首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied assimilation efficiencies of the temperate-zone intertidal fish Cebidichthys violaceus (Girard, 1854) fed in the laboratory on each of the following species of macroalgae: Spongomorpha coalita (Chlorophyta), Ulva lobata (Chlorophyta), Iridaea flaccida (Rhodophyta) and Porphyra perforata (Rhodophyta). Together, these 4 algae make up over 75% of the natural summer diet of C. violaceus. Assimilation efficiency was calculated by proximate organic analysis of food and feces; the amount of ash in food and feces was used as a standard. Depending on the algal species, the fish assimilated 43 to 81% of the protein, 21 to 44% of the lipid, 45 to 62% of the carbohydrate and 31 to 52% of all three classes of organic material combined. These data are the first results showing that a temperate-zone marine fish can assimilate macroalgal constituents. Protein, carbohydrate and total organic material were absorbed more efficiently from rhodophytes than from chlorophytes. Conversely, lipid was absorbed more efficiently from chlorophytes than from rhodophytes. These results are compared with previous work showing that C. violaceus in nature eats more chlorophytes than rhodophytes, but in laboratory preference tests prefers rhodophytes to chlorophytes.  相似文献   

2.
The mean annual chemical compositions (ash, lipid, carbohydrate, protein, nitrogen and carbon) of 23 species of macrophytes (22 seaweeds and 1 seagrass) from a rocky intertidal habitat on the central California coast were determined from December 1981 through December 1982. These data were used to test the hypothesis that the 13 red and green seaweeds eaten by the two principal herbivorous fishes (Cebidichthys violaceus andXiphister mucosus) at the site are higher in nutritional quality than the 9 red and brown seaweeds and the seagrass not consumed by these fishes. A MANOVA using the ash, lipid, carbohydrate and nitrogen data showed that the centroids of the dietary and nondietary species groups were significantly different. In a two-group discriminant analysis that followed, only two species were misclassified as members of the opposite group. Multigroup discriminant analysis of the 23 macrophytes resulted in some overlap among dietary and nondietary species. Species were discriminated on the first canonical axis by ash content and on the second and third axes by lipid and carbohydrate contents. Nitrogen contributed little to the overall discrimination of species in the analysis. The nondietary red algaCorallina vancouveriensis, with its high ash content and therefore relatively low nutritional quality, was clearly separated from all other species in the analysis. Brown algae were of higher nutritional quality, but are not eaten by the two fishes, possibly because these seaweeds produce indigestible carbohydrates and secondary compounds. However, the exclusion from the diets of several red algal species that were virtually indistinguishable from the dietary red algae remains unexplained.Contribution No. 64 from the Ocean Studies InstitutePlease address all correspondence and requests for reprints to Dr. Horn at Fullerton  相似文献   

3.
  Specimens of the nominally herbivorous, closely-related, fish genera Girella and Kyphosus were collected from Australian waters in 1994 and 1995. The diet of three Girella species (G. cyanea, G. elevata, and G. tricuspidata) consisted mainly of chlorophytes and rhodophytes, with an animal component of␣15.9 ± 4.2% in G. tricuspidata. The diet of four species of Kyphosus (K. bigibbus, K. cinerascens, K. sydneyanus, and K. vaigiensis) included phaeophytes, chlorophytes and rhodophytes, and almost no animal material. Concentration of total short-chain fatty acids in the posterior intestine was <11.4 mM in the Girella spp. and >39.2 mM in the Kyphosus spp. These results suggest that microbial fermentation plays a role in algal digestion in Kyphosus spp., but not in Girella spp. Girellids and kyphosids appear to function quite differently as herbivores. Girellids should be considered as omnivores that complement readily-available energy from algae with protein from invertebrates. Kyphosids appear to be strict herbivores that can derive adequate nutrition from algae poor in easily assimilable energy, through microbial fermentation in the hindgut. Received: 8 July 1996 / Accepted: 2 August 1996  相似文献   

