首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Maternal investment in offspring is expected to vary according to offspring sex when the reproductive success of the progeny is a function of differential levels of parental expenditure. We conducted a longitudinal investigation of rhesus macaques to determine whether variation in male progeny production, measured with both DNA fingerprinting and short tandem repeat marker typing, could be traced back to patterns of maternal investment. Males weigh significantly more than females at birth, despite an absence of sex differences in gestation length. Size dimorphism increases during infancy, with maternal rank associated with son’s, but not daughter’s, weight at the end of the period of maternal investment. Son’s, but not daughter’s, weight at 1 year of age is significantly correlated with adult weight, and male, but not female, weight accounts for a portion of the variance in reproductive success. Variance in annual offspring output was three- to fourfold higher in males than in females. We suggest that energetic costs of rearing sons could be buffered by fetal delivery of testosterone to the mother, which is aromatized to estrogen and fosters fat accumulation during gestation. We conclude that maternal investment is only slightly greater in sons than in daughters, with mothers endowing sons with extra resources because son, but not daughter, mass has ramifications for offspring sirehood. However, male reproductive tactics supersede maternal investment patterns as fundamental regulators of male fitness. Received: 23 July 1999 / Received in revised form: 23 February 2000 / Accepted: 13 March 2000  相似文献   

2.
The theory of parental investment and brood sex ratio manipulation predicts that parents should invest in the more costly sex during conditions when resources are abundant. In the polygynous great reed warbler, Acrocephalus arundinaceus, females of primary harem status have more resources for nestling provisioning than secondary females, because polygynous males predominantly assist the primary female whereas the secondary female has to feed her young alone. Sons weigh significantly more than daughters, and are hence likely to be the more costly sex. In the present study, we measured the brood sex ratio when the chicks were 9 days old, i.e. the fledging sex ratio. As expected from theory, we found that female great reed warblers of primary status had a higher proportion of sons in their broods than females of lower (secondary) harem status. This pattern is in accordance with the results from two other species of marsh-nesting polygynous birds, the oriental reed warbler, Acrocephalus orientalis, and the yellow-headed blackbird Xanthocephalus xanthocephalus. As in the oriental reed warbler, we found that great reed warbler males increased their share of parental care as the proportion of sons in the brood increased. We did not find any difference in fitness of sons and daughters raised in primary and secondary nests. The occurrence of adaptive sex ratio manipulations in birds has been questioned, and it is therefore important that three studies of polygynous bird species, including our own, have demonstrated the same pattern of a male-biased offspring sex ratio in primary compared with secondary nests. Received: 1 June 1999 / Received in revised form: 10 January 2000 / Accepted: 12 February 2000  相似文献   

3.
In many polygynous animals, parents invest more heavily in individual sons than in daughters. However, it is unclear if these differences in investment are a consequence of sex differences in the demand of offspring related to sexual size dimorphism or a consequence of parental manipulation. Here, we report on parental food delivery frequency in relation to brood size and brood sex ratio in a wild population of polygynous great reed warblers Acrocephalus arundinaceus. We used the polymorphic microsatellite loci on the Z chromosome to sex chicks. We found that paternal feeding frequency (times/h per nest) increased not with brood size, but with the proportion of males in the brood, although the demand per nest was more closely related to brood size than to brood sex ratio. Additionally, the increase in rate of paternal feeding frequency in relation to the brood sex ratio was much higher than the increase in rate of nestling food demands. Maternal feeding frequency was independent of both brood size and brood sex ratio. These results strongly suggest that fathers preferentially invest in their sons. We propose that parents can afford sex-biased parental care in animals in which food provisioning is enough for all offspring to survive. Received: 22 January 1996/Accepted after revision: 30 June 1996  相似文献   

