首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
利用基于光腔衰荡光谱(CRDS)技术自组装的大气CO在线观测系统,于2010年9月~2012年2月在浙江省临安大气本底站对大气CO进行了在线观测.结果表明临安站四季CO日变化明显受人为活动影响,分别在每日07:00~10:00和19:00~20:00出现峰值,夏季CO日平均浓度和振幅均最低,分别为314.3×10-9±7.6×10-9(摩尔分数,下同)和50.1×10-9±47.9×10-9.该站全年大气CO浓度呈现冬春季高、夏季低的趋势,与北半球瑞士Jungfraujoch站、青海瓦里关等站基本一致,但平均浓度明显高于其他国际站点,全年CO月均值振幅约为286.8×10-9±19.2×10-9.后向轨迹聚类和地面风结果分析表明,临安站非本底CO浓度主要来自于N-NNE-ENE扇区内城市及工业等人为排放所引起.春、夏和冬季最大的浓度抬升均出现在ENE风向,冬季抬升值最大,约为106.3×10-9±58.0×10-9.  相似文献   

2.
北京市城区大气羰基化合物的季节变化   总被引:4,自引:2,他引:2  
许嘉钰  高阳 《环境科学》2009,30(3):625-630
2006年8月19~22日(夏季)、 10月24~30日(秋季)和2007年1月20~23日(冬季),利用被动式扩散采样器(DSD-DNPH)对北京市城区5个地点C1~C10羰基化合物进行了采样.通过高效液相色谱(high performance liquid chromatography, HPLC)分析, 20种羰基化合物被检测出,在夏季、秋季和冬季其总浓度分别为(89.1±23.6)、(85.2±17.5)和(40.0±9.8) μg/m3.其中,甲醛、乙醛和丙酮是浓度最高的3种羰基化合物,它们的浓度从冬季的(7.1±2.1)、(10.3±3.1)、(9.5±1.8) μg/m3增长到夏季的(15.3±9.2)、(12.9±4.9)、(13.3±3.5) μg/m3和秋季的(13.2±4.0)、(13±4.4)、(15.3±4.0) μg/m3.定性分析表明,羰基化合物的污染来源,冬季主要是机动车污染,而夏季和秋季则是来自光化学反应、机动车和餐馆油烟的综合污染.此外,在风速较大、扩散条件较好的条件下,甲醛、乙醛和丙酮等主要污染物浓度明显降低,表明扩散条件对羰基化合物浓度的影响较明显.  相似文献   

3.
2018年夏季和秋季对连云港城区不同功能区开展大气VOCs采样,利用预浓缩系统和气相色谱质谱联用技术分析定量了107种VOCs物种,并利用最大增量反应活性(MIR)估算了大气VOCs的臭氧生成潜势(OFP).结果表明,连云港市城区大气VOCs平均体积分数为(22. 1±13. 1)×10~(-9),C2~C4的烷烃和烯烃、丙酮及乙酸乙酯是主要的VOCs物种,占TVOCs含量的59. 8%~75. 8%.不同功能区VOCs浓度排序为工业区[(28. 4±13. 5)×10~(-9)]风景区[(21. 7±4. 4)×10~(-9)]交通居民混合区[(20. 8±7. 2)×10~(-9)].秋季VOCs浓度显著高于夏季,秋季工业区浓度最高(35. 4×10~(-9)),夏季风景区VOCs浓度最高(21. 5×10~(-9)).烷烃、含氧硫化合物和卤代烃是最主要的VOCs组分,分别占TVOCs浓度的35. 3%、26. 9%和15. 6%,受工业排放影响工业区含氧硫化合物含量显著高于风景区和交通居民混合区.通过T/B(甲苯/苯)探讨VOCs的来源发现,机动车和溶剂使用是城区大气VOCs的主要来源.功能区的OFP排序为工业区交通居民混合区风景区,烯烃对OFP的贡献最高,其次为芳香烃.  相似文献   

