首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Oxygen transport by the hemocyanin of the protobranch mollusc Solemya reidi Bernard was studied in native hemolymph samples. Clams were collected from two different reducing environments, beneath log booms in Alberni Inlet, British Columbia, Canada, and from the sewage effulent in Santa Monica Bay, California, USA. The hemocyanin concentration in a pooled hemolymph sample (n = 10 individuals) was 33.5 mg ml−1. The mean hemolymph pH of five Alberni clams maintained for 3 wk in mud was 7.96 ± 0.06. No significant variation in hemocyanin oxygen-affinity or cooperativity was found for hemocyanin in whole hemolymph samples from these five individually studied clams. There was a significant difference only at 15 °C in the oxygen affinity of hemocyanin in pooled whole-hemolymph samples from S. reidi collected from Alberni Inlet compared with clams collected from Santa Monica Bay. Little effect of temperature on hemocyanin oxygen-affinity was found for temperatures below 20 °C; above 20 °C, the oxygen affinity was reduced for clams from both sites. Temperature and pH had no apparent affect on hemocyanin cooperativity. Moderate Bohr shifts were found at all temperatures examined. The presence of physiologically relevant concentrations of thiosulphate in hemocyanin samples resulted in a decrease in hemocyanin oxygen-affinity, opposite to the effect on hemocyanin found for the hydrothermal vent crab Byth-ograea thermydron, but thiosulphate had no effect on hemocyanin cooperativity. Received: 2 September 1997 / Accepted: 6 February 1998  相似文献   

2.
The giant clam Tridacna crocea harbors in the mantle tissue symbiotic microalgae commonly called zooxanthellae. Isolated zooxanthellae release glycerol into the medium in the presence of mantle tissue homogenate (MH), but it is not clear whether the cells do so in situ. In order to determine the photosynthetic products released by zooxanthellae in the mantle of the giant clam we traced photosynthetic fixation products from 13C- and 14C-bicarbonate both in the clam and in isolated zooxanthellae (IZ) in the presence or absence of MH. After 15 min incubation in the absence of MH the IZ released less than 0.6% of the fixed labeled carbon, mainly as glucose. The major intracellular photosynthates were neutral lipids, which constituted 20 to 40% of the total extractable 14C. In the presence of MH, the IZ released up to 5.6% of the total fixed 14C, mostly as glycerol, and the major intracellular photosynthate was glucose. In an intact clam incubated in sea water containing 14C-bicarbonate, 46 to 80% of the fixed 14C was translocated from the zooxanthellae to the host tissues. Most of the 14C in the hemolymph, in the isolated zooxanthellae and in intact mantle tissue (containing zooxanthellae) was recovered as glucose. No 14C-glycerol was detected in the mantle after 1 to 30 min incubation, and, even after 60 min, far less 14C-glycerol was synthesized than by IZ in the presence of MH. The possibility that in clam tissue glycerol is converted to glucose was examined by tracing the labeled carbon from 14C-glycerol injected into the adductor muscle. After 5 min incubation, no labeled glucose was found in the hemolymph, but after 60 min, some 20% was found as glucose. Thin slices containing zooxanthellae, cut from the surface of the mantle, fixed inorganic carbon supplied as NaH14CO3 in the medium and mainly released 14C-glucose. The addition of MH to the surrounding medium did not affect the release rate or form of release product. When the slices were cut into smaller pieces, however, the ratio of glycerol to glucose in the release product increased. These results indicate that in the presence of MH the metabolism of isolated zooxan- thellae was different from that of zooxanthellae in the mantle. In the presence of MH, isolated zooxanthellae release mostly glycerol, whereas in the mantle they release glucose. Received: 18 February 1998 / Accepted: 4 December 1998  相似文献   

