首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 201 毫秒
1.
超临界水氧化法处理竹子溶解浆生产废水的实验研究   总被引:2,自引:0,他引:2  
介绍了利用目前国内最大超临界水氧化中试反应器(2.2L+1.7L)对竹子溶解浆生产废水进行处理的试验,其反应装置处理水量可以达到900~1100L/d。分析了超临界水氧化过程中不同反应温度、时间、压力及其氧气浓度对该废水COD处理效率的影响。实验结果表明:在温度为500℃、压力为24MPa,氧化反应时间为60s时,其COD去除率达到99.2%;氧化反应时间为90s时,其COD去除率达到99.95%。处理后的排水能够达到国家规定的排放标准。同时对超临界水氧化反应过程中出现的反应机理及放热现象进行了探讨。  相似文献   

2.
陈金华  马春燕  奚旦立  李琼 《环境工程》2011,29(2):36-39,44
采用催化超临界水氧化(CSCWO)技术对香料废水进行氧化处理,研究了催化剂浓度、反应温度、压力、停留时间等因素对废水COD、TN去除效果的影响.结果表明:在超临界水中添加cu2+催化剂后有机物的去除效率与无催化剂时相比有显著的提高.香料废水中COD、TN的去除率随催化剂浓度、反应温度和压力的升高,停留时间的延长而提高....  相似文献   

3.
采用连续式超临界水氧化小试装置处理垃圾渗滤液,以双氧水作为氧化剂,研究了超临界水氧化反应的温度、压力、氧化剂比例K和催化剂等因素对渗滤液中污染物去除效果的影响,结果表明在不同温度、不同压力、不同K值单因素实验条件下,温度480℃,压力26 MPa,K=3.0是处理垃圾渗滤液的最佳工艺参数。试验加入催化剂能够提高COD和氨氮去除率,当Cu2+浓度为45 mg/L时,垃圾渗滤液中COD和氨氮去除率分别达到78.9%和38.8%。正交试验表明,主要的工艺参数中温度对处理效率的影响最大,其次是氧化剂比例K,压力影响最小。试验结果的氨氮去除率相对较低,这可能是由于垃圾渗滤液水质复杂,各污染物之间存在相互干扰,氨氮的去除机理还有待进一步的深入研究。  相似文献   

4.
超临界水氧化法降解甲胺磷的研究   总被引:34,自引:1,他引:34  
实验研究了典型有机磷农药甲胺磷在超临界水中的氧化降解.结果表明,超临界水氧化技术能有效地降解甲胺磷,COD去除率最高可达97%以上.随着反应温度的升高、压力的增大、停留时间的延长和初始废水浓度的增大,COD去除率也随之提高.甲胺磷在超临界水中氧化降解的动力学方程为:-d[COD]/dτ=8.69×105exp(-9.61×104/RT)1.09[O2]0-0.38.  相似文献   

5.
超临界水氧化法处理皂素废水   总被引:3,自引:1,他引:2  
皂素生产废水具有色度大、有机物浓度高、酸度大、盐分高等特点,是一种处理难度较大的中药废水.探讨了用超临界水氧化处理皂素废水的实验条件,考察了温度、压力、停留时间、氧化剂用量等参数对降解反应的影响.结果表明,反应温度、停留时间、氧化剂用量是影响降解反应的主要因素,压力对降解反应的影响不大.确定了最适宜的反应条件为:反应温度440%℃,反应压力24MPa,停留时间40s以上.氧气加入量为理论值的150%,此条件下COD去除率可达到99%以上.另外,实验较好地解决了超临界氧化技术中材料的腐蚀和盐的沉淀两大难题.  相似文献   

6.
采用H2O2为氧化剂,在连续蒸发壁式反应器中进行了超临界水氧化降解分散染料废水的实验.结果表明:超临界水氧化技术处理分散染料废水时,TOC的去除效果优于TN的去除效果.在25 MPa,380~460℃的条件下,短短30s的时间内,TOC去除率可达到90%以上,而TN去除率却只有45%~60%.随着温度和压力的升高以及氧化剂用量的增加,废水中TN浓度随之下降而NH3-N浓度却随之升高.  相似文献   

7.
采用超临界水氧化(supercritical water oxidation,SCWO)技术对TNT-RDX混合炸药废水进行氧化处理,研究了反应温度、压力、停留时间、过氧量等因素对降解效果的影响。结果表明:采用超临界水氧化技术能够迅速将TNT-RDX废水中的有机物彻底分解为无害的CO2和N2,随反应温度的升高、压力的增大、反应时间的延长,COD去除率也随之提高。过氧量对废水有机物氧化的COD去除率的影响依赖于反应的进程。当反应温度超过550℃,反应时间>120 s时,TNT-RDX废水的COD去除率>99%,完全达到了国家火炸药水污染物排放标准的要求。  相似文献   

