共查询到18条相似文献,搜索用时 62 毫秒
1.
针对300 MW燃煤机组,基于US EPA(美国国家环境保护局)的30 B汞监测方法,通过多点监测对比了实施低氮燃烧器改造、SCR脱硝改造、新增低温省煤器、静电除尘器高频电源改造、湿法脱硫塔脱硫提效并增加管式除雾、新增湿式静电除尘器技术路线开展的超低排放改造前后汞排放及分布特征.研究表明:超低排放改造前,神华煤w(Hg)为49 μg/kg,烟囱入口ρ(Hg)测量值为1.87 μg/m3;煤燃烧及经过污染物控制单元后,有35.0%的汞存在于灰中,有29.5%的汞存在于石膏中,有35.4%的汞从烟囱排出.超低排放改造后,神华煤中w(Hg)为30 μg/kg,烟囱入口ρ(Hg)测量值为0.46 μg/m3;脱硫进水及湿式除尘器进水对汞平衡几乎没有影响,煤燃烧及经过污染物控制单元后,有36.1%的汞存在于灰中,有55.2%的汞存在于石膏中,有8.7%的汞从烟囱排出.超低排放改造后,污染物控制设备的烟气综合脱汞效率提高了1.5倍左右,表明超低排放脱硝增强了对汞的催化氧化,而脱硫增强了对二价汞的吸收结果.湿式电除尘器对脱汞没有明显效果. 相似文献
2.
文章对使用不同超低排放技术路线的燃煤电站烟气污染物处理设施进出口进行汞形态和浓度的研究分析,研究发现:SCR脱硝过程前后,总汞(HgT)以及颗粒态汞(Hgp)质量浓度变化不大,但可有效促进单质游离态汞(Hg0)向Hg2+的转化,SCR过程可将烟气中Hg2+的占比从4.3%~23.9%上升至15.5%~71.4%;除尘过程中,袋式除尘器通过对汞的捕集、氧化等作用促进汞的脱除,其效率可达97.1%以上;在低低温电除尘过程中,降低烟气温度,有利于烟气中的Hg0向Hg2+或Hgp的转变,故而低低温电除尘器对总汞的脱除率可达95.9%;而静电除尘装置对汞的脱除效果有限,仅对Hgp有较好的脱除效率;湿法脱硫对汞的脱除效率与脱硫系统入口汞形态分布有关;湿式电除尘器在汞入口浓度较低时,脱汞效果不明显。经超低排放改造后的燃煤电站烟气出口的汞排放浓度在0.076~0.26μg/m3,远低于... 相似文献
3.
辽宁省燃煤电厂超低排放工作全面推进,燃煤电厂经超低排放改造后,污染物指标控制限值要求为颗粒物10 mg/m~3。某燃煤电厂面临烟气超低排放要求,提标改造现有除尘器,每台炉配两台双室六电场干式低温静电除尘器,并在吸收塔喷淋层下方增设聚气环,在吸收塔净烟道处加装一级烟道除雾器。除尘器和吸收塔改造后,除尘效率由99.8%提高到99.94%,改造后总出口浓度6.80 mg/m~3,改造后排放量6.0 kg/h,削减量16 kg/h,各工况下烟气污染物折算浓度均符合标准要求。 相似文献
4.
通过对某地区4个有代表性的燃煤电厂汞排放的数据分析,研究了国内燃煤电厂汞排放的一些特征,并同发达国家燃煤电厂汞排放和汞脱除的情况作了比较,分析了我国燃煤电厂在汞排放和汞脱除领域所存在的差距.在介绍了国内外燃煤电厂的主要汞脱除技术后,提出我国今后应加大对燃煤电厂汞脱除技术投入和研究的建议. 相似文献
5.
燃煤电厂采用SCR(选择性催化还原)脱硝过程消耗大量的氨,同时存在氨逃逸和氨排放问题.为了掌握超低排放燃煤机组的氨排放程度、脱硝氨逃逸情况以及各环保设施对氨的协同脱除能力,为燃煤电厂氨减排政策制定和氨减排技术研发提供支持.在京津冀大气污染传输通道城市中选取11个城市中的14台机组,采用例如DL/T 260—2012《燃煤电厂烟含脱硝装置性能验收试验规范》的标准方法用稀硫酸吸收烟气中的氨再结合分光光度测试方法,对环保设施多个位置的烟气中氨进行浓度测试.结果表明:①氨排放浓度介于0.05~3.27 mg/m3之间,平均约0.95 mg/m3,通过烟气排入大气中氨的浓度不高;②测试的14台机组中有7台机组(约50%)脱硝氨逃逸值高于设计值(2.28 mg/m3),说明脱硝氨逃逸超过设计值呈普遍现象,个别电厂脱硝氨逃逸严重,氨逃逸亟待解决;③环保设施对逃逸氨具有较好的协同脱除能力,平均脱除率约为64.86%.建议对于SCR脱硝氨逃逸严重的机组,对SCR出口烟道截面氮氧化物(NOx)实施网格式测试,在此基础上实施精细化精准喷氨、优化流场、提高SCR脱硝运行水平(或采用专业化运维),从源头上减少氨耗量,降低系统能耗和氨排放. 相似文献
6.