4.
Females of many socially monogamous bird species commonly engage in extra-pair copulations. Assuming that extra-pair males are more attractive than the females’ social partners and that attractiveness has a heritable component, sex allocation theory predicts facultative overproduction of sons among extra-pair offspring (EPO) as sons benefit more than daughters from inheriting their father’s attractiveness traits. Here, we present a large-scale, three-year study on sex ratio variation in a passerine bird, the coal tit (Parus ater). Molecular sexing in combination with paternity analysis revealed no evidence for a male-bias in EPO sex ratios compared to their within-pair maternal half-siblings. Our main conclusion, therefore, is that facultative sex allocation to EPO is absent in the coal tit, in accordance with findings in several other species. Either there is no net selection for a deviation from random sex ratio variation (e.g. because extra-pair mating may serve goals different from striving for ‘attractiveness genes’) or evolutionary constraints preclude the evolution of precise maternal sex ratio adjustment. It is interesting to note that, however, we found broods without EPO as well as broods without mortality to be relatively female-biased compared to broods with EPO and mortality, respectively. We were unable to identify any environmental or parental variable to co-vary with brood sex ratios. There was no significant repeatability of sex ratios in consecutive broods of individual females that would hint at some idiosyncratic maternal sex ratio adjustment. Further research is needed to resolve the biological significance of the correlation between brood sex ratios and extra-pair paternity and mortality incidence, respectively.  相似文献   

5.
The host size model, an adaptive model for maternal manipulation of offspring sex ratio, was examined for the parasitoid wasp Spalangia endius. In a Florida strain, as the model predicts, daughters emerged from larger hosts than sons, but only when mothers received both small and large hosts simultaneously. The pattern appeared to result from the mother's ovipositional choice and not from differential mortality of the sexes during development. If sex ratio manipulation is adaptive in the Florida strain, it appears to be through a benefit to daughters of developing on large hosts rather than through a benefit to sons of developing on small hosts. Both female and male parasitoids were larger when they developed on larger hosts. For females, developing on a larger host (1) increased offspring production, except for the largest hosts, (2) increased longevity, (3) lengthened development, and (4) had no effect on wing loading. For males, development on a larger host had no effect on any measure of male fitness – mating success, longevity, development duration, or wing loading. In contrast, a strain from India showed no difference in the size of hosts from which daughters versus sons emerged, although both female and male parasitoids were larger when they developed on larger hosts. These results together with previous studies of Spalangia reveal no consistent connection between host-size-dependent sex ratio and host-size-dependent parasitoid size among strains of S. endius or among species of Spalangia. Received: 28 October 1998 / Received in revised form: 20 May 1999 / Accepted: 30 May 1999  相似文献   

6.
We investigated the effects of population fluctuation on the offspring’s sex allocation by a weakly polygynous mouse, Apodemus argenteus, for 3 years. In acorn-poor seasons, heavier mothers invested more in sons, and lighter mothers invested more in daughters. In acorn-rich seasons, heavier mothers invested more in daughters, and lighter mothers invested more in sons. Maternal body condition and litter size affected the sex allocation. Furthermore, there was a maternal investment trade-off between a son’s birth mass and the number of daughters. Based upon the effect of population fluctuation on the lifetime reproductive success of each sex, we proposed the new “safe bet hypothesis”. This hypothesis predicts that frequent and unpredictable change in female distribution, which is often caused by abrupt fall in food condition, favors female-biased maternal investment to offspring by polygynous mammals and is applicable to many small mammals inhabiting in unstable environments.  相似文献   

7.
Biased parental investment and reproductive success in Gabbra pastoralists   总被引:8,自引:0,他引:8  
Demographic data from 848 Gabbra households are used to examine the relationships between herd size and reproductive success in relation to sex, in a traditional, pastoralist population. The number of camels in the household herd has a significant positive effect on the reproductive success of both men and women, although the effect of wealth is greater for men, as predicted from evolutionary theory. The greater the number of elder brothers a man has, the lower his reproductive success, as a result of a smaller initial herd and a later age at marriage. This is not true for women –number of elder sisters does not have a measurable effect on a woman’s fertility, although it does have a small, negative effect on the size of her dowry. These results are interpreted as competition between same-sex siblings for parental investment, in the form of their father’s herd, which is more intense between sons than daughters as parental investments are greatest in males. Received: 30 June 1995/Accepted after revision: 23 October 1995  相似文献   