4.
利用2017年1月—2019年11月龙凤山大气本底站一氧化碳(CO)连续观测资料和NOAA再分析资料,对东北平原地区大气CO浓度季节变化及其排放源特征进行研究.结果表明:龙凤山站CO日变化规律具有季节性差异,春、秋和冬季CO浓度均在午后13:00—14:00出现最低值,秋和冬季19:00出现峰值,春季2:00出现最峰值,冬季CO浓度日平均最大,日振幅最大.夏季CO日变化不同于其他季节,在8:00—13:00维持较高值,在16:00—次日04:00维持较低,峰值出现在08:00,谷值出现在00:00.龙凤山站CO浓度具有明显的周期性季节变化和波动下降趋势,呈现出冬季高夏季低的特点,最高值出现在1月,最低值出现在6月,月平均浓度明显高于青藏高原地区浓度水平,全年CO月均值振幅为134.8×10-9 ± 2.5×10-9(物质的量分数,下同).在春、夏和秋季西南方向地面风能够明显抬升观测CO浓度,冬季西北方向地面风能够明显抬升观测CO浓度.后向轨迹聚类、浓度权重轨迹分析(CWT)以及地面风结果分析表明:SSW-SW-WSW扇区内的城市交通及工业等人为排放是龙凤山站的CO潜在源区,此外,冬季的NW-NNW-N扇区的短距离输送也是龙凤山站的CO潜在源区.  相似文献   

5.
华北地区冬季和夏季大气甲醛污染特征分析   总被引:2,自引:0,他引:2  
为探究华北地区大气甲醛的污染特征,应用自主设计的一套大气甲醛在线分析仪,于2017年冬季和2018年夏季在山东省德州市开展大气甲醛综合观测实验.结果表明,德州站冬季和夏季大气甲醛小时浓度范围分别为0.15×10~(-9)~9.89×10~(-9)和0.43×10~(-9)~10.42×10~(-9),平均值分别为(3.04±1.70)×10~(-9)和(4.32±2.06)×10~(-9),结合日变化特征可知,白天甲醛、过氧乙酰基硝酸酯(PAN)和臭氧(O_3)具有较好的一致性,表明光化学生成是甲醛的主要来源;冬季夜间检测出的高浓度甲醛则表明一次排放也具有重要的贡献.此外,大气甲醛的浓度变化受相对湿度、光照、风速和湿沉降影响较大,并且湿沉降是大气甲醛去除的重要途径.  相似文献   

6.
沈阳市大气挥发性有机物(VOCs)污染特征   总被引:11,自引:13,他引:11  
2008年4月~2009年7月间,选取沈阳市不同功能区5个监测点位,采集了4个不同季节的大气VOCs样品187个,利用三级冷阱预浓缩-GC-MS方法测定了108种大气VOCs物质,考察了沈阳市大气VOCs浓度水平及其时空分布情况,并对其主要的来源进行识别. 结果表明,沈阳市大气总VOCs平均质量浓度为(371.0±132.4)μg/m3,其中含量最高的组分为含氧化合物(57.2%),其次为卤代烃(20%),烷烃(11.4%)、芳香烃(8.5%)和烯烃(3.0%). 全市大气总VOCs浓度呈现出春秋浓度较高,冬夏浓度较低的季节变化特征. 主要受工业排放源的影响,商业中心点大气VOCs浓度在冬季的08:00~10:00时段、 12:00~16:00时段和20:00~22:00时段均出现峰值,而夏季则呈现出10:00~12:00时段和18:00~20:00时段的双峰现象. 工业区点位和商业中心区点位浓度高于其它功能区点位,清洁对照点周围由于没有明显的大气VOCs排放源,浓度水平最低. 相关性和比值分析结果表明,机动车燃烧、煤炭生物质燃烧、汽油溶剂挥发和工艺过程是沈阳市大气VOCs的主要来源.  相似文献   