3.
The endogenous rhythm of oxygen consumption in juvenile spotted sea bass (Lateolabrax sp.) was measured to test the effects of sudden changes in salinity on the metabolic activity. Mean oxygen consumption rates of this euryhaline fish decreased by 13.5 to 16.0% and 25.3 to 36.4% when they were transferred from 31.5 to 15‰ seawater and to fresh water (0‰), respectively. The maximum rate of oxygen consumption was observed between 18:00 and 19:00 hrs local time, 1 to 2 h before sunset, even though they were kept in constant darkness. The peaks of oxygen consumption occurred in 23.2- and 23.3-h intervals, which correspond with a circadian rhythm, as revealed by maximum entropy spectral analysis. A markedly weakened rhythm in oxygen consumption occurred from 8 to 10 d after onset of the experiments. This study indicates that spotted sea bass can withstand sudden drops in salinity from 31.5‰ to fresh water, and yet maintain a regular though somewhat dampened endogenous rhythm of oxygen consumption. Received: 16 June 1997 / Accepted: 3 February 1998  相似文献   

4.
The aim of our investigations was to determine, via oxygen and carbon-dioxide respirometry, how much energy dolphins (Tursiops truncatus) require when swimming at different speeds. Experiments were conducted on two female bottlenose dolphins (mean mass 162 kg) in the dolphinarium in Nuremberg Zoo, Germany, between March and August 1997. Animals were stationed in a respiration chamber for a minimum of 90 s after performing a variety of activities. We measured respiration frequency and oxygen requirements during (1) resting, (2) swimming at various velocities and (3) leaping to various heights. Resting metabolic rate of our bottlenose dolphins (2.15 W kg−1) was comparable to previously published data. Metabolic rate in swimming dolphins increased to 2.47 W kg−1 at 2 m s−1, while leaps to 2.2 and 3 m height required a power input of 3.5 and 4 W kg−1, respectively. Transport costs of swimming dolphins were lowest (1.16 J kg−1 m−1, corresponding to 0.12 J N−1 m−1) at a speed of 2.5 m s−1, yielding an optimal range speed of between 1.9 and 3.2 m s−1 (corresponding to minimum cost of transport ±10%). Breathing rates during all experiments correlated very well with oxygen consumption (r 2 > 0.89) and could be used to derive metabolic rates in unencumbered dolphins at sea. Received: 18 December 1998 / Accepted: 27 April 1999  相似文献   

5.
The benthic crustacean Saduria entomon occurs frequently in deeper parts of the Gulf of Gdańsk. It is one of a few species able to survive oxygen deficiencies in its natural environment. The anaerobic heat production of S. entomon during 40 h of anoxia was determined. Additionally, the effects of size, sex and activity of the organism on its heat production were investigated. Average heat production of S. entomon was 0.25 ± 0.16 mJ g−1 wet wt s−1 (n=55, avg. length 39 ± 6 mm). The amount of heat produced decreased with increasing body size. The heat production of S. entomon males was greater than that of females ( p<0.05). Specimens kept in chambers with glass beads and water were less active and had lower metabolic rates than those placed in chambers containing water only (more active). During 40 h of anoxia S. entomon gradually decreased its heat production to 5–16% of aerobic level, demonstrating the high adaptation of this species to changeable oxygen conditions in the Baltic Sea. Received: 31 July 1997 / Accepted: 21 January 1998  相似文献   

6.
R. Lundheim 《Marine Biology》1997,128(2):267-271
The ice nucleation temperatures of different homogenised organs of the mussel Mytilus edulis L. were examined. The stomach and the hemolymph had the highest nucleation temperatures. In the homogenised stomach the nucleation temperatures were fairly constant throughout the year, whereas the nucleation temperatures of the hemolymph increased in the cold season. Bacterial growth experiments, microfiltration, and experiments using antibiotics indicated that the nucleators were not of bacterial origin. The nucleation temperatures of natural seawater were approximately −9 °C, whereas seawater made from distilled water and sea salt had nucleation temperatures of about −17 °C. The nucleation temperatures of the seawater were reduced when the seawater was filtered by the mussels. However, no clear indication that the nucleators in the stomach were obtained from the seawater was found. Stomach homogenates from mussels kept in nucleator-free water had the same supercooling points as stomach homogenates from mussels kept in natural seawater. This indicates that the nucleators in the stomach are not obtained from the seawater. The temperature and light conditions examined in the present study did not significantly influence the hemolymph ice nucleation temperatures of mussels kept in the laboratory. Received: 24 October 1996 / Accepted: 16 November 1996  相似文献   