8.
Adaptive sex allocation by brood reduction in antechinuses   总被引:3,自引:0,他引:3  
Antechinuses (Dasyuridae: Marsupialia) exhibit dramatic interpopulation variation in the sex ratio at birth, a pattern which has previously been interpreted in terms of both local resource competition and Trivers/Willard effects. However, Antechinus stuartii usually fail to wean all the young that attach to their teats. At least in captivity, this is because they often eat their young. In free-living populations, brood reduction affects sons and daughters differently. Mothers virtually always wean some daughters. The probability that a daughter will be weaned declines with the number of daughters in the pouch. The health or quality of the mother does not affect the number of daughters weaned. By contrast, mothers tend to wean all or none of their sons. A strong correlate of infanticide against sons is senescence. Old mothers rarely invest in sons, and produce low-quality daughters. Mothers suffer a direct cost (mortality during lace lactation) of male-biased litters. Coupled with data on prenatal sex allocation, these results support the conjoint influence of local resource competition and the Trivers-Willard effect. However, they suggest that in populations where females are largely semelparous, the population optimum generated by local resource competition may be unattainable, because of the importance of producing at least one daughter. These observations support recent theoretical claims that the sex ratio at the population level is not easily predicted, but suggest that the diversity of mammalian sex allocation tactics has been underestimated.  相似文献   

9.
This study tested whether fallow deer mothers, Dama dama, bias their investment towards sons and, thus, whether sons are more costly to produce than daughters. Young (2 years) and old (≥3 years) hinds were analysed separately. Old hinds who raised sons accumulated less body mass than those who raised daughters, during the period between late gestation and the end of lactation. This difference in body mass persisted to the following spring. Mothers who had raised sons gave birth later and their offspring's pre-winter mass was lower the following year than for mothers who had raised daughters. These results indicate higher expenditure for hinds who raise sons and support theories of male-biased maternal investment. However, young mothers with sons and those with daughters did not differ in reproductive performance the following year. One reason might be that young mothers are close to the maximum level of maternal expenditure, since they are still growing, and cannot invest any extra resources in sons. Received: 28 August 1997 / Accepted after revision: 5 April 1998  相似文献   

10.
The bridled nailtail wallaby is a sexually size dimorphic, promiscuous, solitary macropod. Sex ratios of pouch young were studied at two sites over 3 years, beginning with 14 months of severe drought. Females that were in better condition were more likely to have sons, and condition was dependent on body size. Females at one site were heavier, were consequently in better condition, and produced more sons than females at the other site. Females that declined in condition had more daughters during the most severe part of the drought than females that maintained condition, but endoparasite infection did not affect the pouch young sex ratio. Age also appeared to affect sex ratio adjustment, because weight was strongly influenced by age. Sex ratio bias was not caused by early offspring mortality, but occurred at conception. Mothers did not appear to bias energy expenditure on sons or daughters; males and females did not differ in condition at the end of pouch life. Pouch young sex ratio variation was most consistent with the Trivers-Willard hypothesis, but could also have been influenced by local resource competition, since sons dispersed further than daughters. Offspring condition was related to survival, and was correlated with maternal condition. Received: 14 April 1998 / Accepted after revision: 10 November 1998  相似文献   