7.
北京市植物排放的异戊二烯对大气中甲醛的贡献   总被引:6,自引:1,他引:6  
2006年3~11月期间利用2,4-二硝基苯肼涂敷的硅胶柱采集了北京市大气中的羰基化合物,并使用高效液相色谱(HPLC)的方法测定了甲醛及异戊二烯光氧化特征产物:甲基乙烯基酮(methyl vinyl ketone, MVK)和甲基丙烯醛(methacrolein, MACR)的大气浓度.研究发现北京市大气中MVK和MACR具有明显的季节变化和日变化:在植物生长季节的4~10月,可在大气中检测出MVK和MACR,它们在大气中的浓度(体积分数)的月平均范围分别为0.11×10-9~0.67×10-9 和0.19×10-9~1.36×10-9,日最高浓度均出现在10:00~14:00(4月除外), 8月的浓度达到最高;3月和11月的大气中未检测出MVK和MACR,可能是因为植物处于枯叶期,异戊二烯的排放较少.本研究通过异戊二烯与其光氧化产物MVK、MACR和甲醛之间的转化产率关系,先利用测定的MVK和MACR的大气浓度反演在光氧化过程中损失的异戊二烯的大气浓度,然后估算异戊二烯光氧化对甲醛形成的贡献量.估算结果显示, 4~10月,异戊二烯光氧化所产生的甲醛浓度(体积分数)范围为0.35×10-9~2.50×10-9,占北京市大气中甲醛总量(在大气中的体积分数范围为5.49×10-9~22.04×10-9)的4.6%~11.5%,在大气光化学活跃的夏季(6~8月)植物排放的异戊二烯对大气中甲醛贡献尤为显著.本研究证实了北京市区植物排放异戊二烯对大气光氧化剂形成有重要贡献.  相似文献   

8.
贡嘎山本底站大气中VOCs的研究   总被引:6,自引:4,他引:2  
张军科  王跃思  吴方堃  孙杰 《环境科学》2012,33(12):4159-4166
为研究中国西南地区大气中挥发性有机物(VOCs)区域性本底浓度和变化特征,利用不锈钢钢瓶采样、三步冷冻浓缩进样-气相色谱/质谱联用技术(GC/MS),测定了贡嘎山大气本底站大气中的VOCs组成、浓度及季节变化,并利用PCA(principal component analysis)受体模型对大气中VOCs来源进行了初步分析.结果表明,贡嘎山地区TVOCs和NMHCs的年平均浓度(体积分数)分别为9.40×10-9±4.55×10-9和7.73×10-9±4.43×10-9,且两者的最高和最低浓度都出现在同一次采样.在TVOCs中,芳香烃所占比例最大,为37.3%,烷烃(30.0%)和卤代烃(19.8%)次之,烯烃的比例最低,为12.9%.通过PCA受体模型分析发现,贡嘎山地区大气中VOCs的主要来源可以归结为交通源、生物源和燃烧源.贡嘎山地区大气中TVOCs呈现明显的季节变化,变化特征为秋季〉冬季〉春季〉夏季,秋季和冬季大气中的TVOCs浓度分别极显著(P〈0.01)和显著地高于夏季(P〈0.05),由于光化学性质的差异,4种类型的VOCs季节变化也呈现出不同的特征.异戊二烯是生物源的重要排放物,其排放速率与大气温度呈指数相关,在20℃以上随着温度的升高排放速率明显增强,其最高和最低值分别出现在夏季的下午和冬季的上午.与其他地区的研究结果相比,贡嘎山地区TVOCs的排放处于中等水平,有着明显的本底站排放特征.  相似文献   

9.
长沙大气中VOCs研究   总被引:10,自引:6,他引:4  
刘全  王跃思  吴方堃  孙杰 《环境科学》2011,32(12):3543-3548
应用大气采样罐采样技术和色谱-质谱联用(GC-MS)技术,对2008年长沙市大气中76种挥发性有机物(VOCs)的组分及其质量浓度水平进行测试,比较了各组分对臭氧产生的影响潜势,同时对其主要来源进行简单分析.结果表明,长沙大气总VOCs在上午和下午的浓度分别是38.4×10-9(体积分数)和22.7×10-9(体积分数),下午大气中VOCs浓度显著低于上午;季节变化呈现VOCs冬季浓度远高于夏季VOCs浓度,组分中以卤代烃最高,烷烃、芳烃次之,烯烃最低,OH消耗速率最高的物质是间、对二甲苯(10.71×10-9 C,碳单位体积比,下同);其次为1,2,4-三甲苯(6.04×10-9 C)和1,3,5-三甲苯(2.23×10-9 C).芳烃对大气O3生成贡献最大(66%),其次是烯烃(26%),烷烃最低(8%).高浓度的异戊烷和丙烷说明了机动车排放和液化石油气是VOCs来源之一,苯/甲苯的特征比值接近0.8,远高于机动车尾气排放特征比值0.5;说明溶剂和涂料挥发是其主要来源之一.  相似文献   

