首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The risk of P losses from agricultural land to surface and ground water generally increases as the degree of soil P saturation increases. A single-point soil P sorption index (PSI) was validated with adsorption isotherm data for determination of the P sorption status of Alberta soils. Soil P thresholds (change points) were then examined for two agricultural soils after eight annual applications of different rates of cattle manure and for three agricultural soils after one application of different rates of cattle manure. Linear relationships were found between soil-test P (STP) levels up to 1000 mg kg(-1) and desorbed P in the five Alberta soils. Weak linear relationships were also found between STP and runoff dissolved reactive phosphorus (DRP) in three of these soils. Change points for the degree of P saturation (DPS) were detected in four of the five soils at 3 to 44% for water-extractable P (WEP) and at 11 to 51% for CaCl(2)-extractable P (CaCl(2)-P). Change points were not found for DPS or runoff DRP. Overall DPS thresholds for the five soils combined were 27% for WEP and 44% for CaCl(2)-P at a critical desorbable-P value of 1 mg L(-1). The corresponding STP levels (44 mg kg(-1) for WEP and 71 mg kg(-1) for CaCl(2)-P) are similar to agronomic thresholds for crops grown on Alberta soils. Soluble P losses in overland flow and leaching may be greater in soils with DPS values that exceed these thresholds than in soils with lower DPS values.  相似文献   

2.
Inputs of nutrients (P and N) to freshwaters can cause excessive aquatic plant growth, depletion of oxygen, and deleterious changes in diversity of aquatic fauna. As part of a "National Agri-Environmental Standards Initiative," the Government of Canada committed to developing environmental thresholds for nutrients to protect ecological condition of agricultural streams. Analysis of data from >200 long-term monitoring stations across Canada and detailed ecological study at ~70 sites showed that agricultural land cover was associated with increased nutrient concentrations in streams and this, in turn, was associated with increased sestonic and benthic algal abundance, loss of sensitive benthic macroinvertebrate taxa, and an increase in benthic diatom taxa indicative of eutrophication. Chemical thresholds for N and P were defined by applying five approaches, employing either a predetermined percentile to a water chemistry data set or a relationship between water chemistry and land cover, to identify boundaries between minimally disturbed and impaired conditions. Comparison of these chemical thresholds with biological thresholds (derived from stressor-response relationships) produced an approach for rationalizing these two types of thresholds and deriving nutrient criteria. The resulting criteria were 0.01 to 0.03 mg L(-1) total P and 0.87-1.2 mg L(-1) total N for the Atlantic Maritime, 0.02 mg L(-1) total P and 0.21 mg L(-1) total N for the Montane Cordillera, ~0.03 mg L(-1) total P and ~1.1 mg L(-1) total N for the Mixedwood Plains, and ~0.10 mg L(-1) total P and 0.39-0.98 mg L(-1) total N for the interior prairies of Canada. Adoption of these criteria should result in greater likelihood of good ecological condition with respect to benthic algal abundance, diatom composition, and macroinvertebrate composition.  相似文献   

3.
Modeling diffuse phosphorus (P) loss may indicate management strategies to minimize P loss from agricultural sources. An empirical model predicting flow-weighted phosphorus concentrations (MRP) was derived using data collected from 35 Irish river catchments. Monitoring records of riverine P and stream flow data were used to calculate MRP values averaged for the years 1991-1994. These data were modeled using land use, soil type, and soil P data. Soil type in catchments was described using soil survey classifications weighted according to their P desorption properties from laboratory results. Soil test P concentrations for the studied watersheds were obtained from a national database. Soil P levels were weighted based on the results of field experiments measuring P losses in overland flow from fields at different soil test P levels. The 35 catchments were statistically clustered into two populations (A and B) based on differences in soil type, specifically, soil hydrology. Catchments in Cluster A had predominantly poorly drained soils and comparatively higher MRP concentrations (0.03-0.17 mg L(-1)) than Cluster B areas (0.01-0.7 mg L(-1)) with mostly well-drained soils. Regression equations derived for A and B type catchments predicted MRP values with 68 and 62% of the variation explained in the models, respectively. Data extracted for the rest of the country were applied to the models to delineate areas at risk on a national scale. While the models were only moderately accurate they highlighted the influence of land management, specifically, high production grassland receiving high P inputs, in conjunction with the effect of soil type and soil hydrology on the transport of P to surface waters.  相似文献   