11.
In the meerkat (Suricata suricatta), a cooperative mongoose, pups follow potential feeders while the group is foraging and emit incessant calls when soliciting food from them. In contrast to a ’stationary’ brood of chicks, in which nestlings are fed at a fixed location, meerkat pups are ’mobile’ and become spread out. The question arises whether meerkat pups that experience different constraints to those facing chicks have evolved similar begging strategies. This paper describes the vocalisations that meerkat pups emit in the context of begging and investigates the influence of these calls on food allocation by older group members and on the behaviour of littermates. Meerkat pups use two types of calls when soliciting food from a potential feeder. The most common is a ’repeat’ call, which pups emit continuously when following an older forager over several hours a day. In addition, when a potential feeder finds a prey item, the pups next to it emit a bout of calls with increased calling rate, amplitude and fundamental frequency, termed ’high-pitched’ calls. Observations, together with playback experiments, showed that more prey was allocated to pups that called longer and more intensely. The pup closest to a feeder was almost always fed. The probability of emitting high-pitched calls did not depend on the time since a pup had received food, and the change from repeat to high-pitched calls occurred suddenly. The main function of the high-pitched call, therefore, does not appear to be to signal a pup’s hunger state. More likely, the two calls, in the context of begging, may be an adaptation to energetic constraints in a mobile feeding system. Pups, which are dispersed during foraging, may emit repeat calls over long periods to prevent potential feeders from eating all the prey themselves. At the moment a potential feeder finds prey, pups may give the more intense high-pitched calls to direct feeders to bring the food item to them and not to a littermate. Therefore, unlike the stationary feeding system where chicks emit one type of begging call when the feeder approaches the nest, meerkats, with a mobile feeding system, have evolved two discrete types of vocalisations in the context of begging. Received: 22 November 1999 / Revised: 1 July 2000 / Accepted: 17 July 2000  相似文献   

12.
Theory, empirical examples, and recently, proximate mechanisms point to the possibility of adaptive sex ratio adjustment in various organisms. General predictions state that a female should adjust her offspring sex ratio to maximize the benefits or minimize the costs of reproduction given her physical condition or current social and environmental conditions. I tested for an influence of male attractiveness on brood sex ratio in a population of dark-eyed juncos (Junco hyemalis thurberi) by manipulating a male’s white outer tail feathers (“tail white”). Experimentally increasing male tail white did not significantly affect sex ratio, nor was premanipulated male tail white significantly related to brood sex ratio. However, the amount of white on the female’s outer tail feathers, independently of female condition, was positively related to the number of sons in a brood. Determining how a female’s potential genetic contribution to her sons’ attractiveness influences offspring sex ratio should be a priority for future research.  相似文献   

13.
Fisher's theoretical prediction of equal investment in each sex for a panmictic population (The genetical theory of natural selection. Clarendon, Oxford, 1930) can be altered by a number of factors. For example, the sex ratio theory predicts variation in equal investment in each sex when the maternal fitness gains from increased investment differ between sexes. Changing sex allocation because of changing payoffs may result from different ecological situations, such as foraging conditions. We investigated the impact of foraging travel cost on relative investment in sons vs daughters. Field studies were carried out with the central-place-foraging leafcutter bee Megachile rotundata (Fabricius), which has smaller males than females. Therefore, less investment is required to produce a viable son compared with a daughter. We found that with increased flight distance to resources, females produced a greater proportion of sons. Females also invested fewer resources in individual sons and daughters and produced fewer offspring with increased flight distance.  相似文献   

14.
Sex allocation theory posits that mothers should preferentially invest in sons when environmental conditions are favorable for breeding, their mates are of high quality, or they are in good body condition. We tested these three hypotheses in rhinoceros auklets (Cerorhinca monocerata), monomorphic seabirds that lay a single-egg clutch, in 2 years that differed in environmental conditions for breeding. Results supported the environment and mate quality hypotheses, but these effects were interactive: offspring sex was independent of paternal traits in the poor year for breeding, while females mated to larger and more ornamented males reared more sons in the better year. Conversely, offspring sex was unrelated to female condition, as indexed by hatching date. We propose that good rearing conditions enable females to rear sons possessing the desirable phenotypic attributes of their mates. Results also supported two critical assumptions of sex allocation theory: (1) dimorphism in offspring condition at independence: daughters fledged with higher baseline levels of corticosterone than sons and (2) differential costs of rearing sons versus daughters: mothers rearing sons when environmental conditions were poor completed parental care in poorer condition than mothers rearing daughters in the same year and mothers rearing either sex when conditions were better. These novel results may help to explain the disparate results of previous studies of avian sex allocation.  相似文献   