10.
为研究成都市城区大气VOCs季节变化特征,本研究在2018年12月至2019年11月对VOCs组分进行监测,并对VOCs的浓度水平、各化学组成、化学反应活性和来源进行分析.结果表明,成都市城区春、夏、秋和冬季VOCs的平均体积分数分别为32.29×10~(-9)、 36.25×10~(-9)、 40.92×10~(-9)和49.48×10~(-9),冬季的浓度明显高于其他季节,春季和夏季的浓度水平相差不大,各季节VOCs的组分浓度水平有所差异,冬季烷烃占总VOCs的比例最大,可能受机动车排放的影响较明显;夏季和秋季含氧(氮)挥发性有机物占比远高于春、冬季,一次源的挥发排放和二次转化的生成贡献较大;成都市城区不同季节大气中VOCs平均浓度排名靠前的关键组分基本无变化,主要是C_2~C_4的烷烃、乙烯、乙炔及二氯甲烷等,可能受机动车尾气、油气挥发、溶剂使用和LPG燃料等影响明显,夏季丙酮以及乙酸乙酯等含氧有机物浓度贡献突出;根据·OH消耗速率和OFP计算可知关键活性物种主要为间/对-二甲苯、乙烯、丙烯、1-己烯、甲苯、异戊烷和正丁烷等,这些物种应该优先减排和控制;四季VOCs源解析结果显示:春、夏季温度较秋、冬季高,光照更强,PMF明显解析出天然源和二次排放贡献,同时,由于夏季温度较高,解析出油气挥发占9%;秋、冬季占比增加的源主要为机动车尾气和燃烧源,燃烧源的排放占比在25%左右,另餐饮源的排放占比在9%左右.  相似文献   

11.
南京北郊大气VOCs体积分数变化特征   总被引:14,自引:10,他引:4  
安俊琳  朱彬  李用宇 《环境科学》2013,34(12):4504-4512
利用2011-03-01~2012-02-29南京北郊大气VOCs观测资料,对大气VOCs体积分数的时间序列变化特征、光化学活性差异和来源特征进行了研究.结果表明,VOCs体积分数平均为43.52×10-9,并呈现夏季高,冬季低的季节变化.VOCs体积分数呈现夜间高,白天低的日变化特征.VOCs体积分数夜间呈现夏季>秋季>春季>冬季,白天呈现冬季>夏季>春季>秋季.VOCs日变化幅度秋季最大,冬季最小.烷烃和烯烃日变化幅度最大值出现在秋季,芳香烃和炔烃日变幅最大值出现在春季.采用丙烯等量体积分数方法表示,VOCs物种中烯烃含量最高,芳香烃次之,烷烃最小.T/B、E/B和X/B比值平均值分别是1.23、0.95和0.81,反映出影响观测点的气团呈现一定老化程度.以3-甲基戊烷作为机动车排放典型示踪物,估算得到乙烯、甲苯和间,对-二甲苯分别有85%、71%和82%来自非机动车源.  相似文献   

12.
光腔衰荡光谱(CRDS)法观测我国4个本底站大气CO2   总被引:11,自引:2,他引:9  
利用基于光腔衰荡光谱(CRDS)技术自组装的大气CO2在线观测系统,于2009年在青海瓦里关、浙江临安、北京上甸子和黑龙江龙风山4个世界气象组织全球大气观测网(WMO/GAW)大气本底站对大气CO2进行了在线观测.初步分析结果表明,4站全年大气CO2体积分数最低值出现在7~8月,夏季临安、龙风山和上甸子站CO2平均体积...  相似文献   

