首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为保障终端区航空器飞行安全,提高空域运行效率,提出了一种基于异常因子的航空器飞行轨迹异常检测方法.首先,给出了航空器异常轨迹的定义和分类,同时考虑轨迹的时空属性,采用基于时间比的自顶向下算法进行轨迹分割;其次,建立了基于密度聚类的轨迹段相似性模型,找到每类簇的中心轨迹;最后,利用中心轨迹计算每个轨迹簇的信息熵作为异常因子,同时取航空器飞行距离为另一异常因子,得到轨迹异常值,通过比较异常值的大小及其分布特点实现轨迹异常检测.结果 表明,该方法可以有效识别异常轨迹,且对比发现以轨迹信息熵和飞行距离作为异常因子时,异常检测效果更好.  相似文献   

2.
为了准确预测机场终端区航空器飞行冲突风险,以便能最大程度地利用低空空域资源,通过整合考虑加速度的运输飞机轨迹模型和通用飞机随机轨迹模型,建立终端区航空器飞行冲突风险预测模型。以某机场为例,采用C语言编写仿真程序,模拟该机场终端区跑道中心20 km范围内的航空器飞行轨迹。预测不同通航活动区设置条件下的飞行冲突风险,并确定运输机场周边通航活动区范围。预测结果显示,飞行高度限制为1 000 m时,将案例机场的该低空空域划设为非管制的监视空域,通用飞机与运输飞机之间的飞行冲突风险小于2×10-5,处于可接受安全水平。  相似文献   

3.
为研究无场监雷达设施的大型机场航空器地面滑行冲突,构建航空器地面滑行冲突模型,提出基于广播式自动相关监视(ADS-B)数据并考虑航空器滑行轨迹时空交叠的机场安全热点识别方法。首先,分析2架航空器通过某滑行道或交叉道口的时间是否重叠,且航向差和距离是否满足阈值约束条件,以此识别机场热点;然后,重点研究机场热点随航向差阈值和距离阈值的变化情况;最后,用该方法识别西南某机场的安全热点,并将其与机场图中的热点位置进行对比分析。研究表明:用考虑航空器滑行轨迹时空交叠的机场热点识别方法所识别的机场热点位置更符合实际管制运行情况,能有效降低场面滑行冲突发生概率。  相似文献   

4.
为解决航空器点源定位难以有效预测而引发冲突风险愈来愈多的问题,构建基于注意力机制(AM)和长短期记忆网络(LSTM)的时间序列轨迹预测模型AM-LSTM,预测未来短时间内飞行区航空器的瞬时点源位置;在此基础上,根据航空器型号和滑行航向对其进行轮廓扩展,以航空器速度作为安全距离权重,通过射线法实现轮廓冲突的判定;并以乌鲁木齐地窝堡机场为例进行验证,利用训练完成的轨迹预测模型预测飞行区航空器滑行轨迹,以识别航空器轮廓间的滑行冲突。结果表明:AM-LSTM预测模型能够准确预测飞行区航空器运动轨迹。未来3 s内轨迹位置预测的平均位移误差为1.05 m,轨迹点位置预测精准性可达94.37%,故能在轨迹预测的基础上精确识别滑行冲突风险,有利于保障飞行区的安全运行。  相似文献   

5.
为了控制终端区飞行冲突的风险,基于复杂网络,将飞行冲突的情景演变过程转化为复杂网络进行分析计算.分析侧向交叉跑道机场的主要安全风险,构建包含527个节点与2644条边的终端区飞行冲突情景演化复杂网络模型;采用无权有向网络中的节点度、度中心性、介数中心性、聚类系数等进行风险分析;采用Dijkstra算法,确定影响飞行冲突...  相似文献   