7.
Grazing effects on nitrogen fixation in coral reef algal turfs   总被引:2,自引:0,他引:2  
This study addressed whether grazing by the sea urchin Diadema antillarum influenced rates of nitrogen fixation by algal turf communities on Caribbean coral reefs. Because the turfs were nitrogen-limited, we also assessed whether newly-fixed nitrogen was important for supporting net primary productivity by the turfs. We measured acetylene reduction in turfs grown in treatments excluding or including D. antillarum in the presence of other herbivores at 3 m water depth on Tague Bay forereef, St. Croix, U.S. Virgin Islands. These were the first measurements of acetylene reduction on coral reefs under quasi-natural conditions of high water-flow and photosynthetic oxygen generation. Rates of acetylene reduction under these conditions were as high as any measured previously in coral reef communities (mean 7.6 nmol C2H4 cm−2 h−1). Algal turfs grazed by D. antillarum and other herbivores had chlorophyll-specific acetylene reduction rates up to three times higher than when D. antillarum was excluded. High rates of nitrogen fixation by the turfs were sufficient to meet <2% of the nitrogen required to support net chlorophyll-specific primary productivity over 24 h. Grazer-mediated increases in nitrogen fixation do not appear responsible for a parallel enhancement of net primary productivity. Algal turfs at this site must be dependent primarily on external sources of nitrogen. Received: 1 July 1997 / Accepted: 5 September 1997  相似文献   

8.
The biology of symbiotic scleractinians is profoundly influenced by their intracellular zooxanthellae, and many studies have focused on the mechanistic basis of this influence. This has usually been accomplished by examining the metabolism of zooxanthellae under physical conditions measured in the open reef and assumed to be similar to conditions in hospite. Recent advances in the measurement of conditions near and within coral tissue suggests that this assumption may result in substantial errors. To address this possibility, the role of water flow in determining oxygen saturation adjacent to the tissue of Dichocoenia stokesii was investigated, and the effect of these measured oxygen saturations on the respiration and photosynthesis of zooxanthellae isolated from the same species was quantified. Using a microelectrode (700 μm diam), we measured oxygen saturations above (≤4 mm) the tissue in two flow speeds over 24 h periods in a flume receiving sunlight at in situ levels. The results were used as a proxy for ecologically relevant intracellular oxygen saturations, which were applied to zooxanthellae in vitro to assess their effect on symbiont metabolism. Microenvironment oxygen saturations (% air saturation) ranged from 74–159% in slow flow (2.7 cm s−1) to 88–110% in faster flow (7.5 cm s−1) over day–night cycles. Therefore, the metabolic rates of zooxanthellae were measured at 50 to 54% (hypoxia), 98 to 102% (normoxia) and 146 to 150% (hyperoxia) oxygen saturation. Oxygen saturation significantly affected the metabolism of zooxanthellae, with gross photosynthesis increasing 1.2-fold and dark respiration increasing 2-fold under hyperoxia compared to hypoxia. These results suggest that the metabolism of zooxanthellae in hospite is affected markedly by their microenvironment which, in turn, is influenced by flow-mediated mass transfer. Received: 13 July 1998 / Accepted: 30 April 1999  相似文献   

9.
The cosmopolitan polychaete Capitella capitata, known as a complex of opportunistic sibling species, usually dominates the macrobenthos of polluted or unpredictable environments. A population of C. capitata, termed Capitella sp. M, was found in a shallow water hydrothermal vent area south of Milos (Greece). Here, this population occurs close to vent outlets (termed the “transition zone”), an environment with steep gradients of temperature, salinity and pH and increased sulphide concentrations of up to 710 μM. The field distribution of C. capitata in relation to sulphide concentrations around the vent outlets was investigated and sulphide tolerance experiments were conducted on laboratory-cultured worms to elucidate possible adaptations of Capitella sp. M to these extreme environmental conditions. In order to investigate whether the population from the Milos hydrothermal vent area can be considered a distinct sibling species within the C. capitata complex, crossbreeding experiments and analysis of general protein patterns were conducted with Capitella sp. M and three other C. capitata populations of different ecological ranges. Capitella sp. M showed high resistance (median survival time: 107 ± 38 h) to anoxia plus high sulphide concentrations of 740 μM. It seems that the ability to survive high-sulphide conditions in combination with reduced interspecific competition enables the polychaete to maintain a continuous population in this rigorous habitat. From the extremely high tolerance to anoxia and sulphide, shown in both the crossbreeding experiments and the analysis of total proteins, it can be concluded that Capitella sp. M from the Milos hydrothermal vent area represents a separate sibling species within the C. capitata complex. Received: 3 March 1997 / Accepted: 12 September 1997  相似文献   