15.
Patterns of sex ratio variation and maternal investment reported in the literature are often inconsistent. This could be due to intra- and inter-specific variation in social systems, but may also be a result of the a posteriori nature of much of this type of analysis or the testing of models which are inappropriate. Two recent papers reported directly opposed results concerning variation in offspring sex ratios in relation to maternal condition in roe deer, interpreting the results as support for the Trivers and Willard model and for the local resource competition hypothesis, respectively. In this paper, we present data on offspring sex ratios and early juvenile body weight from two long-term studies of this species to test predictions arising from these two models concerning sex biases in litter composition and maternal care. First, we observed no consistent pattern of sex differences in an index of weaning weight or body weight at 1 month old in either population, indicating a lack of sex bias in maternal care. However, in one population, higher maternal body weight was associated with higher juvenile body weight of daughters, but not of sons. Secondly, we found a negative, but not statistically significant, relationship between maternal body weight and litter sex ratio such that heavier females tended to produce more daughters and lighter females to produce more sons. These results indicate that roe females which have additional investment potential available do not invest it in sons, as predicted by the Trivers and Willard model. Our results may provide some support that roe deer are subject to local resource competition acting at the level of the individual mother; however, the fact that particular trends in sex ratio data can be explained in functional terms provides no indication that they are actually adaptive. Received: 9 December 1997 / Accepted after revision: 11 November 1998  相似文献   

16.
Allocation of parental investment is predicted to be equal at the population level between both sexes of offspring, and should lead to sex ratio biases in species that exhibit a sex-difference in parental care. Sex-differences in parental care are rarely quantified. We measured daily energy expenditure in free-living nestlings of the extremely sexually size dimorphic European sparrowhawk (Accipiter nisus), using the doubly labelled water method. These data were combined with measured growth characteristics to estimate daily and total metabolised energy intake of male and female young during the nestling stage. Females reached an asymptotic body mass 1.6 times higher than males. This resulted in a total metabolised energy an estimated 1.4 times higher for the nestling stage. Furthermore, we observed a decline in daily metabolised energy with an increase in brood size, which was significantly stronger for females than for males. These results are discussed in the context of Fishers equal allocation theory. Empirical evidence of a sex ratio bias at the end of parental care, with an overall excess of males, is lacking in this species. Consequently, our data do not support the idea of equal allocation between the sexes. The observed sex difference in daily metabolised energy in response to brood size may give scope for sex ratio bias at the level of the individual brood.  相似文献   

17.
In the parasitoid wasp Spalangia endius more offspring and a greater proportion of daughters were oviposited in, and emerged from 0-day-old versus 3-day-old hosts. Offspring that developed on the younger hosts (1) were larger at adulthood, (2) developed more quickly, (3) had higher survivorship to adulthood, and (4) were more often able to chew their way out of the host. Sons and daughters did not differ in how host age affected their size, development rate, or survivorship. The greater proportion of daughters from the younger hosts may be adaptive, as described by the host quality model (a variant of the Trivers and Willard hypothesis). It is adaptive if greater size or more rapid development has a more positive effect on a daughter’s than a son’s fitness and the positive effect is large enough to compensate for sons being trapped disproportionately to daughters in the older hosts. Despite greater success at drilling the younger hosts, mothers did not try to drill them sooner or more often. Having previously oviposited on the older rather than the younger hosts had no detrimental effect on the mother’s subsequent longevity or offspring production. Received: 8 March 2000 / Revised: 9 June 2000 / Accepted: 24 June 2000  相似文献   

