首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本次研究选取了2015年1~3月份北京地区的PM2.5、PM10、NO2、SO2浓度的小时栅格数据,利用ENVI 4.8软件取得各污染物栅格数据的平均值,分析各污染物的浓度分布差异,结果表明:北京地区1~3月大气污染物浓度的空间分布具有显著的梯度特征,污染物浓度从东-西、从南-北呈递减趋势,其中PM2.5、PM10的环境空气污染程度较重,NO2、SO2的地面浓污染程度较轻,主城区的污染物浓度相对较高,郊区的相对较低。  相似文献   

2.
采集了徐州市具有代表性的9个点位的春季环境空气样品,对不同功能区的监测点PM10及PM2.5污染水平及其来源进行了分析。结果表明,徐州市区代表不同功能的监测点污染特征明显,PM10与PM2.5污染主要来源于燃煤(包括电厂、其他工业)等固定源、机动车移动源,并受到工业废气、建筑施工扬尘等的影响。其水溶性离子、金属成分污染水平与其他城市相当,但由于受燃煤电厂的影响,Pb,Mn,As,Cr含量明显高于其它城市。  相似文献   

3.
通过对太原市2013年冬季和2014年夏季PM10、PM2.5、SO2和CO 24小时平均浓度实时数据的整理和分析,结果表明,冬季污染较夏季严重。冬季为采暖期,颗粒物、SO2和CO相互之间呈现较强的相关关系,污染物来源有着较高的同源性,区域采暖燃煤是区域大气污染的主导性影响因素;夏季为非采暖期,颗粒物、SO2和CO相互之间呈现较弱的相关关系,其污染来源有着较低的同源性,燃煤污染不是区域的主要污染因素,颗粒物、SO2和CO来源于不同行业的工业污染,同时城市机动车尾气也是PM2.5和CO的污染影响因素。  相似文献   

4.
西安地铁环境中PM_(10)、PM_(2.5)、CO_2污染水平分析   总被引:1,自引:1,他引:0  
樊越胜  胡泽源  刘亮  谢伟  艾帅 《环境工程》2014,32(5):120-124
针对地铁环境空气污染状况,于2013年6月对西安地铁2号线各监测车站的站厅、站台、车厢及室外的PM10、PM2.5、CO2的污染水平进行了监测分析。结果表明:站厅、站台和车厢的PM10浓度均未超标;PM2.5浓度最大值分别为97.97,131.56,97.1μg/m3,超标率分别为30.6%、75.4%、29.5%,各监测站点细颗粒物污染较严重。车厢内部CO2最高浓度超过2 357 mg/m3,缺乏足够的新鲜空气来满足乘客的呼吸需求。对PM10和PM2.5源的相关性分析表明,站台和车厢环境中的颗粒物有强烈的相关性,二者有共同的来源。对站台和车厢环境中的PM10、PM2.5与室外环境的相关性分析表明,PM10有强烈的相关性(R2=0.83,0.78);PM2.5有较弱的相关性(R2=0.43,0.11)。各监测车站站台PM2.5/PM10为0.64~0.83,平均值为0.72;车厢PM2.5/PM10为0.68~0.85,平均值为0.78。  相似文献   

5.
通过对太原市2013年冬季SO2、PM10和PM2.524小时浓度均值实时数据的整理和分析,结果表明,各项污染物浓度在城区和郊区差异显著。由于城郊地形条件、气象条件基本一致,各项污染物24小时浓度月变化曲线趋势基本相同。城郊PM2.5和PM10浓度比值范围与均值差别较小,比值月变化曲线趋势基本相同,城郊颗粒物污染物来源相同或相近。相关性分析表明PM2.5分别与PM10和SO2浓度均为高度正相关关系,三者污染源存在较大一致性,冬季区域污染主要以燃煤排放大气污染物为主要特征。  相似文献   