10.
Symbiotic dinoflagellate algae (Symbiodinium sp.) isolated from the scleractinian coral Plesiastrea versipora and incubated in homogenized host tissue released 4 to 7 times as much glycerol (14 to 46 nmol glycerol/106 algae) as those incubated in seawater (3 to 6 nmol glycerol/106 algae) after 4 h incubation in the light. During this period, no release of triglycerides was detected. Intracellular glycerol increased 2- to 3-fold in algae incubated in host homogenate, but remained unchanged in algae incubated in seawater at a concentration of 0.82 ± 0.47 nmol glycerol/106 algae. In each incubation condition, intracellular triglyceride levels increased. However, in algae incubated in host homogenate, the intracellular levels of triglycerides reached only about 75% of the amount reached in algae incubated in seawater (max. 18.55 ± 2.40 nmol glycerol/106 cells). Host homogenate did not stimulate the release of glycerol from algae during dark incubation. These data show that the glycerol released by algae incubated in host-tissue homogenate was derived from increased synthesis of glycerol or from diversion of some glycerol or other photosynthetic intermediates from incorporation into algal triglyceride stores, and did not come from existing stores. Received: 20 December 1996 / Accepted: 9 January 1997  相似文献   

11.
A key regulatory mechanism underlying the switch between aerobic and anaerobic metabolism amongst anoxia-tolerant marine molluscs is reversible protein phosphorylation. To assess the role of cAMP-dependent protein kinase (PKA) in aerobic–anaerobic transitions, the effects of anoxia on the activity and subcellular distribution of PKA were assessed in foot and hepatopancreas of the marine periwinkle, Littorina littorea. Exposure to N2 gas at 5 °C caused a rapid decline in the percentage of total enzyme present as the free catalytic subunit (PKAc) in both tissues; the percentage of PKAc fell from ∼30% in controls to 3% after 1 h anoxia and remained low over 72 h. Total PKA also fell by 30% after 72 h anoxia in hepatopancreas but rebounded during aerobic recovery. Freezing at −8 °C elicited parallel results for both percentage of PKAc and total PKA, suggesting that PKA responses to freezing were stimulated by the ischemia that develops when hemolymph freezes. Anoxia also led to a shift in PKA subcellular distribution in hepatopancreas (but not in foot), the percentage of total PKA activity associated with the nuclear fraction dropping from 25% in controls to 8% in 12 h anoxic snails with opposite changes in the cytosolic fraction. The catalytic subunit (PKAc) of foot PKA was purified to a final specific activity of 63.5 nmol phosphate transferred per minute per milligram protein. Enzyme properties included a molecular weight of 33 to 35 kDa, an activation energy from Arrhenius plots of 65.1 ± 4.8 kJ mol−1, and substrate affinity constants of 151 ± 6 μM for the phosphate acceptor, Kemptide, and 72 ± 9 μM for Mg.ATP. Activity was strongly reduced by mammalian PKA inhibitors (H-89, PKA-I), by neutral chloride salts (I50 values 165 to 210 mM) and by NaF (I50 62 mM). Reduced PKA activity under anoxic or freezing conditions would facilitate the observed suppression of the activities of numerous enzymes that are typically PKA-activated and thereby contribute to the overall anoxia-induced metabolic rate depression. Received: 19 November 1997 / Accepted: 30 September 1998  相似文献   

