首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
一、试验方案的选择 1.味精脱色粉炭的特性粉状活性炭用于味精精制工序中主要为了脱去味精粗品中色素,在脱色过程中活性炭除了吸附谷氨酸钠溶液中的色素、铁和其它金属离子外,其表面还会附着谷氨酸钠、蛋白质等胶体以及氨基酸和菌种等。用于粉状活性炭脱除味精脱色时,其吸附负荷比污水处理的废炭高5~8倍,属于高负荷运行,废炭的  相似文献   

2.
大孔强碱阴树脂去除饮用水中微量有机物   总被引:2,自引:0,他引:2  
比较了大孔强碱阴树脂和颗粒活性炭在饮用水的深度处理中对有机物的去除效果。结果表明:(1)大孔强碱阴树脂的吸附容量比颗粒活性炭的大。在pH为8时,大孔强碱阴树脂对TOC的去除率最高。pH6~8时,对TOC的去除率没有明显的区别,而颗粒活性炭在pH为2时。对TOC的去除率最高;水温低能提高2种吸附材料的吸附容量。(2)在动态实验条件下。当流速相同,大孔强碱阴树脂的穿透时间明显比颗粒活性炭的长,大孔强碱阴树脂的制水量约是吸附床的10000倍。而颗粒活性炭却只有吸附床的4000倍。在饮用水的深度处理中,大孔强碱阴树脂可作为活性炭的最佳替代品。  相似文献   

3.
为解决废旧轮胎热解油颜色过深和存在异味而无法直接利用问题,文章采用活性炭对热解油吸附脱色工艺,将液相中含有的杂质、色素、异味等舍弃物吸附于活性炭表面上,以达到精致的目的。试验表明:热解油活性炭吸附脱色技术的最佳工艺条件为炭粒度550~1 700μm、脱色温度为室温、吸附时间为300 min、振荡频率为150 r/min。并证明了平2均孔径、中孔孔容积和中孔比表面积为26.4、0.307 m L/g和280 m/g的烟煤基活性炭对热解油具有很好的脱色能力。  相似文献   

4.
粉末活性炭热再生   总被引:1,自引:0,他引:1  
一、前言活性炭可用于产品精制脱色以及净化饮用水和处理工业废水。用过的颗粒活性炭一般均再生循环利用,但用过的粉末活性炭一般均作废炭处理。试验证明,用过的粉炭经热再生后,其吸附性能及其它指标都可以接近或超过新炭的标准,再生的成本仅新炭的十分之一。无论从环境保护还是从资源利用的观点看,粉炭与颗粒炭一样,也应该再生循环利用,迫切需要改变目前一次性使用的情况。  相似文献   

5.
水蒸气法制备污泥质活性炭的实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
以污泥和木屑为原料,采用管式炉水蒸气活化法,对流化床热解炉制得的热解炭进行制备活性炭的研究,分析了活化因素对活化效果的影响、亚甲基蓝在活性炭上的吸附平衡和动力学、污泥活性炭浸出液中重金属的含量及其孔结构等性能.实验结果表明:随着活化温度的升高、活化时间的延长和水蒸气流量的增加,活性炭的得率不断降低,亚甲基蓝的吸附值先升高后降低;污泥中添加20%木屑时制得的活性炭的吸附性能是纯污泥质活性炭的一倍多; Langmuir吸附等温线模型、准二级反应模型能够比较准确地描述亚甲基蓝在污泥活性炭上的吸附相平衡及吸附过程,平衡时活性炭对亚甲基蓝单层最大吸附量为71.43mg/g;污泥质活性炭的孔结构以过渡孔为主;浸出液中只有少量的重金属.  相似文献   

