首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A total of 260 soil profiles were examined to investigate the spatial distribution of total soil selenium (Se) in Guangdong province, China. In the investigated area, the soil Se concentrations follow an approximately lognormal distribution. The soil Se geometric mean concentration of 0.23 mg kg(-1) is higher than that of Chinese soils; however, Se concentration varies over the study area. The baseline concentration of 0.13 to 0.41 mg kg(-1) indicates that the soil Se concentration is mostly in the range of deficiency to medium level for surface soils in Guangdong province. In A-, B-, and C-horizon, soil Se spatial distribution is correlated with the nature of the parent material, with high Se concentration mainly located in limestone and sandshale areas and low Se concentration associated with purple shale and granite areas. The spatial distribution pattern of soil Se concentrations suggests that potential Se deficiency may be an issue for human health in this province. Moreover, due to soil degradation and erosion, calculated soil Se exported into surrounding waters could reach approximately 23,000 kg yr(-1) in the study area.  相似文献   

2.
The increased use of herbicides poses a risk to the aquatic environment. Easy and economical methods are needed to identify the fields where specific environment protection measures are needed. Phosphorus (P) and organophosphorus herbicides compete for the same adsorption sites in soil. In this study the relationship between P obtained in routine Finnish agronomic tests (acid ammonium acetate [P(AC)]) and adsorption of glyphosate and glufosinate-ammonium was investigated to determine whether P(AC) values could be used in the risk assessment. The adsorption of glyphosate ((N-(phosphonomethyl)glycine) and glufosinate-ammonium (2-amino-4-(hydroxymethylphosphinyl)butanoic acid) was studied in a clay and a sandy loam soil enriched with increasing amounts of P added as potassium dihydrogen phosphate. Desorption was also determined for some P-enriched soil samples. The adsorption of both herbicides diminished with increasing P(AC) value. The correlations between Freundlich adsorption coefficients obtained in the adsorption tests and P(AC) were nonlinear but significant (r > 0.98) in both soils. The exponential models of the relationship between soil P(AC) values and glyphosate adsorption were found to fit well to an independent Finnish soil data set (P < 0.1 for glyphosate and P < 0.01 for glufosinate-ammonium). The desorption results showed that glufosinate-ammonium sorption is not inversely related to soil P status, and the high correlation coefficients obtained in the test of the model were thus artifacts caused by an abnormal concentration of exchangeable potassium in soil. The solved equations are a useful tool in assessing the leaching risks of glyphosate, but their use for glufosinate-ammonium is questionable.  相似文献   

3.
Influence of biochar on nitrogen fractions in a coastal plain soil   总被引:3,自引:0,他引:3  
Interest in the use of biochar from pyrolysis of biomass to sequester C and improve soil productivity has increased; however, variability in physical and chemical characteristics raises concerns about effects on soil processes. Of particular concern is the effect of biochar on soil N dynamics. The effect of biochar on N dynamics was evaluated in a Norfolk loamy sand with and without NHNO. High-temperature (HT) (≥500°C) and low-temperature (LT) (≤400°C) biochars from peanut hull ( L.), pecan shell ( Wangenh. K. Koch), poultry litter (), and switchgrass ( L.) and a fast pyrolysis hardwood biochar (450-600°C) were evaluated. Changes in inorganic, mineralizable, resistant, and recalcitrant N fractions were determined after a 127-d incubation that included four leaching events. After 127 d, little evidence of increased inorganic N retention was found for any biochar treatments. The mineralizable N fraction did not increase, indicating that biochar addition did not stimulate microbial biomass. Decreases in the resistant N fraction were associated with the high pH and high ash biochars. Unidentified losses of N were observed with HT pecan shell, HT peanut hull, and HT and LT poultry litter biochars that had high pH and ash contents. Volatilization of N as NH in the presence of these biochars was confirmed in a separate short-term laboratory experiment. The observed responses to different biochars illustrate the need to characterize biochar quality and match it to soil type and land use.  相似文献   

