首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
S Loppi 《Chemosphere》2001,45(6-7):991-995
The environmental distribution of mercury and other trace elements in the geothermal area of Bagnore (Mt. Amiata, central Italy) and its surroundings was evaluated by means of lichens used as bioaccumulators. Adopting a 'before-after' strategy, the impact of a recently built power plant was also evaluated. Four sites were sampled: (1) S. Fiora, a town 2 km SE of Bagnore; (2) Bagnore, a village where geothermal power is generated; (3) Aiole, a locality 1.5 km NW of Bagnore with an abandoned Hg smelting plant and a waste pile of roasted cinnabar; (4) Arcidosso, a town 3.5 km NW of Bagnore. At S. Fiora and Arcidosso, where most of the population is concentrated, mercury levels in lichens were within the background range (0.1-0.2 microg/g dw). On the contrary, at Aiole, Hg concentrations (0.63-0.67 microg/g dw) were much higher than background. After the new geothermal power plant went into operation at Bagnore, lichen concentrations of Hg showed a 50% increase from 0.22 to 0.32 microg/g dw. This value, however, is in line with those found in lichens from natural areas with hot springs and fumaroles.  相似文献   

2.
Mercury (Hg) is a highly toxic environmental contaminant and man-made emissions account for between a quarter and a third of total atmospheric levels. Point discharges, particularly coal-burning power stations, are major sources of atmospheric Hg and can result in marked spatial variation in mercury deposition and subsequent uptake by biota. The aims of this study were to quantify the extent to which major point and diffuse sources of atmospheric Hg emissions affected accumulation of Hg by biota throughout Galicia and Asturias, two of the major regions in northwest Spain. We did this by relating renal Hg concentrations in locally reared cattle (n=284) to the proximity of animals to point and diffuse sources of Hg emissions. Mercury residues in calf kidneys ranged between non-detected and 89.4 g/kg wet weight. Point discharges from coal-fired power plants in Galicia had the most dominant impact on Hg accumulation by calves in Galicia, affecting animals throughout the region and explaining some two-thirds of the variation in renal residues between animals located directly downwind from the plants. The effects of more diffuse emission sources on Hg accumulation in calves were not distinguishable in Galicia but were detected in cattle from neighbouring Asturias. The impact of both point and diffuse sources in elevating environmental levels of bioavailable Hg and subsequent accumulation by cattle extended to approximately 140-200 km downwind from source.  相似文献   

3.
Two mathematical models of the atmospheric fate and transport of mercury (Hg), an Eulerian grid-based model and a Gaussian plume model, are used to calculate the atmospheric deposition of Hg in the vicinity (i.e., within 50 km) of five coal-fired power plants. The former is applied using two different horizontal resolutions: coarse (84 km) and fine (16.7 km). More than 96% of the power plant Hg emissions are calculated with the plume model to be transported beyond 50 km from the plants. The grid-based model predicts a lower fraction to be transported beyond 50 km: >91% with a coarse resolution and >95% with a fine resolution. The contribution of the power plant emissions to total Hg deposition within a radius of 50 km from the plants is calculated to be <8% with the plume model, <14% with the Eulerian model with a coarse resolution, and <10% with the Eulerian model with a fine resolution. The Eulerian grid-based model predicts greater local impacts than the plume model because of artificially enhanced vertical dispersion; the former predicts about twice as much Hg deposition as the latter when the area considered is commensurate with the resolution of the grid-based model. If one compares the local impacts for an area that is significantly less than the grid-based model resolution, then the grid-based model may predict lower local deposition than the plume model, because two compensating errors affect the results obtained with the grid-based model: initial dilution of the power plant emissions within one or more grid cells and enhanced vertical mixing to the ground.  相似文献   

4.
Abstract

Two mathematical models of the atmospheric fate and transport of mercury (Hg), an Eulerian grid–based model and a Gaussian plume model, are used to calculate the atmospheric deposition of Hg in the vicinity (i.e., within 50 km) of five coal–fired power plants. The former is applied using two different horizontal resolutions: coarse (84 km) and fine (16.7 km). More than 96% of the power plant Hg emissions are calculated with the plume model to be transported beyond 50 km from the plants. The grid–based model predicts a lower fraction to be transported beyond 50 km: >91% with a coarse resolution and >95% with a fine resolution. The contribution of the power plant emissions to total Hg deposition within a radius of 50 km from the plants is calculated to be <8% with the plume model, <14% with the Eulerian model with a coarse resolution, and <10% with the Eulerian model with a fine resolution. The Eulerian grid–based model predicts greater local impacts than the plume model because of artificially enhanced vertical dispersion; the former predicts about twice as much Hg deposition as the latter when the area considered is commensurate with the resolution of the grid–based model. If one compares the local impacts for an area that is significantly less than the grid–based model resolution, then the grid–based model may predict lower local deposition than the plume model, because two compensating errors affect the results obtained with the grid–based model: initial dilution of the power plant emissions within one or more grid cells and enhanced vertical mixing to the ground.  相似文献   