12.
We used acoustic telemetry to examine the small-scale movement patterns of yellowfin tuna (Thunnus albacares) in the California Bight at the northern extent of their range. Oceanographic profiles of temperature, oxygen, currents and fluorometry were used to determine the relationship between movements and environmental features. Three yellowfin tuna (8 to 16 kg) were tracked for 2 to 3 d. All three fish spent the majority of their time above the thermocline (18 to 45 m in depth) in water temperatures >17.5 °C. In the California Bight, yellowfin tuna have a limited vertical distribution due to the restriction imposed by temperature. The three fish made periodic short dives below the thermocline (60 to 80 m), encountering cooler temperatures (>11 °C). When swimming in northern latitudes, the depth of the mixed layer largely defines the spatial distribution of yellowfin tuna within the water column. Yellowfin prefer to spend most of their time just above the top of the thermocline. Oxygen profiles indicated that the tunas encountered oceanic water masses that ranged most often from 6.8 to 8.6 mg O2 l−1, indicating no limitation due to oxygen concentrations. The yellowfin tuna traveled at speeds ranging from 0.46 to 0.90 m s−1 (0.9 to 1.8 knots h−1) and frequently exhibited an oscillatory diving pattern previously suggested to be a possible strategy for conserving energy during swimming. Received: 14 February 1997 / Accepted: 14 April 1997  相似文献   

13.
The brittle stars Amphiura filiformis (Müller) and Ophiura albida (Forbes) were exposed to different oxygen saturations (100, 10, 5, 3, and <1% oxygen saturation) and to physiological anoxia (<1% oxygen saturation) at different total sulfide concentrations (0, 2, 20, 200 μM). The mortality was followed during experiments and the median survival time (LT50) was determined. The infaunal A. filiformis had a significantly higher tolerance to both hypoxia and sulfide than did the epibenthic O. albida. After exposure to 10% oxygen saturation for a month, only 2.0% A. filiformis and 0% O. albida were dead. In oxygen saturations <1% A. filiformis and O. albida had a LT50 of 7.5 and 2.5 d, respectively. The presence of even very small concentrations of sulfide decreased the survival significantly. Sulfide is shown to be the key factor for the survival of the two species. Received: 11 October 1996 / Accepted: 12 November 1996  相似文献   

14.
Samples of the Antarctic octopus Pareledone turqueti were taken from three locations on the Scotia Ridge in the Southern Ocean. The genetic homogeneity of these populations was investigated using isozyme electrophoresis. Whilst panmixia appeared to be maintained around South Georgia (F ST = 0) gene flow between this island and Shag Rocks, an island only 150 km away but separated by great depths, was extremely limited (F ST = 0.74). These results are examined with respect to the discontinuous distribution of P. turqueti throughout Antarctica. An estimate of effective population size was also calculated (N e = 3600). Received: 7 March 1997 / Accepted: 27 March 1997  相似文献   

15.
The swimming behaviour of newly hatched turbot (Scophthalmus maximus L.) larvae was observed in artificial seawater (ASW) and in solutions of 21 l-amino acids at a concentration of 10−5M. The behaviour of 20 larvae was analysed in each solution. Each larva was observed for 1 min. Individual movements were recorded on video and analysed using a computer-assisted program. The larvae swam in convoluted, randomised three-dimensional paths, rested and started swimming again. There were large variations in the swimming behaviour of turbot larvae during ontogeny. In ASW the mean frequency of trajectories longer than a body length of 4 mm larva−1 min−1 increased from 1.2 at Day 1, to 10 at Day 4. Analysing the data (Dunnett's method) revealed that the frequency of swimming trajectories increased in the presence of glycine, histidine and glutamine, and decreased in the presence of proline. The total distance swum increased for glycine but decreased for proline. The threshold concentration for glycine detected by turbot larvae was 10−5M. The straightness index did not change in the presence of the amino acids. The possible role of these changes in behaviour is discussed. Received: 12 June 1997 / Accepted: 13 January 1998  相似文献   