4.
Maximizing utilization of effluent nutrients by forage grasses requires a better understanding of irrigation rate and timing effects. This study was conducted in 1998 and 1999 on a Vaiden silty clay (very-fine, smectitic, thermic Aquic Dystrudert) soil to determine the effects of swine lagoon effluent irrigation rate and timing on bermudagrass [Cynodon dactylon (L.) Pers.] growth, nitrogen (N) and phosphorus (P) recovery, and postseason soil profile NO3(-)-N. Treatments consisted of swine effluent irrigation at the rates of 0, 5, 10, 15, and 20 ha-cm. Two additional treatments included 2.5 ha-cm applied on 1 September and 1 October in addition to a base summer rate of 10 ha-cm. In both years for early to mid-season irrigation, bermudagrass dry matter yield quadratically increased with increasing swine effluent irrigation rates. Averaged across years, effluent irrigation in October resulted in 30% less dry matter than in September. For late-season irrigation, apparent N recovery averaged 59% less and P recovery averaged 46% less with a delay in irrigation from 1 September to 1 October. The greatest quantity of soil NO3(-)-N was associated with both the greatest effluent rate and October irrigation treatments. Minimal yield benefit was obtained when effluent was applied at rates greater than 10 ha-cm during the summer months. Late-season irrigation, especially after 1 October for areas with similar climatic conditions, should be avoided to maximize synchronization of nutrient availability with maximum growth rates to minimize potential offsite movement of residual soil N and P.  相似文献   

5.
Biosolids land application rates are typically based on crop N requirements but can lead to soil P accumulation. The Littleton/Englewood, Colorado, wastewater treatment facility has supported biosolids beneficial-use on a dryland wheat-fallow agroecosystem site since 1982, with observable soil P concentration increases as biyearly repeated biosolids applications increased from 0, 6.7, 13, 27, to 40 Mg ha(-1). The final study year was 2003, after which P accountability, fractionation, and potential environmental risk were assessed. Between 93 and 128% of biosolids-P added was accounted for when considering conventional tillage soil displacement, grain removal, and soil adsorption. The Fe-P fraction dominated all soil surface P fractions, likely due to an increase in amorphous Fe-oxide because Fe2(SO4)3 was added at the wastewater treatment facility inflow for digester H2S reduction. The Ca-P phase dominated all soil subsurface P fractions due to calcareous soil conditions. A combination of conventional tillage, drought from 1999 to 2003, and repeated and increasing biosolids application rates may have forced soil surface microorganism dormancy, reduction, or mortality; thus, biomass P reduction was evident. Subsurface biomass P was greater than surface biomass, possibly due to protection against environmental and anthropogenic variables or to increased dissolved organic carbon inputs. Even given years of biosolids application, the soil surface had the ability to sorb additional P as determined by shaking the soil in an excessive P solution. Biosolids-application regulations based on the Colorado Phosphorus Index would not impede current site practices. Proper monitoring, management, and addition of other best management practices are needed for continued assurance that P movement off-site does not become a major issue.  相似文献   

6.
In a field study, soils of four conventional free-range and organic broiler runs were analyzed for N and P concentrations in the years 2000 and 2001. Zones of different use intensity by broilers were identified on the free runs and mean zonal nutrient contents were compared with each other. Intensity of use by birds and spatial distribution of soil nutrient concentrations were found to be related to each other. Fecal N input by broilers resulted in accumulation of soil mineral nitrogen (N(min)) contents down to a 90-cm sampling depth. In highly frequented "hot spots," plant requirement as defined by the German "N-Basis-Sollwert" (110 kg/ha N(min)) for grassland was exceeded in all four cases. This implies an increased environmental risk of ammonia volatilization and nitrate leaching. Fecal P input by broilers resulted in accumulation of plant-available and thus mobile soil P (phosphorus extracted with calcium-acetate-lactate [P(CAL)] and phosphorus extracted with water [P(w)]) in the most intensely used zones. In these areas, soil P contents exceeded 90 mg/kg P(CAL) (upper limit of soil test P defined in Germany for optimum plant yield) by as much as 217 mg/kg, which indicates an enhanced risk of P loss from the soil via runoff or leaching. The conclusion might be drawn that, with regard to nutrient loss from free-run soils, intensive indoor production in a closed system may be more environmentally neutral than conventional free-range or organic production. However, to put this into perspective, the scope of the environmental risk connected with spatially limited point accumulation of nutrients should be considered. Furthermore, an environmental evaluation must also account for the fate and environmental effects of the broiler litter produced inside the broiler house.  相似文献   

