首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundHealthcare waste comprises all wastes generated at healthcare facilities, medical research centers and laboratories. Although 75–90% of these wastes are classified as household waste posing no potential risk, 10–25% are deemed to be hazardous, representing a potential threat to healthcare workers, patients, the environment and even the general population, if not disposed of appropriately. If hazardous and non-hazardous waste is mixed and not segregated prior to disposal, costs will increase substantially. Medical waste management is a worldwide issue. In Iran, the majority of problems are associated with an exponential growth in the healthcare sector together with low- or non-compliance with guidelines and recommendations. The aim of this study was to reduce the amounts of infectious waste by clear definition and segregation of waste at the production site in Namazi Hospital in Shiraz, Iran.Materials and methodsNamazi Hospital was selected as a study site with an aim to achieving a significant decrease in infectious waste and implementing a total quality management (TQM) method. Infectious and non-infectious waste was weighed at 29 admission wards over a 1-month period.ResultsBefore the introduction of the new guidelines and the new waste management concept, weight of total waste was 6.67 kg per occupied bed per day (kg/occupied bed/day), of which 73% was infectious and 27% non-infectious waste. After intervention, total waste was reduced to 5.92 kg/occupied bed/day, of which infectious waste represented 61% and non-infectious waste 30%. The implementation of a new waste management concept achieved a 26% reduction in infectious waste.ConclusionA structured waste management concept together with clear definitions and staff training will result in waste reduction, consequently leading to decreased expenditure in healthcare settings.  相似文献   

2.
Infectious industrial waste management in Taiwan is based on the specific waste production unit. In other countries, management is based simply on whether the producer may lead to infectious disease. Thus, Taiwan has a more detailed classification of infectious waste. The advantage of this classification is that it is easy to identify the sources, while the disadvantage lies in the fact that it is not flexible and hence increases cost. This study presents an overview of current management practices for handling infectious industrial waste in Taiwan, and addresses the current waste disposal methods. The number of small clinics in Taiwan increased from 18,183 to 18,877 between 2003 and 2005. Analysis of the data between 2003 and 2005 showed that the majority of medical waste was general industrial waste, which accounted for 76.9%-79.4% of total medical waste. Infectious industrial waste accounted for 19.3%-21.9% of total medical waste. After the SARS event in Taiwan, the amount of infectious waste reached 19,350 tons in 2004, an increase over the previous year of 4000 tons. Waste minimization was a common consideration for all types of waste treatment. In this study, we summarize the percentage of plastic waste in flammable infectious industrial waste generated by medical units, which, in Taiwan was about 30%. The EPA and Taiwan Department of Health have actively promoted different recycling and waste reduction measures. However, the wide adoption of disposable materials made recycling and waste reduction difficult for some hospitals. It has been suggested that enhancing the education of and promoting communication between medical units and recycling industries must be implemented to prevent recyclable waste from entering the incinerator.  相似文献   

3.
Medical waste management is of great importance due to its infectious and hazardous nature that can cause undesirable effects on humans and the environment. The objective of this study was to analyze and evaluate the present status of medical waste management in the light of medical waste control regulations in Nanjing. A comprehensive inspection survey was conducted for 15 hospitals, 3 disposal companies and 200 patients. Field visits and a questionnaire survey method were implemented to collect information regarding different medical waste management aspects, including medical waste generation, segregation and collection, storage, training and education, transportation, disposal, and public awareness.The results indicated that the medical waste generation rate ranges from 0.5 to 0.8 kg/bed day with a weighted average of 0.68 kg/bed day. The segregated collection of various types of medical waste has been conducted in 73% of the hospitals, but 20% of the hospitals still use unqualified staff for medical waste collection, and 93.3% of the hospitals have temporary storage areas. Additionally, 93.3% of the hospitals have provided training for staff; however, only 20% of the hospitals have ongoing training and education. It was found that the centralized disposal system has been constructed based on incineration technology, and the disposal cost of medical waste is about 580 US$/ton. The results also suggested that there is not sufficient public understanding of medical waste management, and 77% of respondents think medical waste management is an important factor in selecting hospital services.The problematic areas of medical waste management in Nanjing are addressed by proposing some recommendations that will ensure that potential health and environmental risks of medical waste are minimized.  相似文献   

