首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ambient particulates of PM2.5 were sampled at three sites in Kaohsiung, Taiwan, during February and March 1999. In addition, resuspended PM2.5 collected from traffic tunnels, paved roads, fly ash of a municipal solid waste (MSW) incinerator, and seawater was obtained. All the samples were analyzed for twenty constituents, including water-soluble ions, organic carbon (OC), elemental carbon (EC), and metallic elements. In conjunction with local source profiles and the source profiles in the model library SPECIATE EPA, the receptor model based on chemical mass balance (CMB) was then applied to determine the source contributions to ambient PM2.5. The mean concentration of ambient PM2.5 was 42.69-53.68 micrograms/m3 for the sampling period. The abundant species in ambient PM2.5 in the mass fraction for three sites were OC (12.7-14.2%), SO4(2-) (12.8-15.1%), NO3- (8.1-10.3%), NH4+ (6.7-7.5%), and EC (5.3-8.5%). Results of CMB modeling show that major pollution sources for ambient PM2.5 are traffic exhaust (18-54%), secondary aerosols (30-41% from SO4(2-) and NO3-), and outdoor burning of agriculture wastes (13-17%).  相似文献   

2.
宁波市大气可吸入颗粒物PM1o和PM2.5的源解析研究   总被引:2,自引:0,他引:2  
在宁波市布设4个代表性点位,于2010年春季、夏季和冬季进行大气PM10和PM2.s的采样,同时采集了多种颗粒物源样品,建立了PM10、PM2.5和源样品的化学成分谱.采用化学质量平衡模型(CMB)对宁波市PM10、PM2.5进行源解析.结果表明,城市扬尘、煤烟尘、机动车尾气尘是宁波市PM10、PM2.5的3大污染源,...  相似文献   

3.
Mobile sources are significant contributors to ambient PM2.5, accounting for 50% or more of the total observed levels in some locations. One of the important methods for resolving the mobile source contribution is through chemical mass balance (CMB) receptor modeling. CMB requires chemically speciated source profiles with known uncertainty to ensure accurate source contribution estimates. Mobile source PM profiles are available from various sources and are generally in the form of weight fraction by chemical species. The weight fraction format is commonly used, since it is required for input into the CMB receptor model. This paper examines the similarities and differences in mobile source PM2.5 profiles that contain data for elements, ions, elemental carbon (EC) and organic carbon (OC), and in some cases speciated organics (e.g., polycyclic aromatic hydrocarbons [PAHs]), drawn from four different sources. Notable characteristics of the mass fraction data include variability (relative contributions of elements and ions) among supposedly similar sources and a wide range of average EC:OC ratios (0.60 +/- 0.53 to 1.42 +/- 2.99) for light-duty gasoline vehicles (LDGVs), indicating significant EC emissions from LDGVs in some cases. For diesel vehicles, average EC:OC ratios range from 1.09 +/- 2.66 to 3.54 +/- 3.07. That different populations of the same class of emitters can show considerable variability suggests caution should be exercised when selecting and using profiles in source apportionment studies.  相似文献   

4.
A sensitivity analysis was conducted to characterize sources of uncertainty in results of a molecular marker source apportionment model of ambient particulate matter using mobile source emissions profiles obtained as part of the Gasoline/Diesel PM Split Study. A chemical mass balance (CMB) model was used to determine source contributions to samples of fine particulate matter (PM2.5) collected over 3 weeks at two sites in the Los Angeles area in July 2001. The ambient samples were composited for organic compound analysis by the day of the week to investigate weekly trends in source contributions. The sensitivity analysis specifically examined the impact of the uncertainty in mobile source emissions profiles on the CMB model results. The key parameter impacting model sensitivity was the source profile for gasoline smoker vehicles. High-emitting gasoline smoker vehicles with visible plumes were seen to be a significant source of PM in the area, but use of different measured profiles for smoker vehicles in the model gave very different results for apportionment of gasoline, diesel, and smoker vehicle tailpipe emissions. In addition, the contributions of gasoline and diesel emissions to total ambient PM varied as a function of the site and the day of the week.  相似文献   