16.
The annual occurrence of hypoxia (<25% oxygen saturation) in the bottom waters along the Swedish west coast coincides with the postlarval settlement of Norway lobster, Nephrops norvegicus (L.). This study investigates behaviour and the experimental effects of low oxygen concentrations in juvenile N. norvegicus of different ages. All experimental individuals were reared to the juvenile (postlarval) stage in the laboratory and then given sediment as a substratum. Behavioural responses to low oxygen concentrations were tested in early and late Postlarvae 1 exposed to normoxia (>80% oxygen saturation, pO2 > 16.7 kPa), moderate hypoxia (30% oxygen saturation, pO2 = 6.3 kPa) and hypoxia (25% oxygen saturation, pO2 = 5.2 kPa). The experiments were run for a maximum period of 24 h or until individuals died. Behaviour was studied using sequential video recordings of four behavioural activities: digging, walking, inactivity or flight (escape swimming up into the water column). Behaviour and mortality changed with lowered oxygen concentrations; energetically costly activities (such as walking) were reduced, and activity in general declined. In normoxia, juveniles initially walked and then burrowed, but when exposed to hypoxia they were mainly inactive with occasional outbursts of escape swimming. To increase oxygen availability the juveniles were observed to raise their bodies on stilted legs (similar to adults in hypoxic conditions), but oxygen saturations of 25% were lethal within 24 h. The results suggest that the main gas exchanges of early postlarval stages occur over the general body surface. Burrowing behaviour was tested in Postlarvae 1 and 2 of different ages held in >80% oxygen saturation for 1 wk. The difference in time taken to complete a V-shaped depression or a U-shaped burrow was measured. The results showed a strong negative relationship between postlarval age and burrowing time, but all individuals made a burrow. Juveniles were more sensitive to hypoxia than adults. Thus, the possible consequences of episodic hypoxia for the recruitment of Nephrops norvegicus and for the recolonization of severely affected areas are discussed. Received: 4 August 1996 / Accepted: 11 October 1996  相似文献   

17.
E. Sandberg 《Marine Biology》1997,129(3):499-504
The functional response of the predatory isopod Saduria entomon to the prey amphipod Bathyporeia pilosa was measured in normoxia (95% O2 saturation), moderate hypoxia (45% O2 saturation) and hypoxia (35% O2 saturation) in aquarium experiments. The prey densities tested ranged from 400 to 8000 ind m−2. Prey density influenced consumption rates of S. entomon in normoxia and 45% O2 saturation, but there was no difference between consumption rates at these two oxygen levels. Nevertheless the form of functional response differed. In normoxia S. entomon showed a positively density-dependent functional response to B. pilosa, indicating a potentially stabilizing effect on the prey population. In moderate hypoxia the variance in consumption increased, decreasing the statistical power to distinguish between response models. The functional response of S. entomon in moderate hypoxia was best described with a density-independent response, characterized as destabilizing for the prey population. In hypoxia (35% O2) predation by S. entomon did not respond to increasing prey density, as almost no amphipods were eaten at this oxygen level. The results are discussed in terms of the usability of theoretical models to examine predator–prey relationships in stressful environments. Received: 26 April 1997 / Accepted: 20 May 1997  相似文献   

18.
Seasonally recurrent and persistent hypoxic events in semi-enclosed coastal waters are characterized by bottom-water dissolved oxygen (d.o.) concentrations of < 2.0 ml l−1. Shifts in the distribution patterns of zooplankters in association with these events have been documented, but the mechanisms responsible for these shifts have not been investigated. This study assessed interspecific differences in responses to hypoxia by several species of calanoid copepods common off Turkey Point, Florida, USA: Labidocera aestiva (Wheeler) (a summer/fall species), Acartia tonsa (Dana) (a ubiquitous year-round species), and Centropages hamatus (Lilljeborg) (a winter/spring species). Under conditions of moderate to severe hypoxia 24-h survival experiments were conducted for adults and nauplii of these species from August 1994 to October 1995. Experiments on adults used a flow-through system to maintain constant d.o. concentrations. Adults of A. tonsa showed no decline in survival with d.o. as low as 1.0 ml l−1, sharp declines in survival at d.o. = 0.9 to 0.6 ml l−1, and 100% mortality with d.o. = 0.5 ml l−1. Adults of L. aestiva and C. hamatus were more sensitive to oxygen depletion: both species experienced significant decreases in survival for d.o. = 1.0 ml l−1. Nauplii of L. aestiva and A. tonsa showed no significant mortality with d.o. = 1.1 to 1.5 ml␣l−1 and d.o. = 0.24 to 0.5 ml l−1, respectively. In addition, experiments investigating behavioral avoidance of moderate to severe hypoxia were carried out for adults of all three species. None of the three species effectively avoided either severely hypoxic (d.o. < 0.5 ml l−1) or moderately hypoxic (d.o. ≈ 1.0 ml l−1) bottom layers in stratified columns. These results suggest that in␣nearshore areas where development of zones of d.o. < 1.0 ml l−1 may be sudden, widespread, or unpredictable, patterns of reduced copepod abundance in bottom waters may be due primarily to mortality rather than avoidance. Received: 31 August 1996 / Accepted: 24 September 1996  相似文献   