6.
负载Cu改性活性炭吸附VOCs性能的研究   总被引:2,自引:2,他引:0  
《环境工程》2015,33(1):95-99
采用浸渍焙烧法对活性炭进行铜负载改性,并用于甲苯、乙酸乙酯及甲苯-乙酸乙酯二元混合气体的吸附。结果表明:醋酸铜负载量1.5%时活性炭吸附性能最好,对于单组分气体吸附,改性活性炭对甲苯和乙酸乙酯的吸附量较未改性前分别提高了29.7%和21.3%,穿透时间分别延迟了19.3%、18.6%;对于二元混合气体吸附,改性后活性炭较未改性活性炭对甲苯和乙酸乙酯的吸附量分别提高了19.4%和33.0%。采用BET、SEM、FTIR、XRD等分析表明,铜负载改性后的活性炭比表面积变大、总孔容变大,且铜与VOC的络合作用是改性后吸附量提高的主要原因。  相似文献   

7.
污泥活性炭处理染料废水的研究   总被引:4,自引:0,他引:4  
采用污泥活性炭处理酸性品红模拟染料废水,研究了pH值、污泥活性炭投加量、温度、吸附时间等因素对染料废水的脱色率和COD去除率的影响。探讨了污泥活性炭处理染料废水的机理。实验结果表明:污泥活性炭表现出良好的吸附性能,随着酸性品红染料废水浓度的增加,脱色率先增大后减小,COD去除率的变化曲线与脱色率的曲线呈现相似的走势,但在脱色过程中,只有部分染料分子被吸附到污泥活性炭的结构中,另一部分脱色应归因于水溶液中的氢离子吸引染料分子中的碱性助色基团;随着污泥活性炭投加量的增加,脱色率逐渐增大,COD去除率一直减小;由于染料分子中的显色基团和助色基团与废水溶液中氢离子和氢氧根离子之间的相互作用,导致pH对处理效果的影响比较明显,脱色率和COD去除率均在pH为弱酸性范围内效果比较好;随水浴时间的增加,脱色率逐渐增加,COD去除率很低并一直减小;温度的升高使脱色率先增大后减小,COD去除率整体逐渐减小。通过正交试验得到最佳工艺参数为:pH值取5,水浴时间取6.5 h,水浴温度取20℃,染料废水浓度取2.5 mg/L,活性炭投加量取2.5 g,其脱色率为47.73%,COD去除率为62.62%。  相似文献   

8.
改性活性炭对水中PFOS的吸附去除研究   总被引:5,自引:4,他引:1  
童锡臻  石宝友  解岳  王东升 《环境科学》2012,33(9):3132-3138
分别用FeCl3及中功率微波对煤质和椰壳2种粉末活性炭进行改性.序批式实验研究了活性炭改性前后对全氟辛烷磺酸(PFOS)的吸附特性.结合活性炭改性前后表面化学官能团和孔结构的变化特征,探讨了不同改性方式对PFOS吸附去除的影响效应以及天然有机物中的主要组成成分腐殖酸对PFOS在原炭及改性炭上的竞争吸附效应.结果表明,Fe3+及中功率微波处理对煤质炭和椰壳炭的孔结构和表面性质都有影响,但变化趋势不同.椰壳活性炭经Fe3+及中功率微波改性后对PFOS的吸附量明显提高,而煤质活性炭经改性后对PFOS的吸附量出现下降.改性椰壳活性炭与原炭吸附PFOS达到吸附平衡的时间基本相同,均为6 h左右.在腐殖酸存在下,改性椰壳炭对PFOS的吸附量因竞争吸附而有所下降,但改性炭的吸附量仍明显高于原炭.  相似文献   

9.
利用石油流化焦制备活性炭的研究   总被引:2,自引:1,他引:1  
通过高温化学活化法和以高硫石油流化焦为原料、KOH为主要活化剂制备活性炭,研究了碱焦比、乙醇或丙酮和氮气流保护等对活性炭性能的影响。实验在直立管式炉内进行,选用单因素实验,结合比表面积和孔隙表征、元素分析、工业分析及苯酚吸附值测定,对样品进行评价。结果表明:活性炭比表面积和总孔容积随碱焦比增加而增加;乙醇或丙酮配入能提高样品比表面积和孔隙特性及其苯酚吸附能力;采用无氮气流保护反应系统,能增加样品BET表面积和总孔容积,并降低硫氮含量。  相似文献   