5.
Mercury (Hg) is a toxic element that is emitted to the atmosphere through human activities, mainly fossil fuel combustion. Hg accumulations in soil are associated with atmospheric deposition, while coal-burning power plants remain the most important source of anthropogenic mercury emissions. In this study, we analyzed the Hg concentration in the topsoil of the Kozani–Ptolemais basin where four coal-fired power plants (4,065 MW) run to provide 50 % of electricity in Greece. The study aimed to investigate the extent of soil contamination by Hg using geostatistical techniques to evaluate the presumed Hg enrichment around the four power plants. Hg variability in agricultural soils was evaluated using 276 soil samples from 92 locations covering an area of 1,000 km2. We were surprised to find a low Hg content in soil (range 1–59 μg kg?1) and 50 % of samples with a concentration lower than 6 μg kg?1. The influence of mercury emissions from the four coal-fired power plants on soil was poor or virtually nil. We associate this effect with low Hg contents in the coal (1.5–24.5 μg kg?1) used in the combustion of these power plants (one of the most Hg-poor in the world). Despite anthropic activity in the area, we conclude that Hg content in the agricultural soils of the Kozani–Ptolemais basin is present in low concentrations.  相似文献   

6.
Mercury contamination in freshwater food webs can be severe and persistent, and freshwater fish are a major source of mercury contamination in humans. Northern hemisphere studies suggest that the primary pathway by which freshwater fish accumulate mercury is the food web, and that atmospheric deposition is the primary route by which mercury enters freshwater systems. Levels of atmospheric deposition are closely linked to proximity to sources of mercury emissions. These propositions have not been tested in the southern hemisphere. In this study, we measured mercury levels at three lakes in southern Brazil and assessed relationships between mercury in precipitation, lake water, sediment and fish tissues at sites close to (industrial and suburban areas) and distant from (protected conservation area) sources of mercury emissions. We also assessed relationships between mercury in fish species and their trophic habits. Mercury concentrations in sediment and lake water did not vary among lakes. In contrast, mercury in precipitation at the study lakes increased with proximity to industrial sources. Mercury in fish tissue generally increased along the same gradient, but also varied with trophic level and preferred depth zone. Atmospheric mercury deposition to these closed lakes may be directly linked to concentrations in fish, with surface-feeding piscivorous species attaining the highest concentrations.  相似文献   

7.
Lomonte C  Gregory D  Baker AJ  Kolev SD 《Chemosphere》2008,72(10):1420-1424
The re-use of biosolids is becoming increasingly popular for land applications. However, biosolids may contain elevated levels of metals and metalloids (including mercury) relative to background environmental concentrations. Consequently, reliable mercury analysis is important to allow classification of biosolids and to determine appropriate options for beneficial uses. This paper reports on a comparative study of 12 hotplate wet digestion methods for their suitability for the determination of mercury in biosolids. The methods were applied to mercury biosolids samples from four localities of two different sewage treatment plants in the State of Victoria, Australia. Samples were also spiked with methylmercury chloride and mercury sulphide to evaluate the Hg recovery in each hotplate digestion method. Aqua regia (HCl:HNO(3)=3:1), reverse aqua regia (HCl:HNO(3)=1:3), nitric, hydrochloric, sulphuric acid and their combinations with or without hydrogen peroxide were studied as wet digestion solutions. The method providing the best mercury recoveries was optimized. Under optimal conditions the corresponding analytical procedure consisted of 1h pre-digestion of 0.4 g biosolids sample with 10 ml reverse aqua regia with temperature increasing to 110 degrees C and 3h digestion at this temperature. In the last 10 min of the digestion step, 2 ml hydrogen peroxide were added to ensure complete decomposition of all mercury containing compounds. After filtering and dilution with deionised water (1:10), the concentration of mercury was determined by cold vapour atomic absorption spectrometry. It is expected, that the wet acid digestion method developed in this study will be also applicable to biosolids from other sewage treatment plants and to other types of solid mercury samples with elevated levels of organic matter.  相似文献   