7.
There is a growing evidence that the ecological and biological integrity of the lagoon has declined during the last 50 years, probably due to the decline in water quality. Establishment of a watershed scale seagrass-based nutrient load assessment is the major aim of water quality management in the Indian River Lagoon (IRL). Best estimate loadings incorporate wet and dry deposition, surface water, groundwater, sediment nutrient flux, and point source effluent discharge data. On the average, the IRL is receiving annual external loadings of 832, 645 and 94,476kg of total nitrogen (TN) and total phosphorus (TP), respectively, from stormwater discharges and agricultural runoff. The average internal cycling of TN and TP from sediment deposits in the IRL was about 42,640kg TN and 1050kg TPyr(-1). Indirect evidence suggests that atmospheric deposition has played a role in the ongoing nutrient enrichment in the IRL. The estimated total atmospheric deposition of TN and TP was about 32,940 and 824kgyr(-1), while groundwater contribution was about 84,920 and 24,275kgyr(-1), respectively, to the surface waters of the IRL. The estimated annual contribution of point effluent discharge was about 60,408kg TN and 7248kg TP. In total, the IRL basin is receiving an annual loading of about 1,053,553kg TN and 127,873kg TP. With these results, it is clear that the current rate of nutrient loadings is causing a shift in the primary producers of the IRL from macrophyte to phytoplankton- or algal-based system. The goal is to reverse that shift, to attain and maintain a macrophyte-based estuarine system in the IRL.  相似文献   

8.
Nitrogen and phosphorus exports from channelizedstream watersheds were elevated over those from nearby natural swamp-stream watersheds. Nitrate exports were significantly greater from channelized-stream watersheds, and higher exports were attributed to faster groundwater drawdown, continual streamflow, and transformation of former floodplain to croplands following channelization. Exports of total organic nitrogen and total nitrogen were also significantly greater from channelized-stream watersheds. Differences in the exports of ammonium, filterable reactive phosphorus, and filterable unreactive phosphorus between the two watershed types were not detectable. Particulate phosphorus exports were significantly higher from channelized-stream watersheds, presumably because of greater erosion potential of nearby croplands and steep channel banks in the altered watersheds. The presence of nonpoint sources of pollution increased watershed exports of nutrients regardless of stream morphology. Examination of nutrient budgets for a portion of swamp floodplain at the base of one natural-stream watershed revealed that changes in local groundwater hydrology and stream morphology associated with channelization appeared to have greater effect on nutrient exports than simply the loss of bordering forested floodplain.  相似文献   

9.
Emergy and economic methods were used to evaluate and compare three fish production models, i.e., cage fish farming system, pond intensive fish rearing system and semi-natural extensive pond fish rearing system, in Nansi Lake area in China in the year 2007. The goal of this study was to understand the benefits and driving forces of selected fish production models from ecological and economic points of view. The study considered input structure, production efficiency, environmental impacts, economic viability and sustainability. Results show that the main difference among the three production systems was the emergy cost for fish feed associated with their feeding system, i.e., feeding on natural biomass such as plankton and grass or on commercial feedstock. As indicated by EYR, ELR and ESI, it can be clearly shown that the intensive production model with commercial feed is not a sustainable pattern. However, the point is that more environmentally sound patterns do not seem able to provide a competitive net profit in the short run. The intensive pond fish farming system had a net profit of 2.57E+03 $/ha, much higher than 1.27E+03 $/ha for cage fish farming system and slightly higher than 2.37E+03 $/ha for semi-natural fish farming system. With regard to the drivers of local farmer’s decisions, the accessibility of land for the required use and investment ability determine the farmer’s choice of the production model and the scale of operation, while other factors seem to have little effect. Theoretically, the development of environmentally sustainable production patterns, namely water and land conservation measures, greener feed as well as low waste systems is urgently needed, to keep production activities within the carrying capacity of ecosystems. Coupled emergy and economic analyses can provide better insight into the environmental and economic benefits of fish production systems and help solve the problems encountered during policy making.  相似文献   

10.
Modeling diffuse phosphorus (P) loss may indicate management strategies to minimize P loss from agricultural sources. An empirical model predicting flow-weighted phosphorus concentrations (MRP) was derived using data collected from 35 Irish river catchments. Monitoring records of riverine P and stream flow data were used to calculate MRP values averaged for the years 1991-1994. These data were modeled using land use, soil type, and soil P data. Soil type in catchments was described using soil survey classifications weighted according to their P desorption properties from laboratory results. Soil test P concentrations for the studied watersheds were obtained from a national database. Soil P levels were weighted based on the results of field experiments measuring P losses in overland flow from fields at different soil test P levels. The 35 catchments were statistically clustered into two populations (A and B) based on differences in soil type, specifically, soil hydrology. Catchments in Cluster A had predominantly poorly drained soils and comparatively higher MRP concentrations (0.03-0.17 mg L(-1)) than Cluster B areas (0.01-0.7 mg L(-1)) with mostly well-drained soils. Regression equations derived for A and B type catchments predicted MRP values with 68 and 62% of the variation explained in the models, respectively. Data extracted for the rest of the country were applied to the models to delineate areas at risk on a national scale. While the models were only moderately accurate they highlighted the influence of land management, specifically, high production grassland receiving high P inputs, in conjunction with the effect of soil type and soil hydrology on the transport of P to surface waters.  相似文献   