19.
Polychaetes belonging to the genus Capitella are often present in high numbers in organic-rich sediments polluted with, e.g., oil components, and Capitella spp. may have a great impact on the biogeochemistry of these sediments. We examined the influence of Capitella sp. I on microbial activity in an organic-rich marine sediment contaminated with the polycyclic aromatic hydrocarbon, fluoranthene. Capitella sp. I were added to microcosms (10 000 ind m−2) and the impact of a pulse-sedimentation of fluoranthene-contaminated sediment (3 mm layer) was studied for a period of 12 d after sedimentation. The sediment oxygen uptake and total sediment metabolism (TCO2 production) increased in cores with worms (71 to 131%), whereas the anaerobic activity, measured as sulfate reduction rate 12 d after sedimentation, was lower compared to cores without worms. The effect of fluoranthene on sulfate reduction was most pronounced in the presence of worms, with a 34% reduction versus 16% in cores without worms. The reduced sulfur pools in cores with worms were smaller than in cores without worms, suggesting that the reduced anaerobic activity was caused by increased oxidation of the sediment, which may favor O2 and other electron-acceptors (e.g. NO3 , Fe3+, Mn4+) in organic matter decomposition. The sediment oxygen uptake and TCO2 production did not show significant changes due to fluoranthene treatment, indicating that these parameters were either less sensitive to fluoranthene stress or recovered more rapidly (i.e. within 48 h) than sulfate reduction rates. Bioturbation by Capitella sp. I altered the depth profile of fluoranthene such that fluoranthene was found in deeper sediment layers (down to 2 cm) where diffusional loss and microbial breakdown probably are reduced relative to surface layers. In cores without worms, fluoranthene was found down to 1 cm, with 75% remaining in the upper 5 mm. Received: 5 December 1996 / Accepted: 11 February 1997  相似文献   

20.
The Norway lobster Nephrops norvegicus (L.) inhabits burrows in muddy clay sediments (e.g. on the Swedish west coast), where an autumnal oxygen deficiency in the bottom water can occur. Our experiments investigated whether the irrigation of the burrows would reflect a behavioural adaptation to hypoxia, and whether any gender differences of such behaviour exist. Irrigation is performed by the pleopods which may compensate for a decreasing oxygen tension. Pleopod activity (total number of strokes per sampling time), associated with oxygen concentration and gender, was studied in N. norvegicus kept in artificial burrows resembling their natural habitat. Male and female lobsters were separately exposed to either normoxia (70% oxygen saturation) or hypoxia (30% oxygen saturation). A sexual difference in behaviour was found, where females irrigated the burrow less than males during normoxia. Females showed a significant increase of pleopod activity in hypoxia compared with normoxic conditions, which was not displayed by the males probably due to the degree of individual variation found. However, when only males were studied during progressive hypoxia (from 60 to 5% oxygen saturation), following any changes of irrigational behaviour, a significant increase of accumulated pleopod activity occurred. A major increase of pleopod activity appeared between 60 and 50% oxygen saturation, below which the activity remained high until a critical point (<10% saturation, 11 °C, 33 psu) where irrigation dropped to a level close to that of normoxic values. Activity sessions during hypoxia were longer and had a higher stroke rate than during normoxia. Received: 22 October 1997 / Accepted: 26 February 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号