首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
城市地铁建设中,隧道开挖可能损坏上部土体中埋设的既有管线。如何控制管线沉降,从而保证其安全是地铁施工中必须考虑的问题。利用ANSYS有限元分析软件,模拟隧道开挖对刚性接口地下管线的影响,充分考虑了土质、管线参数及盾构施工参数等因素,分析了地下管线在不同因素影响下的沉降变化规律。计算结果表明,管线本身参数(除管材、直径外)对其沉降的影响相对较小,而土质及盾构施工参数对管线沉降的影响较为显著,应当予以重视。通过对北京某地铁区间隧道正交下穿钢筋混凝土雨水管的沉降实测资料与3种假设工况沉降计算值的对比分析,验证了前述结论的正确性。  相似文献   

2.
基于差异进化支持向量机的坑外土体沉降预测   总被引:1,自引:0,他引:1  
就用支持向量机(SVM)预测基坑外土体沉降而言,通过差异进化(DE)算法构造适合的决策函数十分重要。在确定坑外土体沉降函数的基本形式下,进行参数反演。后将得到的解析式作为SVM的决策函数,再进行核函数转换,从而使SVM的曲线拟合更加快速,预测更加准确。对大连地铁湾家车站基坑坑外土体的沉降数据的分析及预测的结果表明,使用SVM-DE算法在计算数据量、计算消耗时间和预测精度方面优于2种方法单独使用。  相似文献   

3.
为保障地铁车站深基坑在多种因素侵扰下的施工安全,首先提出地铁车站深基坑韧性理论概念,指出系统韧性的时间属性和功能属性,综合考虑这2大主要属性,选择内部应力、风化程度、坑外水位、地表沉降、周边房屋沉降、立柱隆沉、支撑轴力和墙体倾斜等参数作为地铁车站深基坑韧性的评估指标;其次选用欧氏距离法综合评估地铁车站深基坑韧性,利用变异系数法减少主观因素的影响,赋权评估指标;最后选取南宁市某地铁车站深基坑实例,评估得到最终欧氏距离为0. 357 5,对应韧性等级为4. 028级。结果表明:利用欧氏距离法能够评估出在多种因素的影响下,地铁车站深基坑结构安全工程属性的优劣程度,评估结果与实际工程相符。  相似文献   

4.
青岛地铁苗岭路站是在土岩组合地层下开挖的狭长型换乘车站,深基坑两侧既有建筑物众多且临近基坑,施工中采用龙门吊运输材料。为探究龙门吊移动荷载作用下基坑围护结构和土体的空间变形规律,建立三维有限元数值模型,对比分析了加载前后基坑围护桩侧移变形和坑外地表沉降,并探讨了起吊物与边跨的距离对基坑变形的影响。结果表明:龙门吊移动荷载作用下基坑产生明显的动态响应;围护桩桩体侧移变形比竖向变形响应明显且沿深度有所不同,嵌岩点处侧移响应最明显,土岩交界面处响应最小;受基坑阴角效应的影响,动载作用下角隅处土体沉降变形保持不变,坑外土体最大变形位置由距坑边2 m处转移至基坑边;起吊物的移动在基坑边产生明显的变形动态响应区域,随着起吊物远离边跨,桩周土体的沉降量逐渐减小,动态响应区域向远离坑角方向增大;加强冠梁连接、适当增大阴角处桩间距或减少锚杆施作可以保证基坑的稳定性,经济有效。  相似文献   

5.
依托西安某新建地铁隧道工程,以其穿越的富水砂层段为研究对象,针对施工中采用的全断面深孔帷幕注浆的不同注浆半径,利用Midas/GTS数值模拟软件对施工过程进行了模拟分析,并通过现场对比分析,重点研究了地铁隧道穿越富水砂层时不同注浆半径对地层的加固效果.在工程建设经济合理的前提下,结合相应工程经验,在保证施工安全的情况下,探讨出隧道穿越富水砂层时的合理注浆加固范围(半径),为相关工程提供参考.  相似文献   