6.
武汉市与西安市颗粒物PM_(10)、PM_(2.5)的污染水平分析   总被引:1,自引:0,他引:1  
利用武汉、西安两市2013年PM10与PM2.5的监测数据,统计分析了武汉市和西安市PM10与PM2.5的污染水平,并比较了两城市的污染水平。根据GB 3095—2012《中华人民共和国环境空气质量标准》规定的二级浓度限值,可知武汉市和西安市PM2.5的污染都非常严重,PM10的污染相对较轻。从整体上说,西安市的污染水平要比武汉市严重,其中西安市PM10中PM2.5约占79%。武汉市和西安市的相关部门都应重视PM10和PM2.5的污染问题。  相似文献   

7.
基于泉州市区2014年1、4、7、10月的空气质量自动监测数据,分析了PM_(10)与PM_(2.5)污染水平并对其季节变化趋势进行探讨。结果表明,监测期间内,泉州市区PM10日均浓度变化范围为0.025~0.376mg/m3,PM2.5日均浓度变化范围为0.010~0.346mg/m3,PM_(10)与PM_(2.5)的年均日浓度分别为0.067mg/m3和0.034mg/m3。泉州市区大气中的PM_(10)与PM_(2.5)浓度均呈现出明显的季节变化趋势,春冬两季浓度高于夏秋两季。利用HYSPLIT-4模型对PM_(10)与PM_(2.5)浓度出现异常高值的时段进行气团后推轨迹推导,结果显示长距离传输和区域传输在不同时段对本地污染的主导作用不同。  相似文献   

8.
选取秋冬季节典型污染天气作为研究背景,采集研究区2018年10月8日—10月19日的污染物数据及气象参数数据,分析PM_(2.5)和PM_(10)之间相关性、两者浓度值每日变化规律及其随风向风速变化的分布特征,并结合研究区地理位置及产业布局,全面探究PM_(2.5)和PM_(10)污染成因。结果表明研究区PM_(2.5)和PM_(10)具有良好的相关性,可能来自同类型污染源。  相似文献   

9.
沈阳市大气颗粒物PM_(2.5)污染现状分析   总被引:2,自引:0,他引:2  
利用2011年1~4月沈阳市环境空气中PM2.5自动监测资料进行分析,结果表明,冬季1月和2月污染严重,日均值超标率达到50.0%~64.5%。1天中PM2.5有2个峰值,最大值出现在上午8~9时,次之出现在22时,15时浓度最低。冬季PM2.5污染严重的原因是冬季采暖燃煤量大,污染物排放量大,加之气象扩散条件差导致污染严重。  相似文献   

10.
利用2013年唐山市全年六个监测点的PM10和PM2.5的24小时连续监测数据,分析了唐山市大气中PM10和PM2.5的浓度时间变化特征,讨论了两者之间的相关性。  相似文献   

11.
根据2014-2016年泰山区大气污染物PM_(10)和PM_(2.5)的监测数据,对PM_(10)和PM_(2.5)浓度的变化特征和二者的相关性以及PM_(2.5)占PM_(10)的比重进行分析。结果表明:受地形、气象和冬季燃煤取暖的共同影响,近三年的PM_(10)、PM_(2.5)月均浓度都具有明显的季节变化规律,冬季最高,夏季最低,春季、秋季居中。环保部门等采取了一系列措施,三年来空气中PM_(10)和PM_(2.5)的浓度逐年下降。PM_(10)和PM_(2.5)的浓度具备一定的相关性,且PM_(2.5)在PM_(10)中比重很大,可认为两者的变化趋势一致。秋冬季节是泰山区细颗粒物污染较重的季节,环境危害较大。在雾霾天气频发的阶段,PM_(10)和PM_(2.5)的防治更应成为大气污染防治工作的重中之重。  相似文献   