4.
Analyses of gut contents of freshly collected Ligia pallasii (Brandt) showed that the principal foods were encrusting diatoms, insect larvae, occasional members of the same species, and a variety of red and green seaweeds growing in the upper interiidal tidepool habitat. L. pallasii prefers to eat the green seaweed Ulva sp., and the brown alga Nereocystis luetkeana, when given a choice between several seaweeds, although neither of these forms is normally accessible to the isopods. The absorption (assimilation) of food-energy was 78% on a diet of Ulva and 55 to 76% on a diet of N. luetkeana—representative values for an algivorous invertebrate. A correlation analysis on the relationship of feeding preference of L. pallasii with calorific value of 7 potential seaweed foods suggested that feeding preference in this species is related to factors other than energy content of the food. Food preferences of invertebrates are discussed in relation to calorific value, accessibility, and to various nutritional factors.  相似文献   

5.
Food composition and food requirements of four amphipod species of the Black Sea — Dexamine spinosa (Mont.), Amphithoe vaillanti Lucas, Gammarellus carinatus (Rathke), Gammarus locusta L. — were studied and an attempt made to assess the quantitative composition of the food, daily rhythms of feeding, and daily food rations. The composition of the food of the above-named amphipods is similar and consists primarily of seaweeds. Daily feeding intensity is characterized by a distinct increase during the dark period (D. spinosa, A. vaillanti); however, in G. locusta feeding intensity increases in the morning. The daily food rations of amphipods vary greatly (from 1.7 to 360% of the specimens' body weight), depending upon factors such as the kind of food, age, sex, the physiology of specimens, and the water temperature. The total quantity of food eaten by the populations of these amphipods in the coastal zone of the Black Sea amounts to 4000 g organic matter per square metre within 1 year.  相似文献   

6.
Sponge-feeding fishes of the West Indies   总被引:9,自引:0,他引:9  
In an analysis of the stomach contents of 212 species of West Indian reef and inshore fishes, sponge remains were found in 21 species. In eleven of these, sponges comprised 6% or more of the stomach contents; it is assumed that these fishes feed intentionally on sponges. Sponges comprise over 95% of the food of angelfishes of the genus Holacanthus, over 70% of the food of species of the related genus Pomacanthus, and more than 85% of the food of the filefish, Cantherhines macrocerus. Lesser quantities of sponges are ingested by the remaining fish species. Fishes that feed on sponges belong to highly specialized teleost families, suggesting that this habit has evolved in geologically late time. The small number of fish species that concentrate on sponges as food suggests that the defensive characters of sponges—mineralized sclerites, noxious chemical substances, and tough fibrous components—are highly effective in discouraging predation. The two sponges most frequently eaten by fishes have a low percentage of siliceous spicules relative to organic matter, but among the 20 next most frequently consumed species no striking correlation occurs with respect to spicule content. Color and form of the sponge show no special correlation with frequency of occurrence in fish stomachs. Three species of fishes appear to concentrate on one species of sponge, but in these cases over 60% of the food taken consists of a variety of other organisms. Those fishes, more than half of whose diet consists of sponges, tend to sample a wide variety of species. No strong evidence is provided by our data that fish predation is a significant factor in limiting sponge distribution in the West Indian region.  相似文献   

7.
Estimates of feeding rates, alimentary tract structure and temporal patterns of food processing obtained from twelve species of nominally herbivorous fishes on the northern Great Barrier Reef were compared. These included members of the families Acanthuridae, Scaridae and Kyphosidae. Based on an analysis of diet and short-chain fatty acid (SCFA) profiles from a previous study we initially partitioned the twelve species into four dietary categories, as follows: (a) Category 1: herbivores with a diet of macroscopic brown algae and high SCFA profiles in the hindgut region (Naso unicornis, Kyphosus vaigiensis); (b) Category 2: herbivores feeding on turfing and filamentous red and green algae with moderate SCFA profiles in the hindgut region (N. tonganus, K. cinerascens, Zebrasoma scopas, Acanthurus lineatus); (c) Category 3: zooplankton feeders with moderate SCFA profiles (N. vlamingii, N. brevirostris); (d) Category 4: species feeding on detrital and sedimentary materials with low levels of SCFA (Chlorurus microrhinos, Scarus schlegeli, Ctenochaetus striatus, A. olivaceus). The purpose of this comparison was to determine whether measures of feeding activity, alimentary tract structure, and food processing were concordant with diet. A dichotomy in feeding rates was observed. Species with a diet of algae and zooplankton (categories 1–3) had slower feeding rates than those feeding on detrital aggregates and sediment (category 4). The pattern of food processing also followed the same dichotomy with species of categories 1–3 retaining food in the alimentary tract overnight and commencing the feeding day with substantial amounts of food in the intestine and hindgut. Category-4 species commenced the feeding day with empty alimentary tracts suggesting a rapid turnover of gut contents. Within the herbivorous and zooplankton-feeding species neither alimentary tract structure nor food processing mode were predicted by diet or SCFA profiles. A hindgut fermentation chamber was present in K. vaigiensis but not in N. unicornis, a species with high levels of SCFA in the hindgut region and a diet of brown macroscopic algae. In contrast N. vlamingii, with a diet dominated by animal matter, retained large amounts of food material in a hindgut chamber over the entire feeding cycle. In tropical perciform fishes, herbivory and fermentation are not associated with the alimentary tract structures that characterise herbivorous terrestrial vertebrates. Estimates of the abundance of the different groupings of nominally herbivorous fishes indicated that the dominant elements in the reef grazing and browsing fauna were consumers of detrital and sedimentary materials. These could not be classified as herbivores. Members of this group were dominant in all habitats investigated. Explicitly herbivorous taxa were a minority component in all habitats investigated.Communicated by G.F. Humphrey, Sydney  相似文献   