4.
Medical waste management is of great importance due to its potential environmental and public health risks, especially in developing countries where both financial and technological resources on medical waste management are still lacking. Although many studies have focused on country-scaled medical waste management, few have paid close attention to regional (city-scale) management, particularly in China. This paper fills such a gap by employing a case study approach. Due to its representative nature, Shenyang was selected as the case study. After a review of China’s medical waste management, an empirical study in Shenyang was conducted in order to analyze the current state as well as identify key challenges on regional medical waste management. Based upon the local realities and aiming to better manage medical wastes, an integrated medical waste management framework is developed. Such a platform encourages the establishment of a specific medical waste management authority, a city scaled capacity building program on improving the general public’s awareness, an information platform, application of state-of-the-art technologies, as well as creation of an effective financial system. The combination of such initiatives can significantly improve the overall eco-efficiency of medical waste management at the regional level and should be promoted to other developing cities.  相似文献   

5.
Mad cow disease and related transmissible spongiform encephalopathy diseases (TSEs) in both animals and humans have received worldwide attention. Interestingly, the issue of managing biohazardous wastes, for which TSE agents are an issue, has received little attention by environmental professionals. The burial of wastes associated with mad cow and related diseases may eventually lead to unusual challenges for remediation professionals. The core challenge is that medical researchers have confirmed the incredible difficulty in destroying TSE infectious agents or pathogens, generally called prions. Risk reduction is certainly possible with treatment technologies, but complete elimination of risk by reliable and verifiable destruction of all TSE agents is probably infeasible. Proving the efficacy of any waste treatment method for TSE-infected wastes is not practical because there is no commercially available test for TSE pathogens (although one is expected soon) and in only a few cases is there a reasonable surrogate approach. These circumstances have contributed to some biohazardous waste managers discounting the TSE issue. The goal of this article is to more thoroughly analyze available information and various risks to identify useful implications for alternative waste management technologies. A number of prudent actions can be taken in recognition of the TSE problem, including more careful assessment of treatment technologies, avoiding any reuse or recycling of waste treatment residues, using air pollution control systems to avoid releases of materials possibly containing infectious agents, and using wastewater pretreatment prior to sewer disposal.  相似文献   

6.
This study investigated the medical waste management practices used by hospitals in northern Jordan. A comprehensive inspection survey was conducted for all 21 hospitals located in the study area. Field visits were conducted to provide information on the different medical waste management aspects. The results reported here focus on the level of medical waste segregation, treatment and disposal options practiced in the study area hospitals. The total number of beds in the hospitals was 2296, and the anticipated quantity of medical waste generated by these hospitals was about 1400 kg/day. The most frequently used treatment practice for solid medical waste was incineration. Of these hospitals, only 48% had incinerators, and none of these incinerators met the Ministry of Health (MoH) regulations. As for the liquid medical waste, the survey results indicated that 57% of surveyed hospitals were discharging it into the municipal sewer system, while the remaining hospitals were collecting their liquid waste in septic tanks. The results indicated that the medical waste generation rate ranges from approximately 0.5 to 2.2 kg/bed day, which is comprised of 90% of infectious waste and 10% sharps. The results also showed that segregation of various medical waste types in the hospitals has not been conducted properly. The study revealed the need for training and capacity building programs of all employees involved in the medical waste management.  相似文献   