6.
为保证终端区受散点状分布危险天气时的运行安全和运行效率,提出终端区动态改航方法,以改善终端区受散点状分布危险天气时的运行安全和运行效率。基于Bézier曲线的基本特征和多普勒雷达,识别散点状分布危险区域,设置控制路径走向的控制顶点,生成组成改航路径的平顺曲线段和转角曲线段;通过多目标规划求出最优改航路径,按照固定的时间跨度更新控制顶点,得到动态改航路径。在一个应用实例中,总飞行时间和飞行距离分别增加5.53%和7.10%,最大转弯角度减小24.3%。结果表明,危险天气中心距离原始路径越近,或危险天气尺度越大,改航路径偏离原始路径越明显,改航距离越长。  相似文献   

7.
为优化碰撞风险模型(Collision Risk Model, CRM)遮蔽角,从而准确计算基于仪表着陆系统(Instrument Landing System, ILS)进近过程中航空器与多障碍物的总碰撞风险,避免过度评估问题,首先,基于广播式自动相关监视(Automutic Dependent Surveillance-Broadcast, ADS-B)数据计算得到航空器位置偏差,并研究其水平分布特征;然后,建立障碍物分布模型,从而计算得到航空器与障碍物碰撞风险;最后,基于条件概率,得到沿跑道中线和垂直跑道中线(或其延长线)不同位置处的遮蔽角。结果表明:航空器水平分布不为正态分布,可通过拟合数据得到概率密度函数及累计分布函数,从而计算碰撞风险;沿飞行方向,遮蔽角逐渐增大,但变化范围不大;沿垂直跑道中线(或其延长线)方向,由近及远遮蔽角先减小后增大,距离较远时,遮蔽角甚至可超过14°。  相似文献   

8.
为找到可操作的空域规划碰撞风险计算方法,基于空域规划参数,改进原有模型,建立航段上每飞行小时飞机的碰撞风险模型。首先,分析空域规划过程中终端区空域和航路巡航阶段航迹夹角0~180°情况下的碰撞风险;然后,将碰撞风险表示为来源于一条航段上飞机的碰撞风险和来源于其他多条航段上飞机的碰撞风险之和,建立碰撞风险模型;最后,将终端区空域规划中的相关参数值输入到该模型,计算2种方案的碰撞风险,并分析碰撞风险随参数的变化趋势。研究结果表明:在已给定其他参数值的条件下,碰撞风险随所需导航性能(RNP)数值、航段起始点高度以及航段起始点的纵向标称距离的增加(垂直标称距离减少)而增加,随着航迹夹角和飞行梯度的增加而减小。因此,可利用该模型计算并分析不同方案的碰撞风险。  相似文献   

9.
为量化不同驾驶方式下车辆与航空器行驶风险,提出车辆与航空器交叉运行冲突评估模型,该模型将特种车辆驾驶方式分为激进、稳定、保守3类,综合驾驶特性和管制规则定义车辆速度演化规律,结合运行场景、间隔配备等要素确定冲突条件,并基于航空器与车辆实时速度、位置变化构造冲突评估模型。研究结果表明:冲突评估模型能够计算车辆与航空器在十型交叉口的冲突概率;激进方式下车辆先于航空器通过交叉口,风险概率均值相对最大,为0.679;保守方式下航空器先于车辆通过交叉口,最大间隔是安全间隔的4.7倍;稳定驾驶方式可兼顾安全和效率。本文模型能再现十型道口车辆与航空器交叉运行冲突产生、发展及解脱过程,计算结果可用于场面实时冲突识别和预警,能够为机场危险源识别和风险管控提供依据。  相似文献   

10.
针对传统特征提取方法难以从海量、高维的快速存取记录器(QAR)数据中提取有效特征,且QAR数据缺乏足够的标记等问题,提出一种以Transformer网络为核心的QAR2Vec模型,将QAR数据与位置信息、飞行阶段信息共同编码,作为QAR2Vec模型的输入;通过构建自回归预测的预训练任务以自监督的方式来学习海量QAR数据中的深层特征;保存预训练好的QAR2Vec模型权重,并在飞行状态预测和着陆异常天气识别任务上,微调预训练模型,使模型适应不同的下游任务;将QAR2Vec模型与2种没有预训练步骤的深度学习算法CNN-LSTM、MTL-LSTM进行对比。结果表明:QAR2Vec模型能够更有效地从QAR数据中提取特征,在飞行状态预测和着陆异常天气识别任务上的预测误差更低、识别准确度更高。  相似文献   