11.
This paper investigates index models as a tool to estimate the risk of N and P source strengths and loss at the catchment scale. The index models assist managers in improving the focus of remediation actions that reduce nutrient delivery to waterbodies. N and P source risk factors (e.g. soil nutrient concentrations) and transport risk factors (e.g. distance-to-streams) are used to determine the overall risk of nutrient loss for a case study in the Tuross River catchment of coastal southeast Australia. In the development of the N index model for Tuross, particulate N was considered important based on the observed event water quality data. In contrast to previous N index models, erosion and contributing distance were therefore included in the Tuross River catchment N index. Event-based water quality monitoring, and soil information, or in data-poor catchments conceptual understanding, are essential to represent catchment-scale processes. The techniques have high applicability in other catchments, and are complementary to other modelling techniques such as process-based semi-distributed modelling. Index models generally provide much more detailed spatial resolution than fully- or semi-distributed conceptual modelling approaches. Semi-distributed models can be used to quantify nutrient loads and provide overall direction to set the broad focus of management. Index models can then be used to refine on-the-ground investigations and investment priorities. In this way semi-distributed models can be combined with index models to provide a set of powerful tools to influence management decisions and outcomes.  相似文献   

12.
Attenuation of rainfall within the solum may help to move contaminants and nutrients into the soil to be better sequestered or utilized by crops. Surface application of phosphorus (P) amendments to grasslands may lead to elevated concentrations of P in surface runoff and eutrophication of surface waters. Aeration of grasslands has been proposed as a treatment to reduce losses of applied P. Here, results from two small-plot aeration studies and two field-scale, paired-watershed studies are supplemented with previously unpublished soil P data and synthesized. The overall objective of these studies was to determine the impact of aeration on soil P, runoff volume, and runoff P losses from mixed tall fescue [Lolium arundinaceum (Schreb.) Darbysh.]-bermudagrass (Cynodon dactylon L.) grasslands fertilized with P. Small-scale rainfall simulations were conducted on two soil taxa using three types of aeration implements: spikes, disks, and cores. The-field scale study was conducted on four soil taxa with slit and knife aeration. Small-plot studies showed that core aeration reduced loads of total P and dissolved reactive P (DRP) in runoff from plots fertilized with broiler litter and that aeration was effective in reducing P export when it increased soil P in the upper 5 cm. In the field-scale study, slit aeration reduced DRP losses by 35% in fields with well-drained soils but not in poorly drained soils. Flow-weighted concentrations of DRP in aerated fields were related to water-soluble P applied in amendments and soil test P in the upper 5 cm. These studies show that the overall effectiveness of mechanical soil aeration on runoff volume and P losses is controlled by the interaction of soil characteristics such as internal drainage and compaction, soil P, type of surface-applied manure, and type of aeration implement.  相似文献   

13.
Clear Lake is on Iowa's list of impaired water bodies because of high P concentration. This study assessed soil-test phosphorus (STP), management practices, and P loads from its agricultural watershed. Management practice histories and STP for eight basins were surveyed in 1999. Soil samples (15-cm depth) were analyzed for STP with agronomic [Bray P1 (BP), Olsen (OP), Mehlich 3 (M3P) and environmental [iron oxide-impregnated paper (FeP) and water extraction (WP)] tests. Total phosphorus (TP) concentrations in water discharge from five basins were measured during two years, and TP loads were measured for two basins. The agronomic P tests showed that 46 to 83% (depending on the test) of the area tested above optimum for crops. Correlations among tests were high for OP, M3P, and FeP (r > 0.96) and lower for BP and WP (r = 0.88-0.93). Moldboard- and chisel-plow tillage predominated (82% of the area). Applied P (mainly fertilizer) averaged 15 kg P ha(-1) yr(-1), and 40% of the high-testing area (M3P test) was being fertilized. The mean annual water TP concentration across five basins was 275 to 474 microg L(-1). The two-year mean TP loads for the two gauged basins were 1504 and 1510 g P ha(-1) yr(-1). Water TP concentration increased linearly with increasing STP. Relationships were stronger for M3P and FeP (R2 = 0.96-0.97 for annual means and 0.77-0.79 for storm-flow events) than for BP or WP (R2 = 0.88-0.91 and 0.59-0.69, respectively). Improving P and soil conservation practices in high-testing areas could reduce P loads to the lake.  相似文献   