8.
Changes in deposition of gaseous divalent mercury (Hg(II)) and particulate mercury (Hg(p)) in New Hampshire due to changes in local sources from 1996 to 2002 were assessed using the Industrial Source Complex Short Term (ISCST3) model (regional and global sources and Hg atmospheric reactions were not considered). Mercury (Hg) emissions in New Hampshire and adjacent areas decreased significantly (from 1540 to 880 kg yr−1) during this period, and the average annual modeled deposition of total Hg also declined from 17 to 7.0 μg m−2 yr−1 for the same period. In 2002, the maximum amount of Hg deposition was modeled to be in southern New Hampshire, while for 1996 the maximum deposition occurred farther north and east. The ISCST3 was also used to evaluate two future scenarios. The average percent difference in deposition across all cells was 5% for the 50% reduction scenario and 9% for the 90% reduction scenario.  相似文献   

9.
Total dissolved and particulate mercury (Hg), arsenic (As), and antimony (Sb) mass loads were estimated in different seasons (March and September 2011 and March 2012) in the Paglia River basin (PRB) (central Italy). The Paglia River drains the Mt. Amiata Hg district, one of the largest Hg-rich regions worldwide. Quantification of Hg, As, and Sb mass loads in this watershed allowed (1) identification of the contamination sources, (2) evaluation of the effects of Hg on the environment, and (3) determination of processes affecting Hg transport. The dominant source of Hg in the Paglia River is runoff from Hg mines in the Mt. Amiata region. The maximum Hg mass load was found to be related to runoff from the inactive Abbadia San Salvatore Mine (ASSM), and up to 30 g day?1 of Hg, dominantly in the particulate form, was transported both in high and low flow conditions in 2011. In addition, enrichment factors (EFs) calculated for suspended particulate matter (SPM) were similar in different seasons indicating that water discharge controls the quantities of Hg transported in the PRB, and considerable Hg was transported in all seasons studied. Overall, as much as 11 kg of Hg are discharged annually in the PRB and this Hg is transported downstream to the Tiber River, and eventually to the Mediterranean Sea. Similar to Hg, maximum mass loads for As and Sb were found in March 2011, when as much as 190 g day?1 each of As and Sb were measured from sites downstream from the ASSM. Therefore, the Paglia River represents a significant source of Hg, Sb, and As to the Mediterranean Sea.  相似文献   

10.
The emission, transport, deposition and eventual fate of mercury (Hg) in the Mediterranean area has been studied using a modified version of the Weather Research and Forecasting model coupled with Chemistry (WRF/Chem). This model version has been developed specifically with the aim to simulate the atmospheric processes determining atmospheric Hg emissions, concentrations and deposition online at high spatial resolution. For this purpose, the gas phase chemistry of Hg and a parametrised representation of atmospheric Hg aqueous chemistry have been added to the regional acid deposition model version 2 chemical mechanism in WRF/Chem. Anthropogenic mercury emissions from the Arctic Monitoring and Assessment Programme included in the emissions preprocessor, mercury evasion from the sea surface and Hg released from biomass burning have also been included. Dry and wet deposition processes for Hg have been implemented. The model has been tested for the whole of 2009 using measurements of total gaseous mercury from the European Monitoring and Evaluation Programme monitoring network. Speciated measurement data of atmospheric elemental Hg, gaseous oxidised Hg and Hg associated with particulate matter, from a Mediterranean oceanographic campaign (June 2009), has permitted the model’s ability to simulate the atmospheric redox chemistry of Hg to be assessed. The model results highlight the importance of both the boundary conditions employed and the accuracy of the mercury speciation in the emission database. The model has permitted the reevaluation of the deposition to, and the emission from, the Mediterranean Sea. In light of the well-known high concentrations of methylmercury in a number of Mediterranean fish species, this information is important in establishing the mass balance of Hg for the Mediterranean Sea. The model results support the idea that the Mediterranean Sea is a net source of Hg to the atmosphere and suggest that the net flux is ≈30 Mg year?1 of elemental Hg.  相似文献   