5.
Abstract

A sensitivity analysis was conducted to characterize sources of uncertainty in results of a molecular marker source apportionment model of ambient particulate matter using mobile source emissions profiles obtained as part of the Gasoline/Diesel PM Split Study. A chemical mass balance (CMB) model was used to determine source contributions to samples of fine particulate matter (PM2.5) collected over 3 weeks at two sites in the Los Angeles area in July 2001. The ambient samples were composited for organic compound analysis by the day of the week to investigate weekly trends in source contributions. The sensitivity analysis specifically examined the impact of the uncertainty in mobile source emissions profiles on the CMB model results. The key parameter impacting model sensitivity was the source profile for gasoline smoker vehicles. High-emitting gasoline smoker vehicles with visible plumes were seen to be a significant source of PM in the area, but use of different measured profiles for smoker vehicles in the model gave very different results for apportionment of gasoline, diesel, and smoker vehicle tailpipe emissions. In addition, the contributions of gasoline and diesel emissions to total ambient PM varied as a function of the site and the day of the week.  相似文献   

6.
In this study, four certified particle standards including NIST SRM 1648 urban particulate matter, BCR Reference Material No. 176 city waste incineration ash, NIST SRM 2709 San Joaquin soil, and NIST SRM 1633b coal fly ash were used to simulate ambient particulate matter. Twenty-five samples were prepared with the four certified particulate standards. A total of 23 elements were analyzed per sample, 19 by ICP-AES and ICP-MS, three by IC, and one element, Si, by spectrophotometer. Results showed that combining the three IC-analyzed ionic species with the 19 ICP-AES/MS analyzed elements into the CMB model did not improve the source identification significantly. In addition, when all 23 analyzed chemical species per sample were used in the CMB model, they were still not good enough to effectively make the parameters of the CMB model fit the statistical criteria. Some of high variation and low recovery chemical species, i.e. Cd, V, Sb, etc., may have caused poor CMB model simulation. Omitting some poor quality analyzed species (such as relative analysis error >20%) could improve the CMB model simulation. Therefore, high quality chemical species data are important for the CMB model. In addition, co-linearity of source profiles also affects the CMB model; combining the co-linear sources could enhance the solubility of the CMB model. In this study, a two-step procedure was developed for CMB model simulation to improve source identification.  相似文献   

7.
Multivariate statistical techniques are applied to particulate matter (PM) and meteorological data to identify the sources responsible for evening PM spikes at Sunland Park, NM (USA). The statistical techniques applied are principal components analysis (PCA), redundancy analysis (RDA), and absolute principal components scores analysis (APCSA), and the data evaluated are 3-h average (6–9 p.m.) PM2.5 mass and chemical composition and 1-h average PM2.5 and PM10 mass and environmental data collected in the winter of 2002. Although the interpretation of the data was complicated by the presence of sources which are likely changing in time (e.g. brick kilns), the multivariate analyses indicate that the evening high PM2.5 is associated with burning-activities occurring to the south of Sunland Park, and these emissions are characterized by elevated Sb, Cl, and elemental carbon; 68% of the PM2.5 mass can be attributed to this source. The PM10 evening peaks, on the other hand, are mainly caused by resuspended dust generated by vehicular movements south of the site and transported by the local terrain-induced drainage flow.  相似文献   

8.
Abstract

Source apportionment analyses were carried out by means of receptor modeling techniques to determine the contribution of major fine particulate matter (PM2.5) sources found at six sites in Mexico City. Thirty-six source profiles were determined within Mexico City to establish the fingerprints of particulate matter sources. Additionally, the profiles under the same source category were averaged using cluster analysis and the fingerprints of 10 sources were included. Before application of the chemical mass balance (CMB), several tests were carried out to determine the best combination of source profiles and species used for the fitting. CMB results showed significant spatial variations in source contributions among the six sites that are influenced by local soil types and land use. On average, 24-hr PM2.5 concentrations were dominated by mobile source emissions (45%), followed by secondary inorganic aerosols (16%) and geological material (17%). Industrial emissions representing oil combustion and incineration contributed less than 5%, and their contribution was higher at the industrial areas of Tlalnepantla (11%) and Xalostoc (8%). Other sources such as cooking, biomass burning, and oil fuel combustion were identified at lower levels. A second receptor model (principal component analysis, [PCA]) was subsequently applied to three of the monitoring sites for comparison purposes. Although differences were obtained between source contributions, results evidence the advantages of the combined use of different receptor modeling techniques for source apportionment, given the complementary nature of their results. Further research is needed in this direction to reach a better agreement between the estimated source contributions to the particulate matter mass.  相似文献   