7.
According to the Brazilian law, implementation of a Medical Waste Management Plan (MWMP) in health-care units is mandatory, but as far as we know evaluation of such implementation has not taken place yet. The purpose of the present study is to evaluate the improvements deriving from the implementation of a MWMP in a Primary Health-care Center (PHC) located in the city of São Paulo, Brazil. The method proposed for evaluation compares the first situation prevailing at this PHC with the situation 1 year after implementation of the MWMP, thus allowing verification of the evolution of the PHC performance. For prior and post-diagnosis, the method was based on: (1) application of a tool (check list) which considered all legal requirements in force; (2) quantification of solid waste subdivided into three categories: infectious waste and sharp devices, recyclable materials and non-recyclable waste; and (3) identification of non-conformity practices. Lack of knowledge on the pertinent legislation by health workers has contributed to non-conformity instances. The legal requirements in force in Brazil today gave origin to a tool (check list) which was utilized in the management of medical waste at the health-care unit studied. This tool resulted into an adequate and simple instrument, required a low investment, allowed collecting data to feed indicators and also conquered the participation of the unit whole staff. Several non-conformities identified in the first diagnosis could be corrected by the instrument utilized. Total waste generation increased 9.8%, but it was possible to reduce the volume of non-recyclable materials (11%) and increase the volume of recyclable materials (4%). It was also possible to segregate organic waste (7%), which was forwarded for production of compost. The rate of infectious waste generation in critical areas decreased from 0.021 to 0.018 kg/procedure. Many improvements have been observed, and now the PHC complies with most of legal requirements, offers periodic training and better biosafety conditions to workers, has reduced the volume of waste sent to sanitary landfills, and has introduced indicators for monitoring its own performance. This evaluation method might subsidize the creation and evaluation of medical waste management plans in similar heath institutions.  相似文献   

8.
Healthcare waste management is a serious public health concern. In developing countries, compared to developed nations, the management of infectious wastes has not received sufficient attention. Recently, worldwide awareness has grown of the need to impose stricter controls on the handling and disposal of wastes generated by healthcare facilities. This exploratory study attempted in seven selected hospitals to explain the situation of healthcare waste management, with a focus on handling practices, occupational safety, and the implementation status of waste management policy, together with other pertinent policy issues. It was noted that the current system of healthcare waste management was underdeveloped and was in dire need of immediate attention and improvement, especially in Mongolia and Pakistan; the medical waste management practices were better in the hospitals studied in Thailand. This study underscores the importance for improvement of medical waste management of a national regulatory framework, a sound internal management system, and programs to train and ensure the safety of related personnel, as well as programs to estimate quantities of waste generated and to evaluate appropriate techniques of disposal. Once a healthcare waste management plan has been prepared, a regular program of inspection and review can be undertaken within the healthcare institution. A good inspection program can also expose problems and new issues in managing healthcare wastes.  相似文献   

9.
Hospital waste management and toxicity evaluation: a case study   总被引:1,自引:0,他引:1  
Hospital waste management is an imperative environmental and public safety issue, due to the waste's infectious and hazardous character. This paper examines the existing waste strategy of a typical hospital in Greece with a bed capacity of 400-600. The segregation, collection, packaging, storage, transportation and disposal of waste were monitored and the observed problematic areas documented. The concentrations of BOD, COD and heavy metals were measured in the wastewater the hospital generated. The wastewater's toxicity was also investigated. During the study, omissions and negligence were observed at every stage of the waste management system, particularly with regard to the treatment of infectious waste. Inappropriate collection and transportation procedures for infectious waste, which jeopardized the safety of staff and patients, were recorded. However, inappropriate segregation practices were the dominant problem, which led to increased quantities of generated infectious waste and hence higher costs for their disposal. Infectious waste production was estimated using two different methods: one by weighing the incinerated waste (880 kg day(-1)) and the other by estimating the number of waste bags produced each day (650 kg day(-1)). Furthermore, measurements of the EC(50) parameter in wastewater samples revealed an increased toxicity in all samples. In addition, hazardous organic compounds were detected in wastewater samples using a gas chromatograph/mass spectrograph. Proposals recommending the application of a comprehensive hospital waste management system are presented that will ensure that any potential risks hospital wastes pose to public health and to the environment are minimized.  相似文献   