7.
8.
9.
对比了中美燃煤电厂烟气Hg排放限值,统计、分析了中国燃煤电厂烟气Hg排放特征,按美国现役机组低阶煤、非低阶煤的Hg排放限值要求,我国燃煤电厂Hg排放达标率分别仅为25. 8%、70. 9%,实施烟气Hg排放控制是非常必要的。对活性炭、改性飞灰、钙基吸附等国内外吸附脱Hg技术进行综述,基于此指出了干粉活性炭、改性飞灰吸附脱汞技术的后续研究重点,并提出开发廉价、高效、可循环再生使用的Hg吸附剂是未来重要的研究方向,可为我国燃煤电厂吸附脱Hg技术研究及工程实施提供参考。 相似文献
10.
超低排放改造后燃煤电厂常规大气污染物排放特征 总被引:4,自引:0,他引:4
基于海口电厂"超低排放"燃煤机组在线监测数据和实测结果,研究颗粒物、SO2、NOx排放特征,分析颗粒物粒径分布和化学成分谱.结果显示,"超低排放"机组颗粒物、SO2、NOx排放浓度均值分别为(1.57±0.81)、(15.15±6.23)和(40.10±3.63) mg·m-3,均满足超低排放限值要求.TSP、PM10、PM2.5、PM1、SO2、NOx的排放因子均值分别为0.0099、0.0098、0.0092、0.0065、 0.1131、0.2882 kg·t-1,排放因子集中在很窄的区间内,呈正态或偏正态分布,与未进行超低改造研究结果比较,排放因子减小了1~2个数量级.颗粒物数浓度分布呈双峰分布,数浓度峰值粒径为0.027μm和0.641μm;质量浓度呈单峰分布,峰值粒径为1.100μm.PM10、PM2.5... 相似文献
11.
为评估GB 13223─2011《火电厂大气污染物排放标准》实施对燃煤电厂大气Hg(汞)减排的影响,采用“自下而上”排放因子法,对燃煤电厂大气Hg排放量进行了估算,通过设计不同发展情景,对排放标准实施条件下我国燃煤电厂大气Hg减排量(不含港澳台地区数据,下同)进行了预测. 结果表明:不同能耗情景下,预计2015年燃煤电厂的煤炭消费量为18.5×108~20.3×108 t,2020年煤炭消费量可达19.7×108~22.5×108 t;GB 13223─2011实施后,大气污染控制设施包括ESP(静电除尘器)、FF(袋式除尘器)、WFGD(湿法脱硫)和SCR(选择性催化还原脱硝)的应用比例亟需提高,控制设施面临提效改造,主要控制技术组合SCR+ESP+WFGD在2015年和2020年的应用比例将达到40%、75%;改造后技术组合FF+WFGD、ESP+WFGD、SCR+ESP+WFGD可分别实现90%、85%、80%的脱Hg效率. 由此可为我国燃煤电厂大气Hg排放带来巨大的协同减排潜力,与2010年约119 t的排放水平相比,2015年和2020年在低能耗情景下,我国燃煤电厂大气Hg减排幅度可分别高达38%和39%. 为进一步提高燃煤电厂大气的Hg减排量,建议逐步推广应用活性炭喷射(ACI)等技术. 相似文献
12.
燃煤火电厂汞排放因子测试设计及案例分析 总被引:5,自引:6,他引:5
在火电厂锅炉煤的燃烧中,汞的迁移是个复杂的过程.在炉内高温下,几乎所有的汞以气态形式停留于烟气中,随着烟气温度的降低,汞被再分配到粉煤灰、炉渣和空气中.采用测试和衡算的方法,对火电厂汞排放因子进行测试和分析.结果表明:汞的迁移分配与煤中汞的赋存量、粉煤灰中可燃物碳的含量及烟气温度相关.煤燃烧后,进入粉煤灰中的汞占煤中汞含量的12.7%~31.3%,进入炉渣中的汞占0.9%~12.8%,大部分汞排入大气中,占67.8%~82.2%. 相似文献
13.
14.