9.
《Chemosphere》2007,66(11):2018-2027
Multivariate statistical techniques are applied to particulate matter (PM) and meteorological data to identify the sources responsible for evening PM spikes at Sunland Park, NM (USA). The statistical techniques applied are principal components analysis (PCA), redundancy analysis (RDA), and absolute principal components scores analysis (APCSA), and the data evaluated are 3-h average (6–9 p.m.) PM2.5 mass and chemical composition and 1-h average PM2.5 and PM10 mass and environmental data collected in the winter of 2002. Although the interpretation of the data was complicated by the presence of sources which are likely changing in time (e.g. brick kilns), the multivariate analyses indicate that the evening high PM2.5 is associated with burning-activities occurring to the south of Sunland Park, and these emissions are characterized by elevated Sb, Cl, and elemental carbon; ∼68% of the PM2.5 mass can be attributed to this source. The PM10 evening peaks, on the other hand, are mainly caused by resuspended dust generated by vehicular movements south of the site and transported by the local terrain-induced drainage flow.  相似文献   

10.
The chemical mass balance (CMB) receptor model is commonly used in source apportionment studies as a means for attributing measured airborne particulate matter (PM) to its constituent emission sources. Traditionally, error terms (e.g., measurement and source profile uncertainty) associated with the model have been treated in an additive sense. In this work, however, arguments are made for the assumption of multiplicative errors, and the effects of this assumption are realized in a Bayesian probabilistic formulation which incorporates a ‘modified’ receptor model. One practical, beneficial effect of the multiplicative error assumption is that it automatically precludes the possibility of negative source contributions, without requiring additional constraints on the problem. The present Bayesian treatment further differs from traditional approaches in that the source profiles are inferred alongside the source contributions. Existing knowledge regarding the source profiles is incorporated as prior information to be updated through the Bayesian inferential scheme. Hundreds of parameters are therefore present in the expression for the joint probability of the source contributions and profiles (the posterior probability density function, or PDF), whose domain is explored efficiently using the Hamiltonian Markov chain Monte Carlo method. The overall methodology is evaluated and results compared to the US Environmental Protection Agency's standard CMB model using a test case based on PM data from Fresno, California.  相似文献   

11.
PM2.5 and PM10 were collected during 24-h sampling intervals from March 1st to 31st, 2006 during the MILAGRO campaign carried out in Mexico City's northern region, in order to determine their chemical composition, oxidative activity and the estimation of the source contributions during the sampling period by means of the chemical mass balance (CMB) receptor model. PM2.5 concentrations ranged from 32 to 70 μg m−3 while that of PM10 did so from 51 to 132 μg m−3. The most abundant chemical species for both PM fractions were: OC, EC, SO42−, NO3, NH4+, Si, Fe and Ca. The majority of the PM mass was comprised of carbon, up to about 52% and 30% of the PM2.5 and PM10, respectively. PM2.5 constituted more than 50% of PM10. The redox activity, assessed by the dithiothreitol (DTT) assay, was greater for PM2.5 than for PM10, and did not display significant differences during the sampling period. The PM2.5 source reconciliation showed that in average, vehicle exhaust emissions were its most important source in an urban site with a 42% contribution, followed by re-suspended dust with 26%, secondary inorganic aerosols with 11%, and industrial emissions and food cooking with 10% each. These results had a good agreement with the Emission Inventory. In average, the greater mass concentration occurred during O3S that corresponds to a wind shift initially with transport to the South but moving back to the North. Taken together these results show that PM chemical composition, oxidative potential, and source contribution is influenced by the meteorological conditions.  相似文献   

12.
This paper provides source contribution estimates from vehicular and meat-cooking emissions to particulate polycyclic aromatic hydrocarbon (PAH) and elemental carbon (EC) concentrations measured at two Los Angeles sites during a field study in 1989. The source concentration matrix for PAH was based on new data for vehicular emissions and literature data for meat-cooking operations. The chemical mass balance (CMB 7.0) receptor model was used, and source profiles were modified to reflect reactive decay of PAH in the atmosphere. The calculations indicate that the Pico Rivera site was dominated by auto emissions, which account for more than 90 percent of all the PAH (except chrysene), carbon monoxide (CO), and 61 percent of the EC concentrations. In contrast, emissions from meat cooking contributed significantly (20 to 75 percent) to the concentrations of four-ring PAH measured at a residential site at Upland. The five-ring and larger PAH were attributed to auto emissions at Upland as well.  相似文献   