12.
通过对石家庄市2013年1~12月PM2.5和PM10实时数据的整理和分析,结果表明,石家庄市区大气中细颗粒物PM2.5和可吸入颗粒物PM10月均浓度变化呈明显的季节性,二者变化趋势基本一致,采暖期12-2月份浓度普遍高于其他月份,PM2.5和PM10浓度最高值均出现在1月份;春夏PM2.5和PM10浓度有所降低,7月份浓度最低。PM2.5和PM10存在显著的正相关关系。  相似文献   

13.
为准确掌握垫江县城区大气环境中细颗粒的污染状况,选择2016年9月1日—2017年2月28日大气自动观测站的数据研究分析,结果表明:垫江县城区大气环境中PM_(10)和PM_(2.5)的平均质量浓度分别为79mg/m~3和68mg/m~3,PM_(10)的月平均质量浓度均大于PM_(2.5),PM_(2.5)占PM_(10)的比例在84.6%~90.0%。多元分析结果可以看出,大气环境中的PM_(10)和PM_(2.5)具有相类似来源,气象条件对垫江县城区大气颗粒物污染影响较大。HYSPLIT轨迹模型分析表明,秋冬季节大气重污染时段,垫江县城区大气环境中颗粒物来源受到西南和西北气团影响较大。  相似文献   

14.
本文通过对2012年3月至2013年3月宝鸡市大气PM_(2.5)中各个水溶性无机离子组分的质量浓度进行研究,获得了水溶性离子的时间变化特征,并结合主成分分析方法讨论了不同离子的来源。结果显示,宝鸡市PM_(2.5)中水溶性离子主要由、和组成,分别占总水溶性离子质量浓度的40.47%、30.75%和15.07%;PM_(2.5)整体偏酸性。/比值随API指数的升高而增大,当空气质量较好时PM_(2.5)中硫酸盐居多,而随着空气污染发生硝酸盐逐渐增多并占优势。主成分分析结果表明PM_(2.5)中水溶性离子的主要来源有二次气溶胶、生物质燃烧和土壤尘。  相似文献   

15.
以和田市2020年夏季PM_(2.5)、PM_(10)为对象,文章分析测定其中14种元素含量,通过富集因子、地质积累指数、内梅罗污染指数和潜在生态风险评价4种方法评价元素污染特征。利用美国EPA健康风险评价模型对其中重金属元素进行风险评估。结果显示:(1)采样期间PM_(2.5)、PM_(10)浓度超标明显,超标天数均超过80%。(2)沙尘天气颗粒物浓度及元素总质量浓度大于非沙尘天气,地壳元素浓度特征为PM_(10)高于PM_(2.5),沙尘天气高于非沙尘天气。(3)14种元素共占颗粒物含量的18.20%,地壳元素占总元素的平均比例为98.59%。(4)颗粒物浓度、地壳元素、Mn之间始终为极显著正相关关系。较其他元素言,Zn、Pb与其他元素及颗粒物的相关性较弱。(5)地壳元素及Mn在4种评价方法中均未出现超标现象。Zn、Cd、As来自人为源。地质积累指数和生态风险评价结果相似,均为Mn、Cr存在轻微或无污染现象,As、Cd污染较严重,内梅罗污染指数则显示,Mn、Pb、Cd无污染,Cr污染较严重。(6)Mn、Cr对于不同群体均存在非致癌与致癌风险,As仅在沙尘天气对于成年人存在致癌风险。  相似文献   

16.
采用连续自动监测方法于2013年9月至2014年4月对处于四川盆地内的中等城市绵阳市主城区富乐山、市人大、三水厂、高新区4个点进行空气质量监测。监测结果表明:空间分布上PM10和PM2.5污染程度城西工业区最高,市中心其次,森林公园最低。季节变化PM10和PM2.5污染程度为:春季<秋季<冬季。1天内PM10和PM2.5小时均值呈双峰分布。PM10和PM2.5一元线性回归方程为:y=0.7273x-2.9869,回归分析相关性系数为0.94。ρ(PM2.5)/ρ(PM10)平均值为0.7,变化范围为0.27~0.93。  相似文献   