11.
Mercury wet deposition is dependent on both the scavenging of divalent reactive gaseous mercury (RGM) and atmospheric particulate mercury (Hg(p)) by precipitation. Estimating the contribution of precipitation scavenging of RGM and Hg(p) is important for better understanding the causes of the regional and seasonal variations in mercury wet deposition. In this study, the contribution of Hg(p) scavenging was estimated on the basis of the scavenging ratios of other trace elements (i.e., Cd, Cu, Mn, Ni, Pb and V) existing entirely in particulate form. Their wet deposition fluxes and concentrations in air, which were measured concurrently from April 2004 to March 2005 at 10 sites in Japan, were used in this estimation. The monthly wet deposition flux of mercury at each site correlated with the amount of monthly precipitation, whereas the Hg(p) concentrations in air tended to decrease during summer. There was a significant correlation (P<0.001) among the calculated monthly average scavenging ratios of trace elements, and the values in each month at each site were similar. Therefore, it is assumed the monthly scavenging ratio of Hg(p) is equivalent to the mean value of other trace elements. Using this scavenging ratio (W), the wet deposition flux (F) due to Hg(p) scavenging in each month was calculated by F=WKP, where K and P are the Hg(p) concentration and amount of precipitation, respectively. Relatively large fluxes due to Hg(p) scavenging were observed at a highly industrial site and at sites on the Japan Sea coast, which are strongly affected by the local sources and the long-range transport from the Asian continent, respectively. However, on average, at the 10 sites, the contribution of Hg(p) scavenging to the annual mercury deposition flux was 26%, suggesting that mercury wet deposition in Japan is dominated by RGM scavenging. This RGM should originate mainly from the in situ oxidation of Hg0 in the atmosphere.  相似文献   

12.
An intensive 1-month atmospheric sampling campaign was conducted concurrently at eight monitoring sites in central Illinois, USA, from June 9 to July 3, 2011 to assess spatial patterns in wet and dry deposition of mercury and other trace elements. Summed wet deposition of mercury ranged from 3.1 to 5.4 μg/m2 across sites for the total study period, while summed dry deposition of reactive mercury (gaseous oxidized mercury plus particulate bound mercury) ranged from 0.7 to 1.6 μg/m2, with no statistically significant differences found spatially between northern and southern sites. Ratios of summed wet to summed dry mercury deposition across sites ranged from 2.2 to 4.9 indicating that wet deposition of mercury was dominant during the study period. Volume-weighted mean mercury concentrations in precipitation were found to be significantly higher at northern sites, while precipitation depth was significantly higher at southern sites. These results showed that substantial amounts of mercury deposition, especially wet deposition, occurred during the study period relative to typical annual wet deposition levels. Summed wet deposition of anthropogenic trace elements was much higher, compared to summed dry deposition, for sulfur, selenium, and copper, while at some sites summed dry deposition dominated summed wet deposition for lead and zinc. This study highlights that while wet deposition of Hg was dominant during this spring/summer-season study, Hg dry deposition also contributed an important fraction and should be considered for implementation in future Hg deposition monitoring studies.  相似文献   

13.
Nguyen HT  Kim KH  Kim MY  Shon ZH 《Chemosphere》2008,70(5):821-832
The environmental behavior of gaseous elemental mercury (Hg) in the ambient air was investigated from the center of a municipal landfill site (area approximately 0.6km(2)) located in Dae Gu, Korea in the winter of 2004. In order to provide insight on the Hg exchange processes in strong source areas, we continuously analyzed Hg concentration gradients developed across two heights between 1m and 5m over soil surfaces at hourly intervals. The results displayed Hg concentrations in the lower and upper levels in the range of 1.46-13.1ngm(-3) (3.33+/-1.29ngm(-3): N=139) and 1.20-13.7ngm(-3) (3.27+/-1.23ngm(-3): N=139), respectively. The results of our analysis, when divided separately into emission and dry deposition, showed that emission of Hg was fairly dominant in frequency (up to 58%) over dry deposition. By multiplying our Hg gradient data with the K-values predicted indirectly from the results of previous studies, the emission and deposition fluxes of Hg were estimated as 39.0+/-43.3ngm(-2)h(-1) (N=80) and -60.0+/-80.2ngm(-2)h(-1) (N=59), respectively. Although the magnitudes of exchange were moderately lower than previously investigated anthropogenic sources, the overall results of this study suggest that an active landfill site can act as an important source of Hg in an urban environment along with other man-made activities.  相似文献   