13.
Because of the mutagenic and/or carcinogenic properties, Polycyclic Aromatic Hydrocarbons (PAH), have a direct impact on human population. Consequently, there is a widespread interest in analysing and evaluating the exposure to PAH in different indoor environments, influenced by different emission sources. The information on indoor PAH is still limited, mainly in terms of PAH distribution in indoor particles of different sizes; thus, this study evaluated the influence of tobacco smoke on PM10 and PM2.5 characteristics, namely on their PAH compositions, with further aim to understand the negative impact of tobacco smoke on human health. Samples were collected at one site influenced by tobacco smoke and at one reference (non-smoking) site using low-volume samplers; the analyses of 17 PAH were performed by Microwave Assisted Extraction combined with Liquid Chromatography (MAE–LC). At the site influenced by tobacco smoke PM concentrations were higher 650% for PM10, and 720% for PM2.5. When influenced by smoking, 4 ring PAH (fluoranthene, pyrene, and chrysene) were the most abundant PAH, with concentrations 4600–21 000% and 5100–20 800% higher than at the reference site for PM10 and PM2.5, respectively, accounting for 49% of total PAH (ΣPAH). Higher molecular weight PAH (5–6 rings) reached concentrations 300–1300% and 140–1700% higher for PM10 and PM2.5, respectively, at the site influenced by tobacco smoke. Considering 9 carcinogenic PAH this increase was 780% and 760% in PM10 and PM2.5, respectively, indicating the strong potential risk for human health. As different composition profiles of PAH in indoor PM were obtained for reference and smoking sites, those 9 carcinogens represented at the reference site 84% and 86% of ΣPAH in PM10 and PM2.5, respectively, and at the smoking site 56% and 55% of ΣPAH in PM10 and PM2.5, respectively. All PAH (including the carcinogenic ones) were mainly present in fine particles, which corresponds to a strong risk for cardiopulmonary disease and lung cancer; thus, these conclusions are relevant for the development of strategies to protect public health.  相似文献   

14.
ABSTRACT

Mobile sources are significant contributors to ambient PM2 5, accounting for 50% or more of the total observed levels in some locations. One of the important methods for resolving the mobile source contribution is through chemical mass balance (CMB) receptor modeling. CMB requires chemically speciated source profiles with known uncertainty to ensure accurate source contribution estimates. Mobile source PM profiles are available from various sources and are generally in the form of weight fraction by chemical species. The weight fraction format is commonly used, since it is required for input into the CMB receptor model. This paper examines the similarities and differences in mobile source PM2.5 profiles that contain data for elements, ions, elemental carbon (EC) and organic carbon (OC), and in some cases speciated organics (e.g., polycyclic aromatic hydrocarbons [PAHs]), drawn from four different sources.

Notable characteristics of the mass fraction data include variability (relative contributions of elements and ions) among supposedly similar sources and a wide range of average EC:OC ratios (0.60 ± 0.53 to 1.42 ± 2.99) for light-duty gasoline vehicles (LDGVs), indicating significant EC emissions from LDGVs in some cases. For diesel vehicles, average EC:OC ratios range from 1.09 ± 2.66 to 3.54 ± 3.07. That different populations of the same class of emitters can show considerable variability suggests caution should be exercised when selecting and using profiles in source apportionment studies.  相似文献   

15.
To investigate the spatial distribution and diurnal variation of the chemical composition of PM2.5 pollution in an industrial city of southern Taiwan, 12-h PM2.5 was diurnally continuously collected simultaneously at the Kaoping Air Quality Zone (KAQZ) during one highly PM2.5-polluted episode. Water-soluble ions, metallic elements, carbonaceous contents, dicarboxylic acids, and anhydrosugars were analyzed to characterize the chemical fingerprint of PM2.5. Backward trajectory simulation and chemical mass balance (CMB) receptor modeling were applied to identify the potential sources of PM2.5 and their contributions. It showed that Chaozhou (rural area) accompanying the highest SORs and NORs suffered from the most severe PM2.5 pollution during the episode. Sulfate (SO42−) was probably formed by the atmospheric chemical reaction in the daytime, while NO3− processed at nighttime at the KAQZ. A homogeneous formation of NO3− occurred at Chaozhou. The concentrations of Zn, Pb, Fe, Cu, V, and Al, mainly emitted from anthropogenic sources, increased significantly at the KAQZ. The highest OC, SOC/OC, and DA/OCs at Daliao (industrial area) were attributed to the transformation of primary VOCs to secondary OC via photo-oxidation during the episode. Oxalic acid was mainly produced through photochemical reactions since a high correlation between oxalic acid and Ca2+ was observed at Nanzi (urban area) and Daliao during the episode. During the episode, PM2.5 mostly originated from local primary or secondary aerosol than long-range overseas transport. The dominant source was anthropogenic emissions, accounting for 67.1% and 70.4% of PM2.5 at Nanzi and Daliao, respectively. At Chaozhou, the contribution of anthropogenic emissions was the lowest (42.4%), but secondary aerosols had the highest contribution of 38.3% of PM2.5 among the three areas during the episode.  相似文献   