10.
Ever since Taiwan’s National Health Insurance implemented the diagnosis-related groups payment system in January 2010, hospital income has declined. Therefore, to meet their medical waste disposal needs, hospitals seek suppliers that provide high-quality services at a low cost. The enactment of the Waste Disposal Act in 1974 had facilitated some improvement in the management of waste disposal. However, since the implementation of the National Health Insurance program, the amount of medical waste from disposable medical products has been increasing. Further, of all the hazardous waste types, the amount of infectious medical waste has increased at the fastest rate. This is because of the increase in the number of items considered as infectious waste by the Environmental Protection Administration. The present study used two important findings from previous studies to determine the critical evaluation criteria for selecting infectious medical waste disposal firms. It employed the fuzzy analytic hierarchy process to set the objective weights of the evaluation criteria and select the optimal infectious medical waste disposal firm through calculation and sorting. The aim was to propose a method of evaluation with which medical and health care institutions could objectively and systematically choose appropriate infectious medical waste disposal firms.  相似文献   

11.
In recent times, the quality of medical care has been continuously improving in medical institutions wherein patient-centred care has been emphasized. Failure mode and effects analysis (FMEA) has also been promoted as a method of basic risk management and as part of total quality management (TQM) for improving the quality of medical care and preventing mistakes. Therefore, a study was conducted using FMEA to evaluate the potential risk causes in the process of infectious medical waste disposal, devise standard procedures concerning the waste, and propose feasible plans for facilitating the detection of exceptional cases of infectious waste. The analysis revealed the following results regarding medical institutions: (a) FMEA can be used to identify the risk factors of infectious waste disposal. (b) During the infectious waste disposal process, six items were scored over 100 in the assessment of uncontrolled risks: erroneous discarding of infectious waste by patients and their families, erroneous discarding by nursing staff, erroneous discarding by medical staff, cleaning drivers pierced by sharp articles, cleaning staff pierced by sharp articles, and unmarked output units. Therefore, the study concluded that it was necessary to (1) provide education and training about waste classification to the medical staff, patients and their families, nursing staff, and cleaning staff; (2) clarify the signs of caution; and (3) evaluate the failure mode and strengthen the effects.  相似文献   

12.
A system dynamics approach for hospital waste management   总被引:2,自引:0,他引:2  
Healthcare services provided by hospitals may generate some infectious wastes. Although a large percentage of hospital waste is classified as general waste, which has similar nature as that of municipal solid waste and, therefore, could be disposed in municipal landfills, a small portion of infectious waste has to be managed in the proper manner in order to minimize risk to public health. Many factors involved in the hospital waste management system often link to one another, which require a comprehensive analysis to determine the role of each factor in the system. In this paper, we present a hospital waste management model based on system dynamics to determine the interaction among factors in the system using a software package, Stella. A case study of the City of Jakarta, Indonesia is selected. The hospital waste generation is affected by various factors including the number of beds in the hospitals and the NIMBY (not in my back yard) syndrome. To minimize the risk to public health, we found that waste segregation, as well as infectious waste treatment prior to disposal, has to be conducted properly by the hospital management, especially when scavenging takes place in landfill sites in developing countries.  相似文献   

13.
A review of the literature relating to the need for vaccination against infectious disease in the solid waste industry was conducted, focusing on hepatitis A, hepatitis B and tetanus. Databases (Medline, PreMedline, EMBASE, CINAHL, Current Contents, Cochrane Database, HTA Database, DARE, OSHROM) were searched up to and including August 2003. Articles were included in the review if they reported the prevalence of immunity to hepatitis A, hepatitis B or tetanus in solid waste workers or the incidence of clinical infection with any of these diseases. Papers about hazardous or medical waste, incineration or other infectious diseases were excluded. Forty-four papers constituted the evidence database. Only one paper studied the prevalence of antibodies to hepatitis A and hepatitis B in solid waste workers compared with sewage plant workers and office workers, and no difference was found between these groups of workers. There was some evidence to support a theoretical risk of infection with hepatitis A, B and tetanus; however, no studies could be found of the risk of these diseases in solid waste workers. No single cases of these diseases being acquired occupationally in solid waste management were identified in the literature. Workers in the solid waste industry may theoretically be at increased risk of acquiring infectious diseases occupationally. However, at present no studies could be found which have documented this risk.  相似文献   

