首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
国外火电厂的烟气脱硫   总被引:1,自引:0,他引:1  
火力发电厂是SO2的主要污染源之一,全球SO2排放量目前已达2.7亿吨,每年的损失高达数百亿美元。如果不加以控制,将会给人类环境带来巨大的破坏。美国、日本、德国及欧洲一些国家大力发电厂的烟气脱硫装置大多以石灰石──石灰湿法为主要方法来控制SO2的排放。石灰湿法包括石膏回收法,石膏抛弃法,美国主要采用抛弃法,日本及德国采用回收法,以回收石膏为主。使用此方法脱硫率可达95%,石灰石利用率达90%,运行可靠性也高于95%。  相似文献   

2.
双流体喷咀喷雾法脱硫添加剂的研究   总被引:1,自引:0,他引:1  
通过实验室对多种烟气脱硫添加剂的筛选研究,并用于我所设计研制的TCQ-4型脱硫除尘装置处理DZL4-13-A-Ⅲ型锅炉烟气的试验证明:本所新开发的脱硫添加剂有机盐混合物-NaA具有工业实用价值,当NaA添加量为2.5‰-3‰,CaO含量为60-70A%时,对含硫4%左右的高硫煤烟气脱硫率可高达92%,比不加添加剂时增加18%,石灰减少18.2%。  相似文献   

3.
添加剂强化石灰/石灰石烟气脱硫过程的应用及研究进展   总被引:6,自引:0,他引:6  
目前国内外80%以上的烟气脱硫过程采用石灰/石灰石湿法脱硫。在脱硫过程中加入添加剂,可显著强化多相复杂体系的传质,从而提高脱硫率、降低脱硫成本。本文综述了添加剂强化石灰/石灰石烟气脱硫过程的研究及应用进展,并对国内的研究方向进行了简要阐述。  相似文献   

4.
研究了以稻草和麦杆为原料,用改良硫酸法制取糖醛的工艺条件,结果表明:用20%硫酸(液固为2.5:1),加入复合添加剂(1)或(2)知加比例为15%~30%,常压,100℃蒸馏2h,出醛率达理论出醛率的70%~80%,綮一部变为中性复合肥料。  相似文献   

5.
对生物-非生物煤炭脱硫的原理、菌种及操作条件等问题进行了探讨和实验研究。实验结果表明非生物-乳化技术与生物脱硫技术结合应用,大大提高了脱硫效率。在2—3d内煤炭黄铁矿硫去除率为53.2%,总硫去除率为32.7%。而且改变煤粒度或反应条件均会改变总硫去除率,最高可达47%(2d)。  相似文献   

6.
卢红  邹四维 《环境工程》1995,13(2):33-36
采用实际锅炉烟气进行脉冲电晕等离子法脱硫的扩大实验,得到了与模拟烟气进行的小实验相近的结果。结果表明,脉冲电晕等离子法能有效去除锅炉烟气中的SO2,脱硫率可达95%以上。烟气的停留时间、脉冲电源放电功率及添加NH3等对脱硫率有较大影响,前两者越大,脱硫率越高,但应与处理量、能耗综合考虑,有函数关系η=118.0(P/Q)0.1111。加NH3量选取与烟气含SO2量1:1的当量比最有利,产物可用做肥料。试验结果为实用性放大提供了基础资料。  相似文献   

7.
用液相催化法和脱硫除尘器脱除烟气中SO_2   总被引:8,自引:0,他引:8       下载免费PDF全文
在由旋风水膜和两块旋流塔板组成的处理气量为750m ̄3/h的二级脱硫除尘器中,进行了用含催化剂Mn ̄(2+)的水溶液吸收SO_2的扩大试验。结果表明,在确定的条件下,脱硫率达到73%,板效率为0.25~0.28。在同一设备中同时完成除尘与脱硫过程,设备投资少;以水为吸收剂,运行费用低;中性条件下吸收,长期运转不结垢,可靠性高。  相似文献   

8.
石灰湿法脱硫传质-反应过程机理   总被引:6,自引:0,他引:6  
对以族流板塔作吸收器的石灰湿法烟气脱硫技术进行了试验研究,分析了石灰浆液吸收SO2的传质-反应过程,并提出了Ca(OH)2浆液吸收SO2的传质-反应过程机理。本机理认为,总反应速度由气相中SO2的扩散(气相阻力)和液相中Ca(OH)2固体的溶解(包括在液相阻力之内)及扩散控制;同时认为,反应过程可分为气相阻力控制、气液相阻力共同控制、液相阻力控制3个阶段。此外,本机理得到了实验的验证。以上结果将有助于改进石灰湿法烟气脱硫工业装置的设计和操作。  相似文献   

