates (E. toletanus, E. echinosetosus, Cheumatopsyche pettiti, Hydropsyche occidentalis), fishes (Oncorhynchus mykiss, Oncorhynchus tshawytscha, Salmo clarki), and amphibians (Pseudacris triseriata, Rana pipiens, Rana temporaria, Bufo bufo). Safe levels below this nitrate concentration are recommended to protect sensitive freshwater animals from nitrate pollution. Furthermore, a maximum level of 2 mg NO3-N/l would be appropriate for protecting the most sensitive freshwater species. In the case of marine animals, a maximum level of 20 mg NO3-N/l may in general be acceptable. However, early developmental stages of some marine invertebrates, that are well adapted to low nitrate concentrations, may be so susceptible to nitrate as sensitive freshwater invertebrates.  相似文献   

13.
W.Brock Neely 《Chemosphere》1984,13(7):813-819
A theoretical relation has been established between the water solubility of an organic chemical and the ratio of the acute fish LC50 at two different time periods. The theory was tested by examining a data base of 24 chemicals. The finding of a positive correlation between the observed and calculated ratio of the 96 hr LC50 to the 24 hr LC50 helped to substantiate the theory.  相似文献   

14.
The increased demand of alternative energy sources has created interest in biodiesel and biodiesel blends; biodiesel is promoted as a diesel substitute that is safer, produces less harmful combustion emissions, and biodegrades more easily. Like diesel spills, biodiesel can have deleterious effects on the aquatic environments. The effect of neat biodiesel, biodiesel blends, and diesel on Oncorhynchus mykiss and Daphnia magna was evaluated using acute toxicity testing. Static nonrenewal bioassays of freshwater organisms containing B100, B50, B20, B5, and conventional diesel fuel were used to compare the acute effects of biodiesel to diesel. Mortality was the significant end point measured in this study; percent mortality and lethal concentration (LC50) at different exposure times were determined from the acute toxicity tests performed. Trials were considered valid if the controls exhibited > 90% survival. Based on percentage of mortality and LC50 values, a toxicity ranking of fuels was developed.  相似文献   

15.
This paper explores the relationship between the toxicity of certain organic pollutants and their tissue concentration and suggests that the latter may be a more accurate predictor of toxicity than exposure concentration.  相似文献   

16.
Sodium monofluoroacetate (compound 1080) is one of the most potent pesticides. It is also a metabolite of many other fluorinated compounds, including anticancer agents, narcotic analgesics, pesticides or industrial chemicals. Other sources of water contamination are the atmospheric degradation of hydrofluorocarbons and hydrochlorofluorocarbons. However, there is little information available about the adverse effects of sodium fluoroacetate in aquatic organisms. Firstly, the bacterium Vibrio fischeri (decomposer), the alga Chlorella vulgaris (1st producer) and the cladoceran Daphnia magna (1st consumer) were used for the ecotoxicological evaluation of SMFA. The most sensitive models were C. vulgaris and D. magna, with a NOAEL of 0.1 and an EC50 of 0.5 mM at 72 h, respectively. According to the results after the acute exposure and due to its high biodegradation rate and low bioaccumulation potential, sodium fluoroacetate is most unlikely to produce deleterious effects to aquatic organisms. Secondly, two fish cell lines were employed to investigate the effects and mechanisms of toxicity in tissues from 2nd consumers. The hepatoma fish cell line PLHC-1 was more sensitive to SMFA than the fibroblast-like fish cell line RTG-2, being the uptake of neutral red the most sensitive bioindicator. Lysosomal function, succinate dehydrogenase and acetylcholinesterase activities were inhibited, glucose-6-phosphate dehydrogenase activity was particularly stimulated, and metallothionein and ethoxyresorufin-O-deethylase levels were not modified. Intense hydropic degeneration, macrovesicular steatosis and death mainly by necrosis but also by apoptosis were observed. Moreover, sulphydryl groups and oxidative stress could be involved in PLHC-1 cell death induced by SMFA more than changes in calcium homeostasis.  相似文献   

17.
水体沉积物毒性鉴别与评价研究进展   总被引:1,自引:0,他引:1  
综述了水体沉积物毒性鉴别与评价的主流方法以及研究进展,指出毒性测试和致毒因子鉴别方法是限制水体沉积物污染生态风险评价的关键因素,认为发展和应用以生物标记物和生物效应为导向,尤其是各种具有污染专一性指示作用的生物效应标志测试方法的建立和应用,并结合具有选择性的样品分级技术和先进的仪器进行定性定量分析,将是以生物效应为导向、以化学分析为基础的复杂水体沉积物毒性鉴别与评价的重要发展方向.  相似文献   

18.
A continuous supply of water with defined stable concentrations of hydrophobic chemicals is a requirement in a range of laboratory tests such as the OECD 305 protocol for determining the bioconcentration factor in fish. Satisfying this requirement continues to be a challenge, particularly for hydrophobic chemicals. Here we present a novel solution based on equilibrium passive dosing. It employs a commercially available unit consisting of ∼16 000 polydimethylsiloxane (PDMS) tubes connected to two manifolds. The chemicals are loaded into the unit by repeatedly perfusing it with a methanol solution of the substances that is progressively diluted with water. Thereafter the unit is perfused with water and the chemicals partition from the unit into the water. The system was tested with nine chemicals with log KOW ranging from 4.1 to 6.3. The aqueous concentrations generated were shown to be largely independent of the water flow rate, and the unit to unit reproducibility was within a factor of ∼2. In continuous flow experiments the aqueous concentrations of most of the study chemicals remained constant over 8 d. A model was assembled that allows prediction of the operating characteristics of the system from the log KOW or PDMS/water partition coefficient of the chemical. The system is a simple, safe, predictable and flexible tool that generates stable aqueous concentrations of hydrophobic chemicals.  相似文献   

19.
We studied the compartmentalization of cadmium and zinc in the oligochaete Tubifex tubifex. The subcellular distribution was followed over time and levels of metallothionein-like proteins were measured. The impact of the speciation on the trophic transfer was studied by calculating the assimilation efficiencies of metals from Tubificidae fed to carp. It was found that carp were able to assimilate 9.8% of the cadmium. The expected assimilated amount of cadmium, based on the subcellular fractions which are thought to be trophically available, is however 72%. The zinc assimilation results suggest that the debris fraction is at least partially available to predators. Differential centrifugation techniques provide information about the tissue compartmentalization in aquatic organisms but it is not straightforward to directly link internal speciation in prey items to the actual assimilation in the predator. The possible impact that the compartmentalization of cadmium in T. tubifex will have on the toxicity to the organism is also discussed.  相似文献   

20.
Current understanding of the mechanisms of recovery of surface waters from acidification leads to several conclusions which must be considered when devising emission control strategies. Recovery can be regarded as being in two stages: an initial phase in which the waters respond to the reduced SO4(2-) deposition, and a second phase which depends on recovery of the soil base status. If an acceptable water quality is not produced in the first phase, recovery will be extremely slow, taking centuries. This may be true of very sensitive areas such as S Norway. Faster and deeper emission reductions will not significantly speed recovery in these situations: liming is then the only practicable method. Areas where the weathering rate is higher will recover faster, and here recovery may be delayed (by decades) by two poorly understood processes-release of SO4(2-) and release of organic acids from soils. Research on the control of these processes and on the extent of lake resource in each category is urgently needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号