18.
Fisher's theory of sex allocation predicts that, in a panmictic population, parental investment will be equally distributed between male and female progeny. Most studies on parental investment in nesting solitary bees and wasps use offspring or provision weight as estimators of parental investment and do not corroborate Fisher's theory. The measurement of parental investment may be confounded by several factors. First, the use of offspring or provision size does not account for seasonal variation in foraging costs associated with aging of nesting females. Second, provision or offspring size do not reflect parental investment associated with nest construction. In this two-year study we measured parental investment in a solitary bee. We calculated sex allocation using both provision weight and foraging time as parental investment estimators. Investment in pollen-nectar provisions decreased, while investment in mud structures (nest construction) increased, as the nesting period progressed. Overall investment in provisions per nest was ∼25 times higher than investment in mud. Pollen-nectar foraging trips became longer as the season progressed, but mud trip duration did not vary. Due to weather differences between years, more offspring per female were produced in the first year, but progeny sex ratio and mean offspring size of both sexes were similar between years. Mortality did not differ between sexes. As predicted by Fisher's theory, production cost ratios did not differ from 1 in either year, irrespective of the currency used to estimate parental investment (provision weight or foraging time). Our results strongly support Fisher's theory.  相似文献   

19.
Optimal parental investment usually differs depending on the sex of the offspring. However, parents in most organisms cannot discriminate the sex of their young until those young are energetically independent. In a species with physical male–male competition, males are often larger and usually develop sexual ornaments, so male offspring are often more costly to produce. However, Onthophagus dung beetles (Coleoptera; Scarabaeidae) are highly dimorphic in secondary sexual characters, but sexually monomorphic in body size, despite strong male–male competition for mates. We demonstrate that because parents provide all resources required by their offspring before adulthood, O. atripennis exhibits no sexual size dimorphism irrespective of sexual selection pressure favoring sexual dimorphism. By constructing a graphic model with three fitness curves (for sons, daughters, and expected fitness return for parents), we demonstrate that natural selection favors parents that provide both sons and daughters with the optimal amount of investment for sons, which is far greater than that for daughters. This is because the cost of producing small sons, that are unable to compete for mates, is far greater than the cost of producing daughters that are larger than necessary. This theoretical prediction can explain sexual dimorphism without sexual size dimorphism, widely observed in species with crucial parental care such as dung beetles and leaf-rolling beetles, and may provide an insight into the enigmatic relationship between sexual size dimorphism and sexual dimorphism.  相似文献   

20.
Females capable of adjusting the sex ratio of their offspring should be more fit than females lacking such an ability. In polygynous birds where breeding success in males is more strongly influenced by body size and/or attractiveness than in females, females might produce more sons when predicting good conditions or when mating with attractive males. Polygynous great reed warbler, Acrocephalusarundinaceus, males direct most of their feeding effort to the primary (first-hatching) nest and in these nests increase their feeding effort in relation to the brood sex ratio (proportion of sons). Therefore, with the expectation of well-nourished sons, we would predict that females which start breeding first within harems might produce more sons than those which start breeding later, and in anticipation of sons with good genes, that females mated to polygynous males might produce more sons than females mated to monogamous males. I took blood samples from hatchlings and determined the sex using DNA markers. The sex ratio of primary (monogamous and polygynous primary) broods is more male-biased (mean 0.58 males, n = 50) than that of secondary (polygynous secondary and tertiary) broods (mean 0.46, n = 25). Moreover, in the secondary broods with the largest clutch (five eggs), in which offspring are most likely to suffer food shortage, the sex ratio was distinctively female biased (mean 0.33, n = 10). In the primary broods, sex ratio was correlated to harem size. The results suggest that great reed warbler females modify the brood sex ratio to produce both well-nourished sons and sons with good genes, but the former effect is probably stronger than the latter factor. Received: 11 March 1998 / Accepted after revision: 23 May 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号