9.
论我国中小型燃煤锅炉烟气脱硫技术煤炭占我国一次性能源生产和消费总量的75%左右,燃煤硫分大于2%的每年达1亿多吨,1993年我国SO。排放量为1795万吨,酸雨在局部地区相当严重,城市酸雨PH值小于5.6的占.49.3%.国外脱硫技术;燃烧前脱硫、燃...  相似文献   

10.
炉膛吸着制度射(FSI)与选择性非催化还原(SNCR)相结合同时脱除SO_2和NO,在夹带流反应器中进行实验研究。在800-1200℃下喷射石灰石/尿素吸着剂或石灰石/铵盐吸着剂能同时脱除SO_2和NO。石灰石/尿素吸着剂表现出最高的脱硫脱硝能力,当Ca/S=2和N/NO=2时,其SO_2和NO脱除率分别能达到90%和80%。主要的NO脱除是NH_3与NO反应生成N_2所致,少量的NO脱除率(10%)是在CaSO_4的催化下,CaO与NO反应生成Ca(NO_2)_2的结果。本文还考察了反应温度和时间对脱硫脱硝反应速度的影响。  相似文献   

11.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

12.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

13.
Several main metabolites of benzo[a]pyrene (BaP) formed by Penicillium chrysogenum, Benzo[a]pyrene-1,6-quinone (BP 1,6- quinone), trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-diol), 3-hydroxybenzo[a]pyrene (3-OHBP), were identified by high-performance liquid chromatography (HPLC). The three metabolites were liable to be accumulated and were hardly further metabolized because of their toxicity to microorganisms. However, their further degradation was essential for the complete degradation of BaP. To enhance their degradation, two methods, degradation by coupling Penicillium chrysogenum with KMnO4 and degradation only by Penicillium chrysogenum, were compared; Meanwhile, the parameters of degradation in the superior method were optimized. The results showed that (1) the method of coupling Penicillium chrysogenum with KMnO4 was better and was the first method to be used in the degradation of BaP and its metabolites; (2) the metabolite, BP 1,6-quinone was the most liable to be accumulated in pure cultures; (3) the effect of degradation was the best when the concentration of KMnO4 in the cultures was 0.01% (w/v), concentration of the three compounds was 5 mg/L and pH was 6.2. Based on the experimental results, a novel concept with regard to the bioremediation of BaP-contaminated environment was discussed, considering the influence on environmental toxicity of the accumulated metabolites.  相似文献   

14.
Sorption of chlorotoluron in ammonium sulfate, urea and atrazine multi-solutes system was investigated by batch experiments. The results showed application of nitrogen fertilizers to the soil could affect the behavior of chlorotoluron. At the same concentration of N, sorption of chlorotoluron decreased as the concentration of atrazine increased on the day 0 and 6 in soil, respectively. The sorption of chlorotoluron increased from 0 to 6 d when soils were preincubated with deionized water, ammonium sulfate and urea solution for 6 d. That indicated incubation time was one of the most important factors for the sorption of chlorotoluron in nitrogen fertilizers treatments. The individual sorption isotherms of chlorotoluron in rubbery polymer and silica were strictly linear in single solute system, but there were competition sorption between pesticides or between pesticides and nitrogen fertilizers. That indicated the sorption taken place by concurrent solid-phase dissolution mechanism and sorption on the interface of water-organic matter or water-mineral matter.  相似文献   

15.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

16.
RemovalofheavymetalsfromsewagesludgebylowcostingchemicalmethodandrecyclinginagricultureWuQitang,NyirandegePascasie,MoCehuiF...  相似文献   

17.
Single and joint effects of pesticides and mercury on soil urease   总被引:6,自引:3,他引:3  
The influence of two pesticides including chlorimuron-ethyl and furadan and mercury (Hg) on urease activity in 4 soils (meadow burozem and phaeozem) was investigated. The soils were exposed to various concentrations of the two pesticides and Hg individually and simultaneously. Results showed that there was a close relationship between urease activity and organic matter content in soil. Chlorimuron-ethyl and furadan could both activate urease in the 4 soils. The maximum increment of urease activity by chlorimuronethyl was up to 14%-18%. There was almost an equal increase (up to 13%-21%) in the urease activity by furadan. On the contrary, Hg markedly inhibited soil urease activity. A logarithmic equation was used to describe the relationship (P〈0.05) between the concentration of Hg and the activity of soil urease in the 4 tested soils. Semi-effect dose (ED50) values by the stress of Hg based on the inhibition of soil urease in the 4 soils were 88, 5.5, 24 and 20 mg/kg, respectively, according to the calculation of the corresponding equations. The interactive effect of chlorimuron-ethyl or furadan with metal Hg on soil urease was mainly synergic at the highest tested concentrations.  相似文献   