8.
Laboratory experiments conducted during 1987 on Appledore Island, Maine, USA, tested whether feeding preference or the absence of an attractant was the cause for the occurrence of beds of Codium fragile ssp. tomentosoides (herein referred to as Codium fragile) within rocky barrens grazed clear of kelp by the sea urchin Strongylocentrotus droebachiensis. Consumption of C. fragile in single-diet experiments (1 seaweed/sea urchin) was highly variable and was not significantly different from that for several other seaweeds (Agarum cribrosum, Ascophyllum nodosum, Chondrus crispus, and Laminana saccharina) important in the field diet of the green sea urchin. In multiple-diet experiments (5 seaweeds/sea urchin) significantly less Codium fragile was eaten than Chondrus crispus, but significantly more Codium fragile was eaten than A. cribrosum. Chemosensory experiments suggest that C. fragile does not attract the sea urchin. Sea urchins are unable to detect C. fragile but will eat it when they come in contact with it.  相似文献   

9.
Fishes were trawled from Albatross Bay, on the west coast of Cape York, north Queensland (12°45S; 141°30E) during 4 yr, from August 1986 to April 1989. Penaeids were the first or second most important prey item by dry weight in 14 of the 34 penaeid-eating fish species, and in 12 of the species by frequency of occurrence. Eighteen species of Penaeidae were identified in fish stomachs. The five commercially important species comprised over 70% by dry weight of all the penaeids eaten by all the fishes;Metapenaeus ensis, Penaeus semisulcatus andP. merguiensis comprised 22, 28 and 11%, respectively. Commercially unimportant penaeids comprised 85% by numbers of all penaeids eaten. Larger fishes ate larger penaeids, mainly commercially important species, while smaller fishes ate smaller penaeids, mainly commercially unimportant species. All penaeid-eating fishes also ate some teleost prey and many were primarily piscivorous. Most penaeid-eating fish species took more benthic prey than bentho-pelagic and pelagic prey combined. The fishes with the strongest predation impact on commercially important penaeids wereCaranx bucculentus and four species of elasmobranchs. The highest impact on commercially unimportant penaeids was made by several species of smaller but abundant fishes. An overall annual estimate of 2950 t yr–1 of commercially important penaeids is eaten by all fishes, a much higher figure than the average 870 t yr–1 taken by the fishery. This study highlights the need for accurate measurement of the abundance of penaeid predators as well as analyses of their diets when assessing the impact of predators on prawn stocks.  相似文献   

10.
Partitioning of the food resources by two coexisting pufferfishes (Sphoeroides spengleri and S. testudineus) from Biscayne Bay, Florida, USA, was investigated. Gut contents from 453 bandtail and 339 checkered puffers were analyzed. The diets of both species consisted of a variety of benthic prey, but only crustaceans and molluscs were important prey groups. While differences were found in the proportions of general prey categories eaten by these fishes, both species consumed substantial quantities of brachyuran crabs, bivalves, and gastropods. Specific identification of the prey items within these three food categories revealed additional differences in prey between the two puffer species. This partitioning of the food resources by bandtail and checkered puffers was found between both species overall, between overlapping size ranges, and between both species' most abundant size group. Differences in food habits between these two fishes illustrate that congeners with virtually identical mouth structure and complete spatial overlap can significantly partition the food resources.Contribution No. 78-58M from the U.S. Department of Commerce, NOAA, National Marine Fisheries Service, Southeast Fisheries Center, Miami Laboratory, Miami, Florida, USA.  相似文献   