10.
大孔吸附树脂处理工业废水研究进展   总被引:5,自引:0,他引:5  
在介绍了大孔吸附树脂的结构、吸附原理和分类,以及论述了国内外采用大孔吸附树脂处理苯胺、苯肼、含酚、含苯甲酸衍生物、含萘衍生物和含锌离子等废水具有很好的吸附-解吸特性的基础上,深入探讨了大孔吸附树脂处理废水的优点和影响因素,并指出大孔吸附树脂在工业废水的处理上是一种非常具有应用前景的新型吸附材料。  相似文献   

11.
以颗粒状活性炭为吸附载体,对两种单体生物染料进行脱色吸附实验研究。通过实验确定出最佳优化条件:活性炭用量80g/L,溶液pH值约为5、5,溶液最佳温度为35℃,搅拌速度为150rpm/min,此时染料脱色率可达98%以上;在几种条件实验过程中,将两种染料进行对比发现:红色染料脱色率一般都比绿色染料脱色率高,而且前者一般比后者反应较敏感。同时,从活性炭的表面结构方面探讨吸附脱色机理,为活性炭深度处理印染废水的研究可提供一定的科学依据。  相似文献   

12.
活性炭孔结构和表面化学性质对吸附硝基苯的影响   总被引:12,自引:1,他引:11  
刘守新  陈曦  张显权 《环境科学》2008,29(5):1192-1196
通过对活性炭HNO3氧化及随后的N2:气氛中热处理,研究了活性炭性质对其吸附硝基苯性能的影响.以低温液氮(N2/77K)吸附测定活性炭的比表面积和孔容、孔径分布,以SEM观测活性炭表面形貌,以Boehm滴定、FTIR、零电荷点pHpzc测定及元素分析定量表征活性炭表面含氧官能团变化.结果表明, HNO3氧化可以显著改变活性炭表面化学性质,增加活性炭表面酸性含氧官能团数量,对活性炭孔隙结构影响不大.随后N2:气氛中热处理可以造成活性炭表面酸性含氧官能团分解,外表面积增大,微孔烧蚀为中孔.硝基苯在活性炭上的吸附基本符合Langmuir方程,改性后活性炭对硝基苯的吸附容量明显改变, ACNO-T、ACraw、ACNO吸附容量分别为1011.31、483.09、321.54 mg·g-1.较大的外表面积、适宜数量的中孔以及较少的酸性含氧官能团是ACNO-T对硝基苯表现出较高吸附容量的主要原因.  相似文献   

13.
活性炭或活性炭与其它除汞工艺相结合业已用来处理含汞废水和含汞淡盐水。但是由于活性炭价格昂贵、吸附选择性差及再生困难等问题,影响了它的应用。近年来,许多研究者都致力于廉价高效吸附剂的研究。用聚氯乙烯塑料、废硫化橡胶制得了选择性吸附汞的活性炭。美国有用花生皮、花生壳等废物处理含汞废水。此外,用某些化学物质涂敷于活性炭的表面或者使活性炭包含某些对汞有强亲合力的基团(如—SH基),可  相似文献   

14.
三醋酸甘油酯在活性炭上的吸附特性   总被引:1,自引:0,他引:1  
三醋酸甘油酯在卷烟中主要作为醋酸纤维过滤嘴的增塑剂使用。在不同的温度和相对湿度条件下,研究活性炭对三醋酸甘油酯的吸附机理,探讨了活性炭的孔结构对其吸附性能的影响。结果表明:活性炭吸附三醋酸甘油酯符合Langmuir模型,其饱和吸附量为333 mg/g;高温有利于吸附三醋酸甘油酯,而增加湿度则抑制了三醋酸甘油酯的吸附;在一定范围内,当活性炭孔面积大于三醋酸甘油酯最小截面积的2.8倍时,活性炭对三醋酸甘油酯的吸附量增多,反之减少。因此,较大的微孔孔径有利于活性炭吸附三醋酸甘油酯。  相似文献   