18.
A study was conducted to compare the diversity of 2-, 3-, and 4-chlorobenzoate degraders in two pristine soils and one contaminated sewage sludge. These samples contained strikingly different populations of mono-chlorobenzoate degraders. Although fewer cultures were isolated in the uncontaminated soils than contaminated one, the ability of microbial populations to mineralize chlorobenzoate was widespread. The 3- and 4-chlorobenzoate degraders were more diverse than the 2-chlorobenzoate degraders. One of the strains isolated from the sewage sludge was obtained. Based on its phenotype, chemotaxonomic properties and 16S rRNA gene, the organism S-7 was classified as Rhodococcus erythropolis. The strain can grow at temperature from 4 to 37℃. It can utilize several (halo)aromatic compounds. Moreover, strain S-7 can grow and use 3-chlorobenzoate as sole carbon source in a temperatures range of 10-30℃ with stoichiometric release of chloride ions. The psychrotolerant ability was significant for bioremediation in low temperature regions. Catechol and chlorocatechol 1,2-dioxygenase activities were present in cell free extracts of the strain, but no (chloro)catechol 2,3- dioxygenase activities was detected. Spectral conversion assays with extracts from R. erythropolis S-7 showed accumulation of a compound with a similar UV spectrum as chloro-cis,cis-muconate from 3-chlorobenzoate. On the basis of these results, we proposed that S-7 degraded 3-chlorobenzoate through the modified ortho-cleave pathway.  相似文献   

19.
A field study was conducted in the Taihu Lake region, China in 2004 to reveal the organochlorine pesticide concentrations in soils after the ban of these substances in the year 1983. Thirteen organochlorine pesticides (OCPs) were analyzed in soils from paddy field, tree land and fallow land. Total organochlorine pesticide residues were higher in agricultural soils than in uncultivated fallow land soils. Among all the pesticides, ΣDDX (DDD, DDE and DDT) had the highest concentration for all the soil samples, ranging from 3.10 ng/g to 166.55 ng/g with a mean value of 57.04 ng/g and followed by ΣHCH, ranging from 0.73 ng/g to 60.97 ng/g with a mean value of 24.06 ng/g. Dieldrin, endrin, HCB and α-endosulfan were also found in soils with less than 15 ng/g. Ratios of p,p'-(DDD DDE)/DDT in soils under three land usages were: paddy field > tree land > fallow land, indicating that land usage inlfuenced the degradation of DDT in soils. Ratios of p,p'-(DDD DDE)/DDT >1, showing aged residues of DDTs in soils of the Taihu Lake region. The results were discussed with data from a former study that showed very low actual concentrations of HCH and DDT in soils in the Taihu Lake region, but according to the chemical half-lives and their concentrations in soils in 1980s, the concentration of DDT in soils seemed to be underestimated. In any case our data show that the ban on the use of HCH and DDT resulted in a tremendous reduction of these pesticide residues in soils, but there are still high amounts of pesticide residues in soils, which need more remediation processes.  相似文献   

20.
The contribution of aliphatic-rich plant biopolymer to sorption of hydrophobic organic compounds is significantly important because of their preservation and accumulation in the soil environment,but sorption mechanism is still not fully understood.In this study, sorption of 1-naphthol by plant cuticular fractions was examined to better understand the contributions of respective fraction.Toward this end,cuticular materials were isolated from the fruits of tomato by chemical method.The tomato cuticle sheet consisted of waxes (6.5 wt%),cuticular monomer (69.5 wt%),and polysaccharide (24.0 wt%).Isotherms of l-naphthol to the cuticular fractions were nonlinear (N value (0.82-0.90)) at the whole tested concentration ranges.The KodKow ratios for bulk cuticle (TC1),dewaxed cuticle (TC2),cutin (TC4),and desugared cuticle (TC5) were larger than unity,suggested that tomato bulk cuticle and cutin are much powerful solption medium.Sorption capability of cutin (TC4) was 2.4 times higher than the nonsaponifiable fraction (TC3).The 1-naphthol interactions with tomato cuticular materials were governed by both hydrophobic-type interactions and polar (H-bonding) interactions. Removal of the wax and polysaccharide materials from the bulk tomato cuticle caused a significant increase in the sorption ability of the cuticular material.There was a linear negative trend between K_(oc) values and the amount of polysaccharides or fraction's polarities ((N O)/C);while a linear positive relationship between K_(oc) values and the content of cutin monomer (linear R~2=0.993) was observed for present in the cuticular fractions.Predominant sorbent of the hydrophobic organic compounds (HOCs) in the plant cuticular fraction was the cutin monomer,contributing to 91.7% of the total sorption of tomato bulk cuticle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号