6.
以西安地铁二号线某区间隧道工程为依托,根据实际的地质情况,运用FLAC3D数值仿真模拟软件以隧道掘进面洞顶沉降为衡量标准,对隧道变形受土体各参数影响的灵敏度进行模拟分析,找出主要影响参数,使施工中对隧道周围土体的变形控制更有针对性.研究表明,土体的弹性模量为主要影响参数,其次为内摩擦角和黏聚力,各参数的变化对隧道周围土体变形的影响是由强至弱的.各参数变化对隧道变形影响趋势基本一致,且土体参数越好,参数变化对隧道变形的影响越不敏感,所以改善提高围岩参数可以有效地增加隧道的稳定性.  相似文献   

7.
为研究土岩复合地层地铁车站深基坑变形时空效应特征与规律,以南宁地铁某车站基坑为研究背景,在不同施工工况下对车站基坑进行有限元数值模拟,并结合实测数据进行对比。结果表明:数值计算值与现场实测值差距较小,2种变形规律接近一致,有限元计算结果合理。围护结构水平位移随施工进行逐渐增大,呈现鼓肚形状,水平位移由桩顶移动到桩身,最大位移稳定在桩身0.5~0.75H处;围护结构受力集中在第2道和第3道内支撑位置;基坑地表沉降中,长边方向的沉降比短边方向沉降明显,空间效应显著;在地铁车站深基坑中,基于时空效应机理,考虑施工影响,在施工过程中调整施工工序和参数,对基坑稳定和控制变形具有重要指导意义。  相似文献   

8.
为解决淤泥地层城际铁路盾构隧道下穿既有结构引起其沉降过大问题,以珠机城际铁路盾构隧道下穿四孔箱涵为工程背景,采用参照规范、数值模拟和现场监测的方法,研究淤泥地层盾构隧道下穿箱涵引起的沉降。建立三维数值模型分析加固前箱涵结构及周围土体的沉降值,并以此为依据提出加固方案;对加固后的沉降,建立新的数值模型;将现场监测数据与加固后数值计算值进行对比分析。结果表明:箱涵最大沉降模拟值由加固前的-45 mm减小为加固后的-1. 5 mm,加固后现场监测值为-3. 1 mm;地表最大沉降模拟值由加固前的-51 mm减小为加固后的-7 mm,加固后现场监测值为-10. 1 mm;加固后数值模拟值与现场监测值二者的影响规律以及引起的沉降值基本一致,说明加固方案起到很好的加固效果以及所构建数值模型有合理可行性,可为今后类似工程提供借鉴。  相似文献   

9.
为评估地铁线路隧道沉降对车辆-轨道系统力学特性的影响,基于有限元(FE)方法和车辆-轨道耦合动力学理论,建立地铁车辆-轨道-下部基础动力学耦合模型,并以北京某地铁线路为例,分析沉降作用下系统的静、动力学特性。研究结果表明:上部不平顺幅值与沉降幅值基本呈1∶1传递;在沉降区边界道床有拉裂的风险;车辆进入沉降区域后,轮轨垂向力因下凹曲线变化率影响出现冲击-减载-平稳-冲击现象;随着沉降量的增加,车辆动力学指标基本呈线性增长,沉降幅值从5 mm增长至20 mm,车体加速度峰值由0. 167 m/s~2增加至0. 259 m/s~2,增加了55. 08%。  相似文献   

10.
为了提高干线公路穿越城镇区段的行车安全性,探究公路上的车辆穿越城镇时的速度变化和驾驶员心生理特征,通过实地检测在公路穿越城镇适应段行驶的驾驶员心生理反应、车辆运行速度等参数,以人因工程学、心理学等为基础,对适应段车辆的速度变化特征和驾驶员的心生理反应进行了研究。根据实际道路情况首先定义了公路至城镇方向适应段L0和城镇至公路方向适应段L1,然后基于速度一致性原理分析车辆在通过适应段时与城镇段和公路段的速度差,同时以心率增长率为定量参数分析车辆通过适应段时驾驶员的心生理变化。结果表明,在公路穿越城镇路段有必要设置适应段,并且适应段的长度对驾驶员的行为和心生理状态有明显的影响,在确保车辆速度差和驾驶员心生理变化参数都在安全阈值范围内的基础上,适应段总长度在1. 000~2. 200 km为宜。  相似文献   