14.
Soil carbon sequestration (SCS) has the potential to attenuate increasing atmospheric CO2 and mitigate greenhouse warming. Understanding of this potential can be assisted by the use of simulation models. We evaluated the ability of the EPIC model to simulate corn (Zea mays L.) yields and soil organic carbon (SOC) at Arlington, WI, during 1958-1991. Corn was grown continuously on a Typic Argiudoll with three N levels: LTN1 (control), LTN2 (medium), and LTN3 (high). The LTN2 N rate started at 56 kg ha(-1) (1958), increased to 92 kg ha(-1) (1963), and reached 140 kg ha(-1) (1973). The LTN3 N rate was maintained at twice the LTN2 level. In 1984, each plot was divided into four subplots receiving N at 0, 84, 168, and 252 kg ha(-1). Five treatments were used for model evaluation. Percent errors of mean yield predictions during 1958-1983 decreased as N rate increased (LTN1 = -5.0%, LTN2 = 3.5%, and LTN3 = 1.0%). Percent errors of mean yield predictions during 1985-1991 were larger than during the first period. Simulated and observed mean yields during 1958-1991 were highly correlated (R2 = 0.961, p < 0.01). Simulated SOC agreed well with observed values with percent errors from -5.8 to 0.5% in 1984 and from -5.1 to 0.7% in 1990. EPIC captured the dynamics of SOC, SCS, and microbial biomass. Simulated net N mineralization rates were lower than those from laboratory incubations. Improvements in EPIC's ability to predict annual variability of crop yields may lead to improved estimates of SCS.  相似文献   

15.
Modeling is a common practice to evaluate factors affecting water quality in environmental systems impaired by point and nonpoint losses of N and P. Nevertheless, in situations with inadequate information, such as ungauged basins, a balance between model complexity and data availability is necessary. In this paper, we applied a simplified analytical model to an artificially drained floodplain in central-western Italy to evaluate the importance of different nutrient sources and in-stream retention processes and to identify critical source areas. We first considered only a set of chemical concentrations in water measured from February through May 2008 and from November 2008 through February 2009. We then broadened available data to include water discharge and hydraulic-head measurements to construct a hydrogeological model using MODFLOW-2000 and to evaluate the reliability of the simplified method. The simplified model provided acceptable estimates of discharge (ranging from 0.03-0.75 m s) and diffuse nutrient inputs from water table discharge and in-stream retention phenomena. Estimates of PO-P and total P retention (ranging from 1.0 to 0.6 μg m s and from 1.18 to 0.95 μg m s for PO-P and total P, respectively) were consistent with the range of variability in literature data. In contrast, the higher temporal variability of nitrate concentrations decreased model accuracy, suggesting the need for more intensive monitoring. The model also separated the dynamics of different reaches of the drainage network and identified zones considered critical source areas and buffer zones where pollutant transport is reduced.  相似文献   

16.
洞庭湖区野生动植物资源十分丰富,生产潜力大.但由于盲目开发、泥沙淤积和环境污染,导致野生动植物生境被破坏,生物生产力下降,并造成物种灭绝.因此,必须加强执法力度,加大投入,保护湖区野生动植物资源的多样性,采取强有力措施对洞庭湖湿地生态环境进行综合整治,建立科学合理的生物利用模式和具有湖区特色的产业结构,对洞庭湖区野生动植物资源进行可持续开发利用.  相似文献   

17.
Continuous N-based application of biosolids contributes to a gradual increase of trace elements and P in soils. The objectives of this study were to assess the accumulation and vertical transport of Cu, Zn, C, N, and P within the profile of two coastal plain soils. Liquid (6-8% total solids) biosolids were applied to an Acredale silt loam (fine silty, mixed, thermic typic Ochraqualfs) and Bojac loamy sand (coarse loamy, mixed, thermic typic Hapludult) annually from 1984 to 1998. The repeated applications supplied 70, 204, and 3823 kg ha(-1) of Cu, Zn, and P, respectively, to the Acredale and 81, 225, and 4265 kg ha(-1) of Cu, Zn, and P, respectively, to the Bojac. The total C and N contents were not different than background levels in the Bojac soil and were slightly higher in the Acredale soil 7 years after cessation of biosolids application. Phosphorus, Cu and Zn are still concentrated in the top 0.25 m of the Acredale soil. Enrichment of P, Cu, and Zn were detected to the deepest soil increment in the coarse-textured Bojac soil. Approximately 20 to 40% of the Cu and Zn applied in the biosolids could not be accounted, which was likely due to a combination of leaching and incomplete extraction. Excessive Mehlich 1-P concentrations and a high degree of P saturation were found in amended soil, raising the potential for P release to runoff or leaching water.  相似文献   