11.
The diet of the temperate marine herbivorous fish Odax pullus (Pisces: Odacidae) was examined using gut-content analysis followed by principal-component analysis and analysis of variance. Fish were collected near Leigh, on the northeast coast of New Zealand, from February 1983 to September 1984. The data were categorised by size of fish, season, and state of tide. A major ontogenetic shift in diet was observed. Juveniles fed on animal material (crustaceans and gastropods), epiphytic rhodophytes, and some phaeophyte material. Adults fed almost exclusively on two phaeophyte taxa, the laminarian Ecklonia radiata and the fucoid Carpophyllum spp. Dietary selection was evident at the level of particular plant components; the diet of larger fish in spring samples was dominated by fucoid reproductive receptacles. There was no direct evidence of a tidal influence on diet composition of O. pullus, although the relative proportions of E. radiata and Carpophyllum spp. ingested by adult fish appeared to vary with tidal state. The volume of gut contents varied seasonally for all size classes, although the timing of peak annual food intake varied among size classes. Tidal state did not influence the volume of the gut contents. The ontogenetic and seasonal trends evident in the diet of O. pullus appeared to be related to a number of factors including relative gut length, gonad development, ontogenetic changes in feeding anatomy and seasonal changes in algal composition.  相似文献   

12.
Experiments were conducted to test the role of secondary metabolites in determining the natural feeding preference hierarchy of the bucktooth parrotfish Sparisoma radians. The two least preferred food genera of S. radians, Halimeda and Penicillus, both contain 1,4-diacetoxy-1,3-butadiene terpenes, while the most preferred species, Thalassia testudinum, does not. Experiments with agar cylinders containing macrophyte homogenates showed that macrophyte biteability was not a factor. Instead preference could be altered by the application of the diacetoxybutadiene containing terpenes 4,9-diacetoxyudoteal and caulerpenyne or fractions or extracts containing them at naturally occurring concentrations. Concentration of the active terpenes affected the intensity of the fish's preference for the control in pairwise comparisons. Extracts and fractions which did not contain 4,9-diacetoxyudoteal or caulerpenyne did not affect fish feeding preferences at naturally occurring concentrations. Experiments in which S. radians were given no plant choice showed that coating T. testudinum with H. incrassata organic crude extract reduced the number of bites consumed and the biomass consumed to a level equivalent to that obtained for H. incrassata plants.  相似文献   

13.
The diet of the emperor penguin Aptenodytes forsteri in the western Ross Sea during spring was investigated by analysis of stomach contents sampled at three different localities. At Cape Washington, emperor penguins feeding chicks consistently preyed on fishes (89 to 95% by mass) and crustaceans (5 to 11%) over the four spring seasons examined. By far the commonest prey was the Antarctic silverfish Pleuragramma antarcticum (89% of the fish prey); the remainder of fish prey were mainly unidentified juveniles of different species of channichthyid fishes. Three species dominated the crustacean part of the diet, i.e. the gammarid amphipods Abyssorchomene rossi/plebs (30% of the crustacean prey) and Eusirus microps (22%), together with the euphausiid Euphausia crystallorophias (24%). At Coulman Island and Cape Roget, fishes, mainly P. antarcticum, formed the bulk of the food (88 and 93% by mass, respectively), crustaceans were minor prey (2.5 and 0.4%), and the squid Psychroteuthis glacialis accounted for a small but significant part of the food (3.5 and 0.8%). This study emphasizes the importance of the small, shoaling pelagic fish Pleuragramma antarcticum as a key link between zooplankton and top predators, including seabirds, in the food web and marine ecosystem of the Ross Sea. Received: 20 May 1997 / Accepted: 8 October 1997  相似文献   