13.
在2018年9月14~23日选取了典型光化学污染期间,在长三角重点城市杭州市城区开展大气中挥发性有机物(VOCs)的加密观测.对80个有效样品分析结果表明,观测期间大气VOCs的122种化合物平均体积分数为(59.5±19.8)×10~(-9),含氧化合物(OVOC)是其中最主要的组分.用臭氧生成潜势(OFP)评估大气反应活性结果表明,观测期间OFP平均值为145×10~(-9),其中贡献最大的是芳烃和醛酮化合物.其大气VOCs整体活性水平与丙烯腈相当.运用正交矩阵因子(PMF)模型对VOCs进行源解析后,识别出杭州市大气VOCs的5个主要污染源,分别为二次生成(25.2%)、燃烧及工艺过程(27.2%)、溶剂使用(17.3%)、天然源(9.2%)和机动车排放(21.2%).本研究结果可为深入掌握杭州市VOCs污染特征以及科学制定防控措施提供技术支撑.  相似文献   

14.
在北京城区和上甸子本底地区分别开展了为期3a和1a的NH3在线观测,并结合风向、风速、温度、相对湿度等气象因素的变化特征,分析了北京地区NH3浓度水平、年季特征及影响因素.结果发现,北京城区和本底地区的NH3年均浓度分别为(32.5±20.8)×10-9V/V和(11.6±10.3)×10-9V/V,北京城区的NH3浓度高于大多数国内外主要城市和地区的NH3浓度水平.城区和本底地区NH3浓度年变化特征为夏季高,分别为(34.1±6.8)×10-9V/V和(11.1±2.2)×10-9V/V,冬季低,分别为(19.7±9.3)×10-9V/V和(2.4±0.6)×10-9V/V.NH3的日变化特征受气象因素影响明显,其结果表明,春季城区NH3浓度峰值出现在15:00,而本底地区受西南风影响在20:00达到峰值;夏季城区NH3浓度最高值在7:00出现,本底地区则呈现双峰值(分别在09:00和22:00);秋季城区和本底地区的日变化规律一致,均在22:00出现峰值;冬季城区的峰值出现时间晚于本底地区,峰值分别出现在23:00和20:00.西南风是造成本底地区NH3浓度升高的主要原因,春季和夏季,随着西南向风速的增大,NH3浓度显著升高.城区的NH3浓度则主要受到局地排放的影响.浓度权重轨迹法的研究结果发现,北京、天津、河北及河南北部地区是影响北京地区大气NH3的主要源区.  相似文献   

15.
鄂州市大气VOCs污染特征及来源解析   总被引:5,自引:4,他引:1  
2018年3月~2019年2月,在鄂州市主城区采用在线气相色谱仪对102种大气挥发性有机物(VOCs)定量检测,对比分析了VOCs组成、季节变化特征和日变化规律,并利用最大增量反应活性(MIR)估算了VOCs的臭氧生成潜势(OFP).结果表明,鄂州大气VOCs年均体积分数为(30.78±15.89)×10~(-9),总体表现为冬季高夏季低,具体表现为烷烃含氧化合物卤代烃烯烃芳香烃炔烃.日变化规律表现为夜晚体积分数高于白天,且总体上呈"双峰"分布,芳香烃、卤代烃和OVOCs在00:00至02:00出现"第三峰".对VOCs臭氧生成潜势(OFP)贡献较大的是芳香烃和烯烃,贡献率分别为35.45%和29.5%,其中对OFP贡献率最高的物种为乙烯,达到24.217%.分析VOCs特征物种,发现机动车尾气和溶剂使用是鄂州VOCs的主要来源,其中机动车排放是最主要来源,控制鄂州机动车排放有助于削减大气VOCs活性较大的组分,从而减少臭氧的生成.  相似文献   