14.
Inconsistencies are present in the management options for healthcare wastes in Mongolia. One of the first critical steps in the process of developing a reliable waste management plan requires the performance of a waste characterization analysis. The objectives of this study were an assessment of the current situation of healthcare waste management (HCWM) and characterization of healthcare wastes generated in Ulaanbaatar. A total about 2.65 tonnes of healthcare wastes are produced each day in Ulaanbaatar (0.78 tons of medical wastes and 1.87 tons of general wastes). The medical waste generation rate per kg/patient-day in the inpatient services of public healthcare facilities was 1.4-3.0 times higher than in the outpatient services (P<0.01). The waste generation rate in the healthcare facilities of Ulaanbaatar was lower than in some other countries; however, the percentage of medical wastes in the total waste stream was comparatively high, ranging from 12.5% to 69.3%, which indicated poor waste handling practices. Despite the efforts for the management of wastes, the current system of healthcare waste management in Ulaanbaatar city of Mongolia is under development and is in dire need of immediate attention and improvement. It is essential to develop a national policy and implement a comprehensive action plan for HCWM providing environmentally sound technological measures to improve HCWM in Mongolia.  相似文献   

15.

Infectious waste (IW) may include waste contaminated with blood and other bodily fluids, cultures of infectious agents from laboratory work, or waste from patients with infections. Accurate and standardized measurement is an important aspect of waste management. In Japan, data on infectious waste generated by hospitals are limited. Therefore, we aimed to identify the current status of infectious waste management and disposal in hospitals. To this end, data on the amount of IW generated and IW disposal costs from 54 public hospitals—25 general hospitals and 29 psychiatric hospitals—between April 2015 and March 2016 were analyzed. The results revealed the absence of a standardized unit of IW measurement, with 33 hospitals reporting IW in kilograms and 21 hospitals reporting it in liters. As expected, the amount of IW generated at psychiatric hospitals was significantly lower than that generated at general hospitals. The amount of IW produced correlated positively with the number of in-patients. Disposal costs varied not only by hospital type and prefecture but also across hospitals of the same type within the same prefecture. A system that consolidates IW data management using standardized units is necessary.

  相似文献   

16.
A questionnaire survey was conducted with the aim of examining the problems involved in the disposal of infectious waste at home-visit nursing stations and in its handling during home visits by nurses. From among the home-visit nursing stations registered with the National Association for Home-Visit Nursing Care, 1,965 offices were selected at random and questionnaires were sent to the selected offices. Nurses at 1,314 offices (66.9?%) responded to the survey and responses from 1,283 offices were identified as suitable for analysis after excluding 26 offices that closed and five offices whose main field of care was psychiatry. Offices were classified by management configuration. Offices attached to hospitals were classified as “attached office” and all others were classified as “independent office”. More attached office nurses recovered medical waste from patients’ homes than did independent office nurses. They were also more likely to transport waste with them during the course of a day’s visits. There was a significant difference between attached and independent offices in the burden of expense for waste disposal. Both offices have strong concern about waste treatment containers and handling in improvement in home medical care (HMC) waste disposal. Thus, in order to alleviate these concerns, it is necessary to provide nurses with containers for medical waste suited to home-visit nursing care and tools for preventing injuries. Japanese government should address HMC waste disposal more comprehensively through necessary legislation, subsidization and standardization.  相似文献   