14.
Atmospheric mercury (Hg) emission from coal is one of the primary sources of anthropogenic discharge and pollution. China is one of the few countries in the world whose coal consumption constitutes about 70% of total primary energy, and over half of coals are burned directly for electricity generation. Atmospheric emissions of Hg and its speciation from coal-fired power plants are of great concern owing to their negative impacts on regional human health and ecosystem risks, as well as long-distance transport. In this paper, recent trends of atmospheric Hg emissions and its species split from coal-fired power plants in China during the period of 2000-2007 are evaluated, by integrating each plant's coal consumption and emission factors, which are classified by different subcategories of boilers, particulate matter (PM) and sulfur dioxide (SO2) control devices. Our results show that the total Hg emissions from coal-fired power plants have begun to decrease from the peak value of 139.19 t in 2005 to 134.55 t in 2007, though coal consumption growing steadily from 1213.8 to 1532.4 Mt, which can be mainly attributed to the co-benefit Hg reduction by electrostatic precipitators/fabric filters (ESPs/FFs) and wet flue gas desulfurization (WFGD), especially the sharp growth in installation of WFGD both in the new and existing power plants since 2005. In the coming 12th five-year-plan, more and more plants will be mandated to install De-NO(x) (nitrogen oxides) systems (mainly selective catalytic reduction [SCR] and selective noncatalytic reduction [SNCR]) for minimizing NO(x) emission, thus the specific Hg emission rate per ton of coal will decline further owing to the much higher co-benefit removal efficiency by the combination of SCR + ESPs/FFs + WFGD systems. Consequently, SCR + ESPs/FFs + WFGD configuration will be the main path to abate Hg discharge from coal-fired power plants in China in the near future. However advanced specific Hg removal technologies are necessary for further reduction of elemental Hg discharge in the long-term.  相似文献   

15.
We compare a global model of mercury to sediment core records to constrain mercury emissions from the 19th century North American gold and silver mining. We use information on gold and silver production, the ratio of mercury lost to precious metal produced, and the fraction of mercury lost to the atmosphere to calculate an a priory mining inventory for the 1870s, when the historical gold rush was at its highest. The resulting global mining emissions are 1630 Mg yr?1, consistent with previously published studies. Using this a priori estimate, we find that our 1880 simulation over-predicts the mercury deposition enhancements archived in lake sediment records. Reducing the mining emissions to 820 Mg yr?1 improves agreement with observations, and leads to a 30% enhancement in global deposition in 1880 compared to the pre-industrial period. For North America, where 83% of the mining emissions are located, deposition increases by 60%. While our lower emissions of atmospheric mercury leads to a smaller impact of the North American gold rush on global mercury deposition than previously estimated, it also implies that a larger fraction of the mercury used in extracting precious metals could have been directly lost to local soils and watersheds.  相似文献   

16.
Preparation of mercury emissions inventory for eastern North America   总被引:1,自引:0,他引:1  
Point and area inventories of anthropogenic mercury emissions documented by US and Canadian environmental agencies have been aggregated into a single archive for analysis and air pollution modeling work. For 5341 point sources and 1634 aggregated area sources, mercury emissions are apportioned among elemental gaseous [Hg(0)], reactive gaseous[Hg(II)], and particulate [Hg(p)] emissions using speciation factors derived from available monitoring measurements. According to this inventory, 4.82 x 10(5) mol of mercury were emitted in calendar year 1996 in the latitude range 24-51 degrees north, and longitude range 64-91 degrees west, which covers most of North America east of the Mississippi River. Using speciation factors consistent with past emission source studies, we find the relative emission proportions among Hg(0):Hg(II):Hg(p) species are 47:35:18. Maps of the various mercury species' emissions patterns are presented. Gridded emission patterns show local mercury emission extremes associated with individual cement production and municipal incineration facilities, and in contrast to past inventories, population centers do not stand out. Considerable uncertainties are still present in estimating emissions from large point sources, as are methods of apportioning emissions among various mercury species.  相似文献   

17.
A collecting method to prepare a fractional determination of ambient forms of mercury in air is proposed. Particulate mercury is collected by a glass fiber filter. Sequential trap tubes consist of four long and slender quartz tubes, in which the Chromosorb W treated with HCl gas for Hg(II), the Chromosorb W treated with 0.1 M NaOH for methylmercury, the silver-wire tip for metallic mercury and the gold plate tip for dimethylmercury are packed. The collection efficiency for these trap tubes was in the range of about 85 ~ 100% at the μg or ng concentration level. With this method, the air was collected by suction at the rate of 1.5 l/min. for about five hours, the detection limit being 0.2 ng Hg/m3. The results indicate that the regional distribution of total mercury in air was considerably greater in the volcanic and hot spring regions. Mercury species was found to be mostly Hg(II), followed by metallic mercury, methylmercury, dimethylmercury and particulate mercury in this order.  相似文献   

18.