16.
天津市郊夏季VOCs化学特征及其时间精细化的来源解析   总被引:3,自引:3,他引:0  
夏季为环境空气中臭氧污染事件的频发时期,针对挥发性有机化合物(VOCs)及其臭氧生成潜势(OFP)的时间精细化的来源解析研究,对有效地进行臭氧污染防控具有非常重要的作用.利用2019年夏季(6~8月)天津市郊区点位监测的小时分辨率VOCs在线数据,分析臭氧污染事件和非臭氧污染时期环境受体中VOCs及其OFP的变化特征,并利用正定矩阵因子分解(PMF)模型进行精细化的来源解析研究.结果表明,夏季环境受体中VOCs平均体积分数为24.42×10-9,臭氧污染事件中的VOCs平均体积分数为27.72×10-9,较非臭氧污染时期增加15.69%.夏季总VOCs(TVOCs)的OFP为87.92×10-9,其中烯烃的OFP最高,对TVOCs的OFP的贡献达58.28%.臭氧污染事件中TVOCs的OFP为102.68×10-9,较非臭氧污染时期增加19.59%.臭氧污染事件中VOCs的来源分别为石化工业及汽油挥发(29.44%)、柴油车尾气(23.52%)、液化石油气及汽油车尾气(22.00%)、天然气及燃烧(13.41%)、溶剂使用(6.14%)和植物排放(5.49%).相比于非臭氧污染时期,液化石油气及汽油车尾气和柴油车尾气分别增长4.84%和5.29%.石化工业及汽油挥发和植物排放的贡献均表现为08:00开始上升,11:00达到最高,这与太阳辐射增强和温度不断上升密切相关.液化石油气及汽油车尾气和柴油车尾气均具有明显的早晚高峰特征,并在夜间(00:00~06:00)保持较高贡献水平.根据PMF结果并结合OFP的计算方法,解析了不同源类对臭氧生成潜势的 贡献.石化工业及汽油挥发(31.01%)和柴油车尾气(36.64%)是较高贡献源类,相比非臭氧污染时期分别增加了 1.74%和8.27%;并且石化工业及汽油挥发贡献率在臭氧污染事件发生过程的上升阶段显著增加,而在下降阶段明显下降.  相似文献   

17.
本文利用天津市南开大学津南校区大气环境综合观测站的臭氧及其前体物(VOCs和NOx)、气象参数等在线监测仪器,获取了2018年夏季(6~8月)小时分辨率的数据信息;分析臭氧及其前体物的相互关系及变化特征;根据光化学年龄计算出VOCs的初始浓度对其日间(06:00~24:00)VOCs体积分数的光化学损耗进行修正;将初始体积分数和直接监测的VOCs体积分数分别纳入PMF模型进行人为源的来源解析.结果表明,夏季天津O3的平均体积分数为(41.3±25.7)×10-9,而VOCs的平均体积分数为(13.9±12.3)×10-9,其中烷烃的平均体积分数(7.0±6.8)×10-9明显高于其它VOCs物种.烷烃中浓度较高的物种分别为丙烷和乙烷,占总烷烃浓度贡献的47%.夏季O3的生成潜势(OFP)平均值为52.1×10-9,其中烯烃的OFP值最高,对于TVOCs臭氧生成潜势的贡献达到57%.VOCs日间光化学损耗量计算结果表明,烯烃日间损耗占VOCs损耗总量的75%.基于初始浓度解析的VOCs来源分别为:化工排放和溶剂使用(25%)、机动车尾气(22%)、燃烧源(19%)、天然气和液化石油气(19%)和汽油挥发(15%).相比于直接将监测浓度纳入PMF解析的结果,化工排放和溶剂使用贡献百分占比下降4%,机动车尾气贡献百分占比下降5%.利用PMF源解析结果结合OFP分析不同源类对臭氧污染的相对贡献,基于初始体积分数数据的结果显示,贡献最高源类为化工排放和溶剂使用(26%).与利用直接监测数据的解析结果相比,化工排放和溶剂使用的OFP值降低7%,天然气和液化石油气的OFP值明显降低13%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号