14.
Interactions between the predatory sea star Pycnopodia helianthoides (Brandt, 1835) and two of its natural prey, the sea urchins Strongylocentrotus purpuratus (Stimpson, 1857) and S. franciscanus (Agassiz, 1863), are examined with regard to predator preference, predator diet, and prey defenses. The sea star is able to detect both species of sea urchin upstream in a Y-trough, but does not consistently choose one over the other (i.e., no preference). However, when the sea star is presented with equal numbers of similar-sized specimens of the two species of sea urchin, its diet is markedly nonrandom, since S. purpuratus is eaten almost 98% of the time. The defensive responses of the two species of sea urchin differ in form and effectiveness. S. franciscanus employs its long spines as defensive weapons, pinching the rays of an attacking sea star. This defensive response is more effective than the pedicellarial response used by S. purpuratus. The nonrandom diet of the predator seems to result primarily from prey defensive responses that differ in effectiveness, rather than from an intrinsic, behavioral preference of the predator at an earlier stage in the predator/prey interaction.  相似文献   

15.
In 1983/1984,Diadema antillarum suffered mass mortalities throughout its West Atlantic range. Its populations were reduced by 95% and subsequently have failed to recover. These die-offs led to sustained increases in the abundance of soft algae, including types eaten by herbivorous reef fishes. I monitored adult populations of three herbivorous surgeonfishes (Acanthurus coeruleus, A. chirurugus andA. bahianus) between 1978 and 1990, and the recruitment of their pelagic juveniles between 1979 and 1989, on six patch reefs in Panamá. Adult populations ofA. coeruleus andA. chirurgus, which largely restrict their feeding to reef substrata, increased by averages of 250 and 160%, respectively, after the die-off ofD. antillarum in 1983. No increases occurred in the adult populations ofA. bahianus, which often feeds in off-reef habitats unaffected byD. antillarum. Average annual levels of juvenile recruitment of all three surgeonfishes did not differ before and after the die-off. These results support the hypothesis that adult populations of two herbivorous fishes that are strongly reliant on reef algae for food previously were limited by competition withD. antillarum.  相似文献   

16.
The decay of non-native and native seaweed mixing may modify sediment biogeochemistry and organic matter transfers within benthic food webs according to their composition and biomass. The non-native species Sargassum muticum was deliberately added to the sediment of an intertidal sandflat at different biomass and mixed to the native species Ulva sp. and Fucus vesiculosus. The sediment porewater was then 13C and 15N enriched to test whether both detrital diversity and biomass influenced the transfer of porewater carbon and nitrogen to the sediment and to the macrofauna consumers. More 15N-nitrogen was mobilized to sediments and macrofauna when the 3-species detrital mixing was buried, probably because this mixing provided species-specific compounds such as polyphenols due to the presence of S. muticum and F. vesiculosus, as well as large amounts of nitrogen due to the presence of Ulva. Our study revealed the importance of detrital diversity and non-native seaweeds for the nitrogen cycling in the benthic food web.  相似文献   

17.
We tested the usefulness of the fatty acid signature-method in investigating the diet of seabirds in conjunction with the conventional technique of stomach-content analysis. We compared the fatty acid composition of subcutaneous white adipose tissue (SWAT) of king penguin chicks (Aptenodytes patagonicus) during fattening periods to that of total lipids from their food. In both spring and autumn, the fatty acid composition of chick SWAT was identical to that of the dietary lipids. Because the diet of adult king penguins feeding for self-maintenance (i.e. not for their chicks) was essentially unknown, we subsequently analysed their SWAT fatty acid patterns after premolting and prebreeding foraging trips (during which they build up large energy reserves). The fatty acid composition of SWAT from adults was identical to that of chick adipose tissue and food. King penguin diet and SWAT were characterized by high levels of very long-chain mono-unsaturated fatty acids (20 to 24 carbon atoms, 16 to 23% by mass) and (n-3) poly-unsaturated fatty acids (19 to 27%); these consisted mainly of 20:1n-9 (5 to 8%) and 22:1n-11 (5 to 8%), and 22:6n-3 (10 to 13%) and 20:5n-3 (3 to 9%), respectively. Prey items identified from chick stomach contents indicated that the bulk of the food was oceanic myctophid fishes, mainly Electrona carlbergi, Krefftichthys anderssoni and Protomyctophum tenisoni. The fatty acid composition of four other species of myctophid fishes was similar to that of penguin diet and SWAT, but markedly different from that measured for a squid species and that reported for crustaceans. These findings indicate that adult king penguins prey on myctophid fish not only to feed their chicks but also for their own nutrition. The fatty acid signature-technique is therefore a reliable method to gain information on the food and feeding ecology of seabirds when more conventional techniques are of limited value. Such information is important to the understanding of trophic relationships between key species of the ecosystems, and also to provide insight into the nature of avian adaptations to the marine environment. Received: 11 December 1997 / Accepted: 25 July 1998  相似文献   