Due to its adverse impact on health, as well as its global distribution, long atmospheric lifetime and propensity for deposition in the aquatic environment and in living tissue, the US Environmental Protection Agency (US EPA) has classified mercury and its compounds as a severe air quality threat. Such widespread presence of mercury in the environment originates from both natural and anthropogenic sources. Global anthropogenic emission of mercury is evaluated at 2000 Mg year−1. According to the National Centre for Emissions Management (Pol. KOBiZE) report for 2014, Polish annual mercury emissions amount to approximately 10 Mg. Over 90% of mercury emissions in Poland originate from combustion of coal.

The purpose of this paper was to understand mercury behaviour during sub-bituminous coal and lignite combustion for flue gas purification in terms of reduction of emissions by active methods. The average mercury content in Polish sub-bituminous coal and lignite was 103.7 and 443.5 μg kg−1. The concentration of mercury in flue gases emitted into the atmosphere was 5.3 μg m−3 for sub-bituminous coal and 17.5 μg m−3 for lignite. The study analysed six low-cost sorbents with the average achieved efficiency of mercury removal from 30.6 to 92.9% for sub-bituminous coal and 22.8 to 80.3% for lignite combustion. Also, the effect of coke dust grain size was examined for mercury sorptive properties. The fine fraction of coke dust (CD) adsorbed within 243–277 μg Hg kg−1, while the largest fraction at only 95 μg Hg kg−1. The CD fraction < 0.063 mm removed almost 92% of mercury during coal combustion, so the concentration of mercury in flue gas decreased from 5.3 to 0.4 μg Hg m−3. The same fraction of CD had removed 93% of mercury from lignite flue gas by reducing the concentration of mercury in the flow from 17.6 to 1.2 μg Hg m−3. The publication also presents the impact of photochemical oxidation of mercury on the effectiveness of Hg vapour removal during combustion of lignite. After physical oxidation of Hg in the flue gas, its effectiveness has increased twofold.

  相似文献   

19.
Kodaikkanal, India, suffered mercury contamination due to emissions and waste from a thermometer factory. Kodai Lake is situated to the north of the factory. The present study determined mercury in waters, sediment and fish samples and compared the values with those from two other lakes, Berijam and Kukkal. Total mercury (Hg(T)) of 356-465 ng l(-1), and 50 ng l(-1) of mercury in methyl mercury form were seen in Kodai waters while Berijam and Kukkal waters showed significantly lower values. Kodai sediment showed 276-350 mg/kg Hg(T) with about 6% methyl mercury. Berijam and Kukkal sediments showed Hg(T) of 189-226 mg/kg and 85-91 mg/kg and lower methylation at 3-4% and 2%, respectively. Hg(T) in fish from Kodai lake ranged from 120 to 290 mg/kg. The results show that pollution of the lake has taken place due to mercury emissions by the factory.  相似文献   

20.
This paper considers several broad issues in the context of probabilistic assessment of the benefits of curtailing mercury (Hg) emissions from U.S. coal-fired power plants, based on information developed from recent literature and epidemiology studies of health effects of methylmercury. Exposure of the U.S. population is considered on the national scale, in large part because of recent questions arising from survey and experimental data about the relative importance of local deposition of airborne Hg. Although epidemiological studies have provided useful information, safe levels of Hg exposure remain uncertain, in part because of other dietary considerations in the populations that were studied. For example, much of the seafood consumed in one of the major studies was also contaminated with polychlorinated biphenyls, as are fish taken from some U.S. fresh waters. The primary epidemiological approach involves cross-study comparisons in relation to mean exposures, rather than detailed critiques of individual effects reported in each study. U.S. exposures are seen to be well below the levels at which adverse health effects are reported. This analysis supports the conclusion that unilateral reduction of Hg emissions from U.S. coal-fired power plants alone is unlikely to realize significant public health benefits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号