参照测量不确定度评定与表示的国家技术规范,基于近年来我国燃煤电厂常规污控设备协同脱汞的现场测试数据(文献报道和实测值)及各省原煤w(汞)的实测值,初步构建了国内燃煤电厂烟气汞排放不确定度的计算方法,并以2010年的燃煤量、污控方式布局为基础,计算了该年度汞排放的不确定度. 结果表明:2010年我国燃煤电厂烟气汞排放的总不确定度为48.8t,占平均排放总量的34.3%;其中60.2%源于污控设备脱汞效率的不确定度,39.8%源于原煤w(汞)的不确定度;采用ESP(静电除尘)、ESP+WFGD(静电除尘+湿法脱硫)、SCR+ESP+WFGD(选择性催化还原脱硝+静电除尘+湿法脱硫)和FF(袋式除尘)大气污控组合的机组各存在6.0、32.2、9.7和0.9t的烟气汞排放不确定度,分别占各对应机组烟气汞排放量的19.3%、32.8%、84.6%和53.6%,其中SCR+ESP+WFGD污控组合烟气汞排放的相对不确定度最大. 随着我国烟气脱硝工作全面推行,2015年以后,SCR+ESP+WFGD污控措施(组合)的机组所占比例将会提高到66%以上,如果仍以现有数据为基础,则来自SCR+ESP+WFGD污控措施(组合)机组的烟气汞排放不确定度将会大幅增加,因此急需增加对该类装置脱汞效率的实测样本数量. 相似文献
15.
16.
超低排放改造后,燃煤电厂细颗粒物排放特征发生了变化,为定量评估颗粒物中各组分的排放特征及环保设备对细颗粒物的影响选取了3台超低排放机组为研究对象利用DGI分级撞击采样器对湿法烟气脱硫装置(WFGD)、湿式静电除尘器(WESP)进、出口颗粒物取样并用多种指标分析研究.结果表明,3台机组出口处排放的PM1、PM2.5和PM10质量浓度范围分别为0.25~0.38、0.31~0.42和0.42~0.57 mg·m-3两种改造工艺下排放的PM10质量浓度相当,但是颗粒物粒径分布和成分组成存在差异相比FP1和FP2机组,FP3机组PM2.5/PM10比值最高,可能原因是FP3机组安装了WESP,对粒径2.5μm以上的颗粒有更好地脱除效果.FP2和FP3机组排放的PM2.5中水溶性离子总浓度分别为0.20 mg·m-3和0.06 mg·m-3,FP2机组排放水溶性离子以Ca 相似文献
17.
重庆市燃煤电厂汞排放特征及排放量 总被引:1,自引:2,他引:1
以重庆市两种锅炉类型[循环流化床锅炉(CFB)和煤粉炉(PC)]的4个燃煤电厂为研究对象,分析不同规模电厂输入输出物料汞含量,探讨电厂中汞的来源和去向,研究重庆市典型燃煤电厂汞的排放特征,估算其大气汞排放量和排放因子.结果表明,4个电厂的汞主要来源为煤,入炉煤汞含量为(80.77±6.39)~(266.83±4.71)μg·kg-1.4个电厂排放的汞主要进入了固体废物,其中,CFB电厂中汞的去向主要是粉煤灰,而PC电厂汞的去向主要是脱硫石膏和粉煤灰.4个电厂的汞脱除率为72.89%~96.05%,CFB电厂高于PC电厂.4个电厂的大气汞排放因子(EF电、EF煤)分别为4.66~29.47μg·(k W·h)-1和8.55~71.77 mg·t-1,大气汞排放量为6.13~429.17 g·d-1.燃煤电厂的汞排放与煤中汞含量、锅炉类型、发电负荷、污控设备等因素有关.为控制电厂汞排放,需改善燃煤机组的能效,提高烟气净化设备的除汞效率,加强燃煤电厂的固体废物利用监管. 相似文献
18.
采集安徽不同地区两典型燃煤电厂火力发电中使用的原煤及其产生的3类固体副产物(飞灰,炉渣及脱硫石膏样品),对4类样品中汞含量分别进行测定,以此揭示电厂燃煤过程中汞的分布、迁移及转化规律。此外,采用质量平衡及二次排放模型分别初步估算了电厂燃煤及燃煤固体副产物再利用过程中汞的两次释放特征。结果显示,汞在原煤、飞灰、炉渣及脱硫石膏样品中的含量分别为174~321μg/kg、421~316μg/kg、6~3 143μg/kg和2 988~4 694μg/kg;燃煤过程中有20.9%~23.6%的汞转移到飞灰中,32.6%~59.9%的汞赋存于脱硫石膏中,16.5%~37.4%的汞通过烟囱首次排入大气,仅有0.02%~9.2%的汞残留在炉渣中。二次排放模拟结果显示,燃煤电厂1#和2#中飞灰和脱硫石膏的高温再利用过程将向大气二次释放汞量96.0 kg/a和165.8 kg/a,两次年排放总量分别为189.5 kg和640.8 kg。本研究可为燃煤电厂汞的污染过程控制提供参考依据。 相似文献