18.
Linuparus trigonus (Palinuridae) was collected from northeast Australia at depths of 220 to 300 m in the austral summer of 1985–1986 and its diet was analysed for diel feeding-periodicity and composition. The sex and size of the lobsters and the depth at which they were caught were recorded. About 35% of the foreguts were less than 10% full. L. trigonus appears to be a predator of slow-moving or nearsessile benthic invertebrates; its diet is mainly bivalves, gastropods, ophiuroids, crustaceans, polychaetes, and foraminiferans. Most dietary items differed significantly between the size classes of lobster. The frequency of crustacean remains increased with depth and more gastropods were consumed by lobsters caught at 260 m than at other depths. No significant periodicity in feeding was found for L. trigonus. The foreguts of three Metanephrops spp. (Nephropidae) collected from north-west Australia in August 1983 (M. andamanicus) and January/February 1984 (M. australiensis and M. boschmai) were nearly empty, and nearly half were less than 10% full. Fish, crustaceans and squids were the most common food items eaten. The main food items varied between the species: M. andamanicus ate nearly equal amounts of fish and crustaceans; M. australiensis ate chiefly crustaceans; M. boschmai mainly ate fish and seldom fed on squid. Metanephrops spp. appear to feed by attacking mobile animals and tearing off appendages or by scavenging.  相似文献   

19.
The sea urchin strongylocentrotus drobachiensis exhibited a high degree of food selectivity, whether foods were presented singly or in combination. Foods ranked from most to least preferred were, in summer, Laminaria longicruris, Chondrus crispus, Corallina officinalis, Ascophyllum nodosum, and Agarum cribrosum, whereas in winter A. nodosum and A. cribrosum exchanged ranks. Food preference was not correlated with caloric content but, because of higher feeding rates on preferred foods, caloric intake was positively correlated with preference. Similarly, food absorption rankings were not correlated with food preference, with the exception of gravimetric efficiencies in winter. However, the absorption of L. longicruris, the most preferred alga, was highest in all measurements. Growth and reproductive development of S. drobachiensis on single species diets were positively correlated with food preference. Highest values occurred with animals fed L. longicruris. Urchins transferred from non-preferred to preferred diets showed increased somatic and reproductive growth compared to control animals on the original, non-preferred diets. Conversely, when transferred from preferred to non-preferred diets, urchins showed reduced growth compared to controls. No combination diet tested supported significantly better gonadal growth than L. longicruris: 25% C. crispus supported slightly better somatic growth than L. longicruris alone. These data support the view that S. drobachiensis has evolved a feeding strategy resulting in the maximization of growth and reproduction.  相似文献   

20.
Recent studies have indicated that populations of gelatinous zooplankton may be increasing and expanding in geographic coverage, and these increases may in turn affect coastal fish populations. We conducted trawl surveys in the northern California Current and documented a substantial biomass of scyphomedusae consisting primarily of two species (Chrysaora fuscescens and Aurelia labiata). Spatial overlap of these jellyfish with most pelagic fishes, including salmon, was generally low, but there were regions of relatively high overlap where trophic interactions may have been occurring. We compared feeding ecology of jellyfish and pelagic fishes based on diet composition and found that trophic overlap was high with planktivorous species that consume copepods and euphausiid eggs such as Pacific sardines (Sardinops sagax), northern anchovy (Engraulis mordax), Pacific saury (Cololabis saira), and Pacific herring (Clupea pallasi). Moreover, isotope and diet analyses suggest that jellyfish occupy a trophic level similar to that of small pelagic fishes such as herring, sardines and northern anchovy. Thus jellyfish have the potential, given their substantial biomass, of competing with these species, especially in years with low ecosystem productivity where prey resources will be limited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号