8.
超临界水氧化法处理制浆黑液   总被引:2,自引:0,他引:2  
造纸黑液是较难处理的工业废水。以工业纯氧为氧化剂,采用自制的间歇式超临界水氧化系统对麦草制浆黑液进行处理,根据实验数据分析了超临界水氧化过程中不同反应温度,时间,氧气浓度对该废水COD处理效率的影响。实验结果表明,选定合理的实验参数,COD去除率可达99.8%。  相似文献   

9.
本文采用超临界水氧化法处理高浓度的食品废水,研究了不同温度、压力、反应时间等因素对高浓度食品废水降解效果的影响。研究结果表明:反应温度,压力和时间都影响高浓度食品废水COD的降解效果,升高温度、增大压力和延长反应时间都将提高废水的处理效果,在相同的反应时间下温度对处理效果的影响要大于反应压力。  相似文献   

10.
采用超临界水氧化技术处理含有高浓度的有机杂质和Cr3+离子的制革中铬鞣段废水,实验结果表明该方法可行高效。废水中COD发生氧化反应,Cr3+离子发生水解反应。在温度为550℃,压力为30 MPa,停留时间为35 s,过氧比为2.2的最佳工艺条件下,COD的去除率达到98.3%,Cr3+离子的回收率为98.6%。  相似文献   

11.
以电厂粉煤灰为主要试验原料,辅以外加药剂(水泥、石灰、石膏、水玻璃),经混合、成球、陈化和养护等工序,制得免烧粉煤灰陶粒,并将其作为曝气生物滤池(BAF)工艺的载体填料处理城市污水.待挂膜启动成功后,考察了水力停留时间( HRT)、COD负荷、氨氮负荷对COD和氨氮去除效果的影响.实验结果表明:在温度为18~21℃、气...  相似文献   

12.
以柳叶马鞭草、菖蒲、鸢尾和美人蕉及南方红壤构建5个生物滞留池模拟装置,研究植物和IWS(内部存水区)及其交互作用对径流中TSS、COD、NH_3-N、NO_3~--N、TN和TP去除的影响,定期测定植物的叶绿素含量、株高和游离脯氨酸含量等生理指标,以探讨植物的生长适宜性。结果表明:植物对COD、NO_3~--N和TN的去除影响较大,其去除率分别为68.84%~77.28%、13.09%~59.61%和42.41%~71.75%,柳叶马鞭草和美人蕉的NO_3~--N及TN去除能力显著高于菖蒲和鸢尾(P柳叶马鞭草>鸢尾>菖蒲,美人蕉和柳叶马鞭草的去污效果和长势较好,适宜在南方生物滞留池中种植。  相似文献   

13.
高浓度有机废水酵母菌低氧处理技术初探   总被引:5,自引:2,他引:3  
在开放式环境中,在低氧条件(DO=0-0.2mg/L)下通过连续小试试验考察了利用酵母Candidatropicalis处理高浓度有机废水的可行性。54d低氧连续小试结果表明:进水COD、NH4+-N、TP浓度分别为11000~30000、1000、230mg/L时,其去除率分别为67%~88%,18%~68%,23%~68%,氮磷去除率取决于进水COD、TN、TP的水平。污泥微观形态观察表明反应柱内微生物基本上是酵母,但运行过程中优势酵母形态发生了变化。低氧(DO=0.1-0.4mg/L)和无氧条件下C.tropicalis批量培养试验表明污染物去除和酵母生长与氧的供给关系密切,低氧条件下C.tropicalis有很高的活性,能有效去除COD(去除率为91%);无氧条件则导致C.tropicalis生物量下降,COD去除率仅为12%。  相似文献   

14.
利用小球烧结和氢气还原工艺制备了粒径1mm~5mm的多孔性球形海绵铁,对球形海绵铁去除水体中硝酸盐的效率及去除动力学进行了研究。结果表明:溶液初始pH值对硝酸盐去除效率的影响显著,初始pH值小于3时,硝酸盐的去除率随溶液初始pH的增加而逐渐降低;初始pH值大于3时,硝酸盐的去除率又随之升高。硝酸盐浓度低于10mgN/L时,硝酸盐去除率随着硝酸盐初始浓度的增加而增加,硝酸盐的残余量保持在0.4mgN/L左右;硝酸盐浓度高于20mgN/L时,硝酸盐的去除率随初始硝酸盐浓度的增加而略有降低。球形海绵铁去除硝酸盐为一级动力学反应,反应级数为0.970~1.378,表观反应速率常数为0.314h-1~0.536h-1。海绵铁还原硝酸盐的主要产物为氨氮,随着还原反应的进行,溶液pH值快速增加,氨氮以分子态氨的形式从水中逸出。进行归纳总结和对比,并以多环芳烃的提取为例列举了各方法的应用步骤,从而为其他环境样品其他有机物分析预处理提供参考。  相似文献   