17.
The wide variety of activities at healthcare facilities generates different types of waste. There is always a danger of spreading infection due to mishandling of infectious waste or sharps. Hence, a variety of policies and actions have been taken to improve healthcare waste management systems. A large body of literature is available which suggests methods for tackling different problematic situations but management is confronted with a variety of complex problems, such as the choice of technological options to control infection, legal and budget restrictions and the timely removal of waste, which can, at times, conflict with each other. Hence, a planning model is presented that is based on a trans-shipment goal programming approach wherein the waste flow is optimized for multiple objectives under different priority structures or with different relative importance (weights). The use of the model is demonstrated as a decision-making tool that would help the management to understand the effects of their policies on the system performance. The model is validated for a case application representing a real-life situation. It can be easily seen that, in the case in which the management is biased toward a higher level of safety protection towards infection control, they have to compromise on cost control and to some extent on environmental pollution control.  相似文献   

18.
In China, national regulations and standards for health care waste management were implemented in 2003. To investigate the current status of health care waste management at different levels of health care facilities (HCF) after the implementation of these regulations, one tertiary hospital, one secondary hospital, and four primary health care centers from Binzhou District were visited and 145 medical staff members and 24 cleaning personnel were interviewed.Generated medical waste totaled 1.22, 0.77, and 1.17 kg/bed/day in tertiary, secondary, and primary HCF, respectively. The amount of medical waste generated in primary health care centers was much higher than that in secondary hospitals, which may be attributed to general waste being mixed with medical waste. This study found that the level of the HCF, responsibility for medical waste management in departments and wards, educational background and training experience can be factors that determine medical staff members’ knowledge of health care waste management policy. Regular training programs and sufficient provision of protective measures are urgently needed to improve occupational safety for cleaning personnel. Financing and administrative monitoring by local authorities is needed to improve handling practices and the implementation of off-site centralized disposal in primary health care centers.  相似文献   

19.
The objective of this study was to analyze the present status of medical waste management in the light of the Medical Waste Control Regulation (MWCR) in Istanbul, the largest city in Turkey. About 17% of the hospitals, 20% of bed capacity, and 54% of private hospitals in Turkey are located in Istanbul. The first regulation about medical waste management in Turkey was published in 1993, and as a candidate state, it was changed in 2005 in accordance with EU Environmental Directives. In this work, a survey of 14 questions about the amount, collection, and temporary storage of medical wastes was applied to 192 hospitals in Istanbul through face-to-face interviews. It was found that the estimated quantity of medical waste from the hospitals is about 22tons/day and the average generation rate is 0.63kg/bed-day. Recyclable materials are collected separately at a rate of 83%. Separate collection of different types of wastes is consistently practiced, but 25% of the hospitals still use inappropriate containers for medical waste collection. Almost 77% of the hospitals use appropriate equipment for the medical waste collection personnel. The percentage of the hospitals that have temporary storage depots is 63%. Medical waste management in Istanbul is carried out by applying the MWCR.  相似文献   

20.
One of the requirements for development of human societies is the establishment of new healthcare centers. A variety of wastes are generated in healthcare centers depending on the type of activities. This study was conducted to identify, measure and manage different types of hospital wastes as a case study in a hospital located in southern Iran. For this purpose, a questionnaire was initially designed and distributed among the relevant experts to survey the current trend of waste management in the hospital in terms of waste collection, storage and disposal. Afterwards, the hospital waste was sampled during two seasons of fall and winter. The samples were weighted for seven consecutive days in the middle of each season. Approximately, 10 % of the total waste bags per day collected round the clock were selected for further analysis. The obtained results indicated that infectious-hazardous and pseudo-household wastes were, respectively, about 3.79 kg/day/bed, 1.36 kg/day/bed and 2.43 kg/day/bed of the total generated waste in the hospital. As the research findings suggest, proper separation of infectious and pseudo-household wastes at the source would be an essential step towards mitigating environmental and health risks and minimizing the cost of the hospital waste management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号