16.
Chemical mass balance (CMB) and trajectory receptor models were applied to speciated particulate matter with aerodynamic diameter < or =2.5 microm (PM2.5) measurements from Speciation Trends Network (STN; part of the Chemical Speciation Network [CSN]) and Interagency Monitoring of Protected Visual Environments (IMPROVE) monitoring network across the state of Minnesota as part of the Minnesota PM2.5 Source Apportionment Study (MPSAS). CMB equations were solved by the Unmix, positive matrix factorization (PMF), and effective variance (EV) methods, giving collective source contribution and uncertainty estimates. Geological source profiles developed from local dust materials were either incorporated into the EV-CMB model or used to verify factors derived from Unmix and PMF. Common sources include soil dust, calcium (Ca)-rich dust, diesel and gasoline vehicle exhausts, biomass burning, secondary sulfate, and secondary nitrate. Secondary sulfate and nitrate aerosols dominate PM2.5 mass (50-69%). Mobile sources outweigh area sources at urban sites, and vice versa at rural sites due to traffic emissions. Gasoline and diesel contributions can be separated using data from the STN, despite significant uncertainties. Major differences between MPSAS and earlier studies on similar environments appear to be the type and magnitude of stationary sources, but these sources are generally minor (<7%) in this and other studies. Ensemble back-trajectory analysis shows that the lower Midwestern states are the predominant source region for secondary ammoniated sulfate in Minnesota. It also suggests substantial contributions of biomass burning and soil dust from out-of-state on occasions, although a quantitative separation of local and regional contributions was not achieved in the current study. Supplemental materials are available for this article. Go to the publisher's online edition of the Journal of the Air & Waste Management Association for a summary of input data, Unmix and PMF factor profiles, and additional maps.  相似文献   

17.
PM2.5 and size-segregated aerosols were collected in May 2002 as part of the Bay Regional Atmospheric Chemistry Experiment (BRACE), Florida, USA. Aerosol organic composition was used to estimate sources of a series of alkanes and polycyclic aromatic hydrocarbons (PAHs) using chemical indices, hierarchical cluster analysis (HCA) and a chemical mass balance receptor model (CMB). Aerosols were collected on quartz fiber filters (QFF) using a PM2.5 high volume sampler and on aluminum foil discs using a Micro-Orifice Uniform Deposit Impactor (MOUDI, 50% aerodynamic cut diameters were 18, 10, 5.6, 3.2, 1.8, 1.0, 0.56, 0.315 and 0.171 μm). Target compounds included alkanes and PAHs and were solvent extracted using a mixture of dichloromethane, acetone and hexane, concentrated and then analyzed using a gas chromatograph/mass spectrometer (GC/MS). The target compounds in PM2.5 were dominated by six sources during the study period: mobile sources (39±5%), coal burning (33±5%), biogenic primary emission (20±2%), oil combustion (5±2%), biomass burning (1.0±0.3%) and an unidentified source (3±2%). Results obtained from the chemical indices, HCA and CMB were in very good agreement with each other. PAH size distributions are presented for days dominated by a same source. Seventy-five percent and 50% of the PAH were found below 1.8 and 0.56 μm, respectively (monthly PAH geometric diameters averaged 0.43 μm). Coarse size PAHs were observed on 1 day (15 May) and were correlated with nitrate and sodium size distribution. It is hypothesized that the PAHs, sodium and nitrate were internally mixed and that the PAHs deposited onto a pre-existing marine aerosol. This transfer process has significant implications for PAH deposition and lifetime and warrants further study.  相似文献   

18.
ABSTRACT

The chemical mass balance (CMB) model can be applied to estimate the amount of airborne particulate matter (PM) coming from various sources given the ambient chemical composition of the particles measured at the receptor and the chemical composition of the source emissions. Of considerable practical importance is the identification of those chemical species that have a large effect on either the source contributions or errors estimated by the CMB model. This paper details a study of a number of influential diagnostics for application of the CMB software. Some of the diagnostics studied are standard regression diagnostics based on single-row deletion diagnostics. A number of new diagnostics were developed specifically for the CMB application, based on the pseudo-inverse of the source composition matrix and called nondeletion diagnostics to distinguish them from the standard deletion diagnostics. Simulated data sets were generated to compare the diagnostics and their response to controlled amounts of random error.