11.
为了明确富水红砂岩地层中冻结温度场的影响因素,研究温度场的发展和分布规律,以兰州地铁2号线定西路站到五里铺站之间的隧道联络通道为研究背景,建立三维瞬态温度场有限元模型对冻结加固过程进行模拟,通过数值模拟和实测数据对比验证模型的准确性进而分析土体密度、导热系数、比热容的变化对温度场发展的影响。通过灰色关联分析法,得到各土体参数对温度场发展的影响程度。研究结果表明:冻结孔越密集,形成的冻结帷幕越厚,冻结壁温度越低;随着导热系数增大,形成的冻结壁温度降低,随着土体密度和比热容增大,形成的冻结壁温度升高;影响温度场温度的各参数灰色关联度排序为:比热容>密度>导热系数;当各参数分别增大30%时,温度场温度变化程度排序为:密度>导热系数>比热容。研究结果可为类似地质冻结工程的设计施工及土体改良提供参考依据。  相似文献   

12.
为了更好地保障长输管道的安全稳定运行,针对长输管道当中的跨越结构进行了应力分析与计算。基于管道跨越结构其结构的特殊性,极容易受到断层、土体塌陷等地质灾害的影响。因此建立了跨越段埋地管道与土壤相互作用的有限元力学模型,分析了30°、40°、50°、60°跨越结构和不同范围土体发生沉降时,管道的应力变化情况。结果显示,当跨越结构中斜管段的角度确定后,便可计算出相应的安全沉降长度;当斜管段角度为50°时,沉降长度控制在13.6m以内,可保证跨越结构不发生塑性变形。通过研究为管道跨越段的安全设计提供了理论依据,该方法可应用在类似的管道跨越结构的应力设计当中。  相似文献   

13.
为解决地铁车站高峰期乘客疏散的瓶颈问题,对比高成本的单一模型实验,提出1套基于Anylogic软件针对车站乘客疏散瓶颈的可重复仿真优化方案。通过实地调查,对比一般地铁车站由站厅层和站台层组成的结构特性;分析2层之间乘客通过楼梯、扶梯等进行疏散的车站共性,创建针对行人流动态疏散过程的通用仿真模型;统计模拟疏散过程中影响疏散效率的参数,给出针对共性模型的优化方案。研究结果表明:疏散总时长较优化前减少35 s,模拟成功疏散人数增加164人。研究结果能够优化车站的紧急疏散瓶颈现象从而改善车站的安全性和舒适性,所提出的优化方案可为解决车站乘客疏散问题提供研究思路。  相似文献   

14.
为更准确地预测管道受盾构开挖引起的竖向位移,对基于傅里叶变换的管道位移传递矩阵法进行修正,考虑泥水压力和注浆压力2个关键参数对管道位移的影响,并提出1种基于沉降监测数据的地层损失率的反演计算方法。同时,利用数值仿真软件FLAC3D分析不同工况下的管土变形规律,并与修正后的传递矩阵法进行对比。研究结果表明:由地层损失率反演计算方法可以计算得到较为准确和合理的地层损失率,使用该地层损失率计算地表沉降时与数值软件结果吻合度较高。修正后的传递矩阵法保留原计算方式的便捷性,同时考虑泥水压力和注浆压力等实际因素,与现场实测值更加贴近,准确度更高。管道与地层的相互作用可以通过管土相对刚度进行宏观定性描述,该参数可以反映出不同材质、壁厚、直径等条件下管道受盾构开挖影响的敏感性。研究结果可为盾构下穿既有管线的管线沉降预测提供一定参考。  相似文献   