17.
分析了其时间分布特征。结果表明,沈阳地区的气溶胶分布具有明显的季节差异,气溶胶的质量浓度冬季最高,秋季最低,其中冬季、春季和夏季均超标。PM2.5和PM1分别在PM10中所占的比值均为冬季最高,夏季和秋季次之,春季由于受到沙尘的影响,其比值最低。在各个不同的季节,气溶胶粒子的粒级分布具有相似之处,主要集中在6~8级(1.1μm)、1级(5.8~9.0μm)、0级(9~10μm)和5级(1.1~2.1μm);春季出现沙尘时粗粒子明显增多,气溶胶粒子的粒级主要集中在0级(9~10μm)、1级和3级(3.3~4.7μm);冬季重污染天气下细粒子浓度高,峰值出现在1级、7级和5级(1.1~2.1μm)。  相似文献   

18.
对2015年3月—2016年2月邯郸市大气中的PM_(10)、PM_(2.5)和PM_(1.0)进行了在线监测,探讨了其质量浓度的变化特征,并分析了其质量浓度与风速、风向的关系。结果表明:邯郸市颗粒物质量浓度水平较高,β射线吸收法所监测的PM_(10_WET)、PM_(2.5_WET)和PM_(1.0_WET)年均浓度值分别为202.5,114.8,81.1μg/m~3,PM_(2.5_DRY)/PM_(10_WET)和PM_(2.5_WET)/PM_(10_WET)分别为0.58、0.70,PM_(1_DRY)/PM_(2.5_WET)和PM_(1_WET)/PM_(2.5_WET)分别为0.58、0.71,PM_(2.5)为PM_(10)中的主要组成,PM_(1.0)为PM_(2.5)中的主要组成。邯郸市PM_(10)、PM_(2.5)和PM_(1.0)质量浓度冬季最高;PM_(10)、PM_(2.5)和PM_(1.0)日变化峰值为上午09:00左右,谷值为下午16:00左右,扬沙、降雨,霾和春节不同条件下PM_(10)、PM_(2.5)和PM_(1.0)差异明显。邯郸市PM_(10)、PM_(2.5)和PM_(1.0)的浓度高值主要分布在风向0°~100°和175°~225°、风速小于1 m/s的情况下。  相似文献   

19.
黄军  郭胜利  王希 《环境工程》2015,33(12):69-74
南京2013年冬季至2014年春季多次出现灰霾污染天气过程,防治颗粒物污染刻不容缓,其中细颗粒物(PM_(10))和超细颗粒物(PM_(2.5))所占比例较大。利用南京市环保局空气质量发布平台污染物监测数据和中国天气网站气象要素数据,对冬春季PM_(2.5)和PM_(10)质量浓度的变化特征以及它们与气象条件的关系进行分析。结果表明:南京冬季PM_(2.5)、PM10平均浓度分别为0.0982,0.1536 mg/m3,春季平均浓度分别为0.0673,0.1207 mg/m3。市区和郊区污染程度由高到低依次为:市区>江宁>六合>溧水。南京空气中颗粒物小时平均浓度日变化呈"双峰双谷型"特征。颗粒物与相对湿度、降雨量和风力呈一定的负相关性,与温度呈一定的正相关性,它们共同影响颗粒物质量浓度水平和大气污染状况。  相似文献   

20.
为了初步调查柳州市空气中颗粒物PM10、PM2.5的污染水平,于2013年春、夏、秋、冬4季在柳州市的6个典型城市功能区进行数据采集。结果表明,柳州市PM10和PM2.5污染很严重,超标率分别为12.6%和35.1%,而且对人体健康危害更大的PM2.5占PM10的大部分,约为79.55%,应引起公众和相关职能部门的高度重视,且应在PM2.5问题上重点寻求突破。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号