A particular diagnostic called a modified pseudoinverse matrix (MPIN), developed for this study, was found to be the best choice for CMB model application. The MPIN diagnostic contains virtually all the information present in both deletion and nondeletion diagnostics. Since the MPIN diagnostic requires only the source profiles, it can be used to identify influential species in advance without sampling the ambient data and to improve CMB results through possible remedial actions for the influential species. Specific recommendations are given for interpretation and use of the MPIN diagnostic with the CMB model software. Elements with normalized MPIN absolute values of 1 to 0.5 are associated with influential elements. Noninfluential elements have normalized MPIN absolute values of 0.3 or less. Elements with absolute values between 0.3 and 0.5 are ambiguous but should generally be considered noninfluential.  相似文献   

19.
To investigate the chemical characteristics of fine particles in the Sihwa area, Korea, atmospheric aerosol samples were collected using a dichotomous PM10 sampler and two URG PM2.5 cyclone samplers during five intensive sampling periods between February 1998 and February 1999. The Inductively Coupled Plasma (ICP)-Atomic Emission Spectrometry (AES)/ICP-Mass Spectrometry (MS), ion chromatograph (IC), and thermal manganese dioxide oxidation (TMO) methods were used to analyze the trace elements, ionic species, and carbonaceous species, respectively. Backward trajectory analysis, factor analysis, and a chemical mass balance (CMB) model were used to estimate quantitatively source contributions to PM2.5 particles collected in the Sihwa area. The results of PM2.5 source apportionment using the CMB7 receptor model showed that (NH4)2SO4 was, on average, the major contributor to PM2.5 particles, followed by nontraffic organic carbon (OC) emission, NH4NO3, agricultural waste burning, motor vehicle emission, road dust, waste incineration, marine aerosol, and others. Here, the nontraffic OC sources include primary anthropogenic OC emitted from the industrial complex zone, secondary OC, and organic species from distant sources. The source impact of waste incineration emission became significant when the dominant wind directions were from southwest and west sectors during the sampling periods. It was found that PM2.5 particles in the Sihwa area were influenced mainly by both anthropogenic local sources and long-range transport and transformation of air pollutants.  相似文献   

20.
Particulate matter less than 2.5 microns in diameter (PM(2.5)) has been linked with a wide range of adverse health effects. Determination of the sources of PM(2.5) most responsible for these health effects could lead to improved understanding of the mechanisms of such effects and more targeted regulation. This has provided the impetus for the Denver Aerosol Sources and Health (DASH) study, a multi-year source apportionment and health effects study relying on detailed inorganic and organic PM(2.5) speciation measurements.In this study, PM(2.5) source apportionment is performed by coupling positive matrix factorization (PMF) with daily speciated PM(2.5) measurements including inorganic ions, elemental carbon (EC) and organic carbon (OC), and organic molecular markers. A qualitative comparison is made between two models, PMF2 and ME2, commonly used for solving the PMF problem. Many previous studies have incorporated chemical mass balance (CMB) for organic molecular marker source apportionment on limited data sets, but the DASH data set is large enough to use multivariate factor analysis techniques such as PMF.Sensitivity of the PMF2 and ME2 models to the selection of speciated PM(2.5) components and model input parameters was investigated in depth. A combination of diagnostics was used to select an optimum, 7-factor model using one complete year of daily data with pointwise measurement uncertainties. The factors included 1) a wintertime/methoxyphenol factor, 2) an EC/sterane factor, 3) a nitrate/polycyclic aromatic hydrocarbon (PAH) factor, 4) a summertime/selective aliphatic factor, 5) an n-alkane factor, 6) a middle oxygenated PAH/alkanoic acid factor and 7) an inorganic ion factor. These seven factors were qualitatively linked with known PM(2.5) emission sources with varying degrees of confidence. Mass apportionment using the 7-factor model revealed the contribution of each factor to the mass of OC, EC, nitrate and sulfate. On an annual basis, the majority of OC and EC mass was associated with the summertime/selective aliphatic factor and the EC/sterane factor, respectively, while nitrate and sulfate mass were both dominated by the inorganic ion factor. This apportionment was found to vary substantially by season. Several of the factors identified in this study agree well with similar assessments conducted in St. Louis, MO and Pittsburgh, PA using PMF and organic molecular markers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号