11.
为提高雷暴天气下的飞行安全,降低管制员雷达引导绕飞雷暴的工作负荷,避免飞行冲突,进而减少多航空器在雷暴天气下改航的状况,首先构建编码空域信息矩阵,用栅格化的方式描述雷暴危险区,明确雷暴危险区对航空器产生的安全威胁;然后针对发生冲突且需要绕飞雷暴危险区的前后2架航空器,提出基于冲突避让的改航路径规划模型,并确定其约束条件;最后引入人工势场法,改进传统蚁群算法中的启发信息因子,以提高模型路径搜索的有效性。结果表明:运用改航路径规划模型可以得到块状、带状、散点状危险区避让冲突的改航路径规划仿真图;经规划后的路径,可避免2架航空器发生冲突,采取合理避让措施。  相似文献   

12.
为解决社区治安高危人员异常轨迹难以实时感知、精确识别、及时预警的问题,对社区治安高危人员动态轨迹进行标定,并建立动态轨迹序列化模型,通过序列化模型构建动态行为链;根据静态身份属性与动态轨迹时空特征信息,建立异常轨迹分析模型.结果表明:动态轨迹标定可实现对GPS轨迹数据高效、准确标定;异常轨迹分析模型可实现异常轨迹识别与...  相似文献   

13.
为防范机场终端区飞行冲突,应用案例分析、情景构建和复杂网络等方法和理论,研究航空器在交叉跑道机场进近阶段飞行冲突的演变机理。以北京大兴国际机场为研究对象,分析了交叉跑道运行的飞行冲突风险因素;收集整理了2010—2019年飞行冲突事件共906例,构建了飞行冲突的情景演化网络模型,分析了网络的度中心性、介数中心性和接近度中心性等参数。结果表明:1)网络的密度为0.009,平均度为1.392,平均路径长度为2.945,表明该网络结构松散,符合复杂网络的小世界特性;2)关键的风险因素为复飞V2、目视C24、停止下降C3、对讲机卡阻波道C7、偏离程序C20,这5个节点综合值较高;3)复飞V2为断链控制的关键节点。形成了飞行冲突情景演变的可视化网络,同时从大量案例中提取的数据为断链控制策略的制定提供了决策依据。  相似文献   

14.
为提高地铁站突发事件人群疏散效率,构建融合人-环特征的地铁站人群疏散速度修正模型。首先从人员、环境2个方面,分析地铁站突发事件疏散设计要求及人群疏散影响因素,选取地铁结构、携带行李等8个速度影响因子,建立速度影响指标体系;然后采用未确知测度理论,计算速度指标熵值,确定速度修正量值;最后以某地铁站火灾事故为例,修正人员移动速度,设置疏散个体参数,仿真地铁站火灾疏散过程。结果表明:速度修正前地铁站疏散仿真总时间为264.0 s,修正后疏散总时间为337.0 s,仿真修正后的疏散时间更长,人员危险性更大。  相似文献   

15.
为提高空管系统安全管理水平,提出基于过程的故障模式及影响分析(FMEA)方法,识别终端区管制系统潜在的风险因素;构建DEMATEL-ISM模型,运用决策实验室分析(DEMATEL)模型计算各风险因素的影响度和被影响度,确定要素的因果属性和中心度排序,运用解释结构模型(ISM)构建系统风险递阶结构,表征管制系统中各风险因素的致因属性和层次关系;并以某终端区管制系统为例,验证DEMATEL-ISM模型的有效性。结果表明:DEMATEL-ISM模型可将所论系统的风险因素按致因属性分为3个类别,即6个直接致因、10个过渡致因和3个本质致因;递阶结构可有效表征终端区管制系统风险的内在关联,实现系统风险分析。  相似文献   