15.
IntroductionWatershortageproblemisquiteseriousinmanycitiesofChina .Thereuseofmunicipalwastewaterisoneofthekeymethodstoreleasethisproblem .Makeupwaterforrecirculatingcoolingsystemisthelargestwaterusageinmanyfactories .Thewaterqualitystandardsforreclaimedwa…  相似文献   

16.
采用电-多相臭氧催化(E-catazone)技术处理高COD、高含盐、难生化的金刚烷胺制药废水.对比研究电-多相臭氧催化、多相臭氧催化(Catazone)、电催化氧化(EO)对金刚烷胺制药废水的处理效果,在此基础上进一步研究了电流密度、pH值以及气相O3浓度对电-多相臭氧催化技术处理效果的影响,同时优化实验条件.实验结果表明,在原水pH值为12.5,电流密度为15mA/cm2,O3进气流速0.4L/min,O3浓度为60mg/L的条件下,经过60min反应,电-多相臭氧催化技术获得了62%的COD去除和44%的总有机碳(TOC)去除,其效果显著优于多相臭氧催化(COD 44%,TOC 29%)与电催化氧化(COD 13%,TOC 17%);同时,电-多相臭氧催化不仅氧化能力强,而且氧化速率快,获得的伪一级COD去除速率常数k是多相臭氧催化和电催化氧化的1.81倍和8.22倍,更为重要的是,电-多相臭氧催化技术还可以高效、快速地提高废水的生化性,提高约2个数量级,结果表明,电-多相臭氧催化技术是一种有潜力的高级氧化技术,可以实现高效、快速去除有机污染物以及提高废水的可生化性.  相似文献   

17.
Pressurized biochemical process derived from traditional activated sludge processes is an innovative technology for wastewater treatment. The main advantage of the pressurized process is that the oxygen transfer barrier can be overcome by increasing the dissolved oxygen level. In this study, high concentration pesticide wastewater was treated by pressurized activated sludge process. It was found that the removal of chemical oxygen demand (COD) increased steadily with the increase of operating pressure, aeration time, and sludge concentration. When the operation pressure was 0.30 MPa and the aeration time was 6 hr, 85.0%–92.5% COD, corresponding to an effluent COD of 230–370 mg/L, was removed from an influent COD of 2500–5000 mg/L. The obtained outlet COD concentration was lower than 350–450 mg/L for the identical process operated under the atmospheric pressure. In addition, pressurized biochemical process could produce a higher COD volumetric loading rate at 5.8–7.6 kg COD/(m3·day), compared with 2.0–2.8 kg COD/(m3·day) using the same equipment at the atmospheric pressure. The COD concentration followed a modified Monod model with Vmax 2.31 day-1 and KS 487 mg/L.  相似文献   

18.
MBR工艺处理高盐度废水试验   总被引:3,自引:0,他引:3  
采用MBR工艺对高盐度废水处理的影响因素进行研究。试验条件如下:污水中海水比例为50%,COD为700~800 mg/L,氨氮为80~100 mg/L,HRT为12 h,污泥浓度为7~8 g/L。试验结果表明:在高盐度条件下,采用低溶解氧(DO为1~2 mg/L),COD和氨氮的平均去除率可分别达到91.91%和91.44%;但氨氮负荷提高到0.4 kg/(m3.d)左右时,其平均去除率仅为62.47%。通过降低DO浓度和提高进水氨氮浓度可以使亚硝化率达到50%以上,但不能保持稳定的亚硝酸盐积累。  相似文献   

19.
温度与A2/O工艺处理功能密切相关,研究温度变化对系统脱氮效果产生的影响。试验结果表明:温度介于14.5℃~25℃范围内,COD去除率由70%上升至81.4%,温度介于25℃~34.3℃范围内,COD去除率最高达到85%以上,可保证COD稳定和高效的去除效果;最佳脱氮温度范围约为25℃~30℃之间,TN去除率约70%,硝化率达95%,过高或过低的温度条件对脱氮功能均有抑制作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号