18.
Large quantities of sediment are transported by the River Ganga (The Ganges) particularly In its deltaic region. Attempts have been made to study the physicochemical parameters of the bottom sediments of the River Ganga at various depths at Kamarhati and along the banks of the River Ganga in the lower deltaic region. The results give vital information regarding the pollution load carried by the river and the enrichment of its sediments with nutrients such as P, N and other substances such as C and S (as sulphates). The mobilization of the P, N, C and S (as sulphates) in the sediments is compared with their natural abundance. The enrichment of the river beds with P, the interaction of the sediment and the characteristics of the sediments are ascertained. Some aspects of the phosphorus cycle and its importance are also discussed. The recycling and reuse of sediments for agricultural purposes have been proposed in order to restore ecological imbalances due to nutrient loss.Mrs M. Chattopadhyay (née Ray) and D. Mukherjee are both post-doctorate ex-senior research scholars within the Department of Chemistry, Kalyani University, where Professor S.C. Lahiri was until recently head of department. Mr S.K. Bhattacharya is director of the Ganga Action Plan Sector, Calcutta Metropolitan Development Authority, Unnayan Bhavan (1st floor), Salt Lake, Calcutta 700 091, India. The information given in this paper is supplementary to that provided by certain of the same authors inThe Environmentalist 13(3), 199–210.  相似文献   

19.
Many models of phosphorus (P) transfer at the catchment scale rely on input from generic databases including, amongst others, soil and land use maps. Spatially detailed geochemical data sets have the potential to improve the accuracy of the input parameters of catchment-scale nutrient transfer models. Furthermore, they enable the assessment of the utility of available, generic spatial data sets for the modeling and prediction of soil nutrient status and nutrient transfer at the catchment scale. This study aims to quantify the unique and joint contribution of soil and sediment properties, land cover, and point-source emissions to the spatial variation of P concentrations in soil, streambed sediments, and stream water at the scale of a medium-sized catchment. Soil parent material and soil chemical properties were identified as major factors controlling the catchment-scale spatial variation in soil total P and Olsen P concentrations. Soil type and land cover as derived from the generic spatial database explain 33.7% of the variation in soil total P concentrations and 17.4% of the variation in Olsen P concentrations. Streambed P concentrations are principally related to the major element concentrations in streambed sediment and P delivery from the hillslopes due to sediment erosion. During base flow conditions, the total phosphorus (<0.45 microm) concentrations in stream water are mainly controlled by the concentrations of P and the major elements in the streambed sediment.  相似文献   

20.
Land application of animal manures and fertilizers has resulted in an increased potential for excessive P losses in runoff to nutrient-sensitive surface waters. The purpose of this research was to measure P losses in runoff from a bare Piedmont soil in the southeastern United States receiving broiler litter or inorganic P fertilizer either incorporated or surface-applied at varying P application rates (inorganic P, 0-110 kg P ha(-1); broiler litter, 0-82 kg P ha(-1)). Rainfall simulation was applied at a rate of 76 mm h(-1). Runoff samples were collected at 5-min intervals for 30 min and analyzed for reactive phosphorus (RP), algal-available phosphorus (AAP), and total phosphorus (TP). Incorporation of both P sources resulted in P losses not significantly different than the unfertilized control at all application rates. Incorporation of broiler litter decreased flow-weighted concentration of RP in runoff by 97% and mass loss of TP in runoff by 88% compared with surface application. Surface application of broiler litter resulted in runoff containing between 2.3 and 21.8 mg RP L(-1) for application rates of 8 to 82 kg P ha(-1), respectively. Mass loss of TP in runoff from surface-applied broiler litter ranged from 1.3 to 8.5 kg P ha(-1) over the same application rates. Flow-weighted concentrations of RP and mass losses of TP in runoff were not related to application rate when inorganic P fertilizer was applied to the soil surface. Results for this study can be used by P loss assessment tools to fine-tune P source, application rate, and application method site factors, and to estimate extreme-case P loss from cropland receiving broiler litter and inorganic P fertilizers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号