16.
为提高空管系统安全管理水平,提出基于过程的故障模式及影响分析(FMEA)方法,识别终端区管制系统潜在的风险因素;构建DEMATEL—ISM模型,运用决策实验室分析(DEMATEL)模型计算各风险因素的影响度和被影响度,确定要素的因果属性和中心度排序,运用解释结构模型(ISM)构建系统风险递阶结构,表征管制系统中各风险因素的致因属性和层次关系;并以某终端区管制系统为例,验证DEMATEL—ISM模型的有效性。结果表明:DEMATEL—ISM模型可将所论系统的风险因素按致因属性分为3个类别,即6个直接致因、10个过渡致因和3个本质致因;递阶结构可有效表征终端区管制系统风险的内在关联,实现系统风险分析。  相似文献   

17.
为精准提取船舶会遇态势,提升水上交通安全监管能力,对长江口南槽水域自动识别系统(AIS)数据做时空分析,提出对船舶会遇态势模式分类的自动提取方法。首先,利用会遇态势过程的时空约束关系提取会遇船舶配对轨迹信息;然后,借助数据插值方法对会遇轨迹做时空同步处理和数据补全,实现会遇场景重建;最后,分析船舶会遇的时空演化特征,提取特定时间窗口内的相对距离和航向差特征,形成会遇特征序列,利用支持向量机(SVM)对会遇特征序列分类辨识建模,实现会遇态势的自动提取。结果表明:设置时空约束条件可以准确提取船舶配对轨迹信息;对会遇过程作时空分析,实现了会遇场景的重建;借助SVM设计的会遇态势提取算法的准确率达90%以上,与传统方法相比降低了误判率。  相似文献   

18.
为利用视频数据对空管员违规行为进行智能化分析,降低不安全事件发生率,提出2阶段的违规行为识别模型(AR-ResNeXt),基于实地调研构建空管员视频数据集,利用最小化动态多实例学习损失函数和中心损失函数,获得违规行为检测的判别特征表示,结合异常回归网络和ResNeXt网络,完成对空管员违规行为的时序区间检测与动作分类。研究结果表明:AR-ResNeXt模型在自制数据集中,其帧级AUC达到82.9%,分类准确率达到87.8%,可准确识别空管员发生违规行为的时序区间并进行分类,研究结果可为保障空中交通安全奠定基础。  相似文献   

19.
为解决因风门开闭导致的风速传感器数据异常波动与误报警问题,提出一种基于离散小波变换(DWT)与支持向量机(SVM)的风门开闭阶段识别方法。使用多尺度滑动窗口将传感器风速监测数据离散化为若干段不同尺度的子时间序列数据,利用统计方法与DWT,提取各尺度子时间序列数据中的统计特征与隐含的波动特征,建立SVM风门开闭阶段识别分类模型。为进一步优化识别结果,基于重叠度(IoU)规则合并、修正、组合、取优分类识别结果,再根据相似准则建立长度方向取变率为2、整体相似比为1∶16的相似试验模型,开展风门开闭扰动试验,验证方法的可行性。结果表明:在测试集上的识别准确率较高,对于风门开闭时间的识别准确率可达到90.08%,风门开闭阶段的划分准确率可达到71.05%,优化滑动窗口尺度数量,可继续增加方法识别的准确率。  相似文献   

20.
针对现有机器视觉测距技术存在焦距选择不当,以及由特征点离地间隙造成的纵向测距精确性较低导致纵向预警时刻滞后的问题,提出一种基于视野修正和投影修正技术的用于测量同向行驶且有不可忽视的碰撞风险的2个车辆间纵向距离的方法。采用麋鹿试验分析发散态纵向识别区域模型不足,建立收敛态纵向预警区域模型,结合安全制动距离动力学仿真结果,计算出收敛态纵向预警区域模型对应的稳态成像焦距值,完成视野修正;利用静态参数拟合回归得出纵向误差函数,完成特征点投影修正,实现高精度纵向距离测量。运用靶源板静态试验进行测量验证。结果表明:文中所给方法在30~100m测量范围内的测量精确度平均相对误差低于3.5%,绝对误差小于2.6 m。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号