15.
富含中、微孔稻壳活性炭的表征及液相吸附性能   总被引:1,自引:0,他引:1       下载免费PDF全文
李大伟  朱锡锋 《中国环境科学》2010,30(12):1597-1601
对采用CO2-NaOH联合活化新工艺制备的稻壳活性炭的孔结构进行了表征,并用探针分子亚甲基蓝、苯酚考察了它对大、小分子的液相吸附性能.结果表明:所得活性炭同时富含中孔与微孔,中、微孔容积均达到0.32cm3/g,各占总孔容的50%;它对苯酚及亚甲基蓝均显示出优越的吸附性能,脱除效率分别达到94%和99%,超过或接近所用优质商业活性炭的相应值;对这2种污染物的吸附皆较好地符合Langmuir等温式.  相似文献   

16.
作者利用实验室装置研究了活性炭对元素汞(Hg°)的吸附比率和作用原理。三种类型的活性炭,其中两种是热处理活性炭(PC—100和FGD),一种是浸入硫(S)元素的活性炭(HGR),用来研究表面积的作用(大约550~1000m~2/g)、吸附温度(23~140℃)及Hg°浓度(氮里的Hg°为20和60PPb)。结果表明:吸附出现在PC—100和FGD的活性部位,而它们在140℃的高温处理下不是减少就是失去活性。就HGR来说,在23℃的吸附出现在外表面的无硫部位;在140℃的吸附主要出现在Hg°和S的反应过程中。PC—100和HGR的解吸研究说明:在23℃时活性炭的吸附机理是物理吸附和化学吸附的结合,而在140℃时主要是化学吸附。  相似文献   

17.
活性炭性质对其吸附水中硝基苯性能的影响   总被引:1,自引:0,他引:1  
通过对活性炭进行HNO3氧化及热处理改性,研究了活性炭性质对其吸附硝基苯性能的影响.以低温液氮(N2/77 K)吸附测定活性炭的比表面积和孔容、孔径分布;以Boehm滴定、零电荷点pHPZC的测定及元素分析定量表征活性发表面含氧官能团变化.结果表明:经改性后,活性炭比表面积及总孔容略有减小,表面性质发生较大变化.改性活性炭对硝基苯的吸附容量明显改变,吸附容量大小依次为:AC1′>AC0′>AC0>AC1.经硝酸氧化后,比表面积下降、存在过多表面含氧官能团是导致AC1吸附硝基苯能力降低的主要原因;而AC1'表面适量酚羟基所提供的氢键吸附是其对硝基苯吸附量增加的主要原因.  相似文献   

18.
李刚  李伟光  王广智  李鑫  公绪金 《环境工程》2012,(Z2):489-493,568
以城市生活污水厂脱水车间污泥为原料,采用化学活化法(ZnCl2为活化剂)在活化剂浓度为45%、活化温度为600℃、浸渍温度为45℃、活化时间为50min条件下制备污泥基活性炭。对污泥基活性炭进行了孔结构、扫描电镜(SEM)、红外光谱(FTIR)、XRD等表征分析。结果表明:该条件下制备出的污泥基活性炭碘吸附值为427.51mg/g,比表面积为329.48m2/g,大孔、中孔、微孔容积分别为0.19,0.12,0.15cm3/g。平均孔径为3.953nm。将其应用于生活污水处理,考察了污泥基活性炭投加量、pH、吸附时间对其吸附性能的影响。  相似文献   

19.
目前,载入英国大不列颠百科全书的吸附剂有三种:大孔树脂、活性炭、分子筛.也许不久的将来,一种新的吸附剂将会加入其间,这就是包头市时光环保新技术开发研究所所长时光研制的SG型吸附剂.这种吸咐剂具有活性炭的大、中、小孔结构,其中中孔特别发达.在加工过程中引入活性基团,所以具有吸附和生物氧化分解的双重作用,可以取代活性炭及树脂,显示出它自身的巨大竞争力.  相似文献   

20.
研究了活性炭在酸(HNO3,H2SO4,HCI)和碱(NaOH,氨水)处理后对苯酚吸附性能的影响,测定了活性炭的亚甲基蓝值、碘值扣表面官能团等基本物理化学参数。研究发现:碱改性使活性炭上酸性官能团数量减少。碱性官能团增加,增强了活性炭对苯酚类疏水性物质的吸附客量。NaOH、氨水改性活性炭对苯酚的吸附值比未改性活性炭分别提高了56,70%和47.40%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号