15.
为提高地铁运营期的安全性,利用Copula相依性建模理论,研究时变效应下临近环境变化对地铁结构安全的影响。采用结构可靠度指标描述运营期地铁结构的安全性,通过Copula相依性建模理论描述地铁运营期监测指标参数之间的相关性,构建净空收敛(CD)和差异沉降(DS)二元离散时变相依模型,并以武汉地铁2号线某区间为工程背景,验证该模型的准确性。结果表明:Weibull分布和Frank Copula函数分别为最优边缘分布函数和Copula函数; Gaussian Copula并非最优Copula函数,传统的Gaussian Copula函数描述的参数相关性并不太准确;利用构建的Copula模型分析地铁CD和DS值,实现时间效应下盾构地铁结构安全性变化的敏感捕捉;针对分析结果可制定相应运营期风险控制专项方案。  相似文献   

16.
为了研究地铁多线换乘车站换乘通道的火灾烟气扩散规律,利用1:10的地铁多线换乘车站火灾模型装置,在换乘通道内开展多种情景下的火灾实验,对顶棚温度、烟气扩散范围等进行分析,比较不同防烟分区通风联动模式的烟气控制效果.结果表明:自然通风条件下,通道内的烟气受到"L"型的建筑结构影响,在通道的转角附近区域发生蓄积,产生局部温...  相似文献   

17.
通过分析劈裂注浆机理,建立了不同浆脉长度和起劈宽度的分层多次高压注浆技术浆脉作用模型,共10组,对分层多次高压注浆机理进行研究。结果表明,该注浆方式可形成具有充分扩展和延展的锚固体,能够提高锚固应力影响范围并优化锚固效果。选取我国典型露天矿边坡作为应用实例,分别进行普通单次常压和高压注浆、分层2次和4次高压注浆,并通过拉拔试验验证效果,得知分层4次高压注浆相对于常规注浆有更高的最大拉拔力,与数值模拟结果相符,说明该注浆方法能够有效地提高锚固体的作用效果,具有经济、高效、稳定性强的特点,为露天矿边坡加固提供了新的思路和方法。  相似文献   

18.
针对地铁单面坡隧道连续下坡距离长、提升高度大的特点,以国内某城市地铁线路为研究对象,构建列车火灾通风排烟数值计算模型,并采用1:20模型实验对数值计算精确度进行验证,通过考虑列车起火位置、风机开启模式和隧道断面形式等因素,对火灾烟气扩散过程、疏散平台上方烟气温度和气体浓度进行分析。研究结果表明:列车起火后,单洞单线隧道2端车站应各开启2台隧道风机,单洞双线隧道除开启射流风机外,2端车站应各开启4台隧道风机执行相应的排烟和送风模式进行烟气控制;由于单洞双线隧道中热损失和空气卷吸量较大,火灾烟气温度、CO和CO2浓度均低于单洞单线隧道;采用纵向通风控制烟气逆流的同时,下风向区域的烟气沉降作用较为明显,防排烟设计中应充分考虑列车中部火灾下风向车厢区域的危险性,合理确定应急响应模式。  相似文献   

19.
临近铁路轨道的地铁明挖车站施工往往会对铁路的路基造成影响,干扰铁路的正常运营。由于岩土材料的空间变异性,地层扰动造成的地表变形也应视为随机量。相比传统有限元,随机有限元更适合对这类问题进行分析。以南昌市轨道交通3号线上沙沟站基坑施工为背景,首先对工程涉及的地层变形参数进行了统计分析,并通过有限元反演分析获得了弹性模量参数的分布概率模型。将概率模型应用至Monte-Carlo随机有限元,分析了基坑施工对邻近铁路轨道的变形影响,得到了铁路路基沉降的分布模型以及失效概率,为今后类似工程的变形预测以及相互作用分析提供参考。  相似文献   

20.
为有效控制盾构隧道近距侧穿既有桥梁桩基施工,给桩基造成一定安全风险,本文依托南通地铁1号线区间盾构工程,建立三维有限元模型,基于流固耦合理论分析盾构施工对桩基水平位移、内力、地表沉降的影响,并验证计算的准确性。结果表明:盾构开挖面距离桩基2D范围内,盾构施工对桩基产生的影响占总水平位移的85%;桩基产生的最大水平位移为16.13 mm;盾构施工引起桩基剪力和弯矩的变化量明显。在富水砂层类似工程施工中应加强监测,同时采取优化盾构掘进参数和地层加固等措施,减小盾构施工对桩基影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号