4.
In situ stabilization of soil lead using phosphorus   总被引:4,自引:0,他引:4  
In situ stabilization of Pb-contaminated soils can be accomplished by adding phosphorus. The standard remediation procedure of soil removal and replacement currently used in residential areas is costly and disruptive. This study was carried out to evaluate the influence of P and other soil amendments on five metal-contaminated soils and mine wastes. Seven treatments were used: unamended control; 2,500 mg of P/kg as triple superphosphate (TSP), phosphate rock (PR), acetic acid followed by TSP, and phosphoric acid (PA); and 5,000 mg of P/kg as TSP or PR. A significant reduction in bioavailable Pb, as determined by the physiologically based extraction test (PBET), compared with the control upon addition of P was observed in all materials tested. Increasing the amount of P added from 2,500 to 5,000 mg/kg also resulted in a significantly greater reduction in bioavailable Pb. Phosphate rock was equally or more effective than TSP or PA in reducing bioavailable Pb in four out of five soils tested. Preacidification produced significantly lower bioavailable Pb compared with the same amount of P from TSP or PR in only one material. Reductions in Pb bioavailability as measured by PBET were evident 3 d after treatment, and it may indicate that the reactions between soil Pb and P occurred in situ or during the PBET. No further reductions were noted over 365 d. X-ray diffraction data suggested the formation of pyromorphite-like minerals induced by P additions. This study suggests that P addition reduced bioavailable Pb by PBET and has potential for in situ remediation of Pb-contaminated soils.  相似文献   

5.
Fertilization exceeding crop requirements causes an accumulation of phosphorus (P) in soils, which might increase concentrations of dissolved and colloidal P in drainage. We sampled soils classified as Typic Haplorthods from four fertilization experiments to test (i) whether increasing degrees of phosphorus saturation (DPS) increase concentrations of dissolved and colloidal P, and (ii) if critical DPS levels can be defined for P release from these soils. Oxalate-extractable concentrations of P, iron (Fe), and aluminum (Al) were quantified to characterize DPS. Turbidity, zeta potential, dissolved P, and colloidal P, Fe, Al, and carbon (C) concentrations were determined in water and KCl extracts. While concentrations of dissolved P decreased with increasing depth, concentrations of water-extractable colloidal P remained constant. In topsoils 28 +/- 17% and in subsoils 94 +/- 8% of water-extractable P was bound to colloids. Concentrations of dissolved P increased sharply for DPS > 0.1. Colloidal P concentrations increased with increasing DPS because of an additional mobilization of colloids and due to an increase of the colloids P contents. In addition to DPS, ionic strength and Ca(2+) affected the release of colloidal P. Hence, using KCl for extraction improved the relationship between DPS and colloidal P compared with water extraction. Accumulation of P in soils increases not only concentrations of dissolved P but also the risk of colloidal P mobilization. Leaching of colloidal P is potentially important for inputs of P into water bodies because colloidal P as the dominant water-extractable P fraction in subsoils was released from soils with relatively low DPS.  相似文献   

6.
There is critical need for a practical indicator to assess the potential for phosphorus (P) movement from a given site to surface waters, either via surface runoff or subsurface drainage. The degree of phosphorus saturation (DPS), which relates a measure of P already adsorbed by a soil to its P adsorption capacity, could be a good indicator of that soil's P release capability. Our primary objective was to find a suitable analytical protocol for determining DPS and to examine the possibility of defining a threshold DPS value for Florida's sandy soils. Four farmer-owned dairy sprayfields were selected within the Suwannee River basin and soil profiles were randomly obtained from each site, as well as from adjacent unimpacted sites. The soil samples were divided either by horizon or depth, and DPS was determined for each soil sample using ammonium-oxalate (DPS(Ox)), Mehlich-1 (DPS(M1)), and Mehlich-3 (DPS(M3)) extracts. All methods of DPS calculations were linearly related to one another (r2 > 0.94). Relationships between water-soluble P and DPS indicate that the respective change points are: DPS(Ox) = 20%, DPS(M1) = 20%, and DPS(M3) = 16%. These relationships include samples from Ap, E, and Bt horizons, and various combinations thereof, suggesting that DPS values can be used as predictors of P loss from a soil irrespective of the depth of the soil within a profile. Taking into consideration the change points, confidence intervals, agronomic soil test values, and DPS values from other studies, we suggest replacing Mehlich-1 P values in the Florida P Index with the three DPS categories (DPS(M1) = <30, 30-60, and >60%) to assign different P loss ratings in the P Index.  相似文献   

7.
A phosphorus (P) index for pastures was developed to write nutrient management plans that determine how much P can be applied to a given field. The objectives of this study were to (i) evaluate and compare the P index for pastures, particularly the P source component, and an environmental threshold soil test P level by conducting rainfall simulations on contrasting soils under various management scenarios; and (ii) evaluate the P index for pastures on field-scale watersheds. Poultry litter was applied to 12 small plots on each of six farms based on either an environmental threshold soil test P level or on the P index for pastures, and P runoff was evaluated using rainfall simulators. The P index was also evaluated from two small (0.405 ha) watersheds that had been fertilized annually with poultry litter since 1995. Results from the small plot study showed that soil test P alone was a poor predictor of P concentrations in runoff water following poultry litter applications. The relationship between P in runoff and the amount of soluble P applied was highly significant. Furthermore, P concentrations in runoff from plots with and without litter applications were significantly correlated to P index values. Studies on pastures receiving natural rainfall and annual poultry litter applications indicated that the P index for pastures predicted P loss accurately without calibration (y = 1.16x - 0.23, r(2) = 0.83). These data indicate that the P index for pastures can accurately assess the risk of P loss from fields receiving poultry litter applications in Arkansas and provide a more realistic risk assessment than threshold soil test P levels.  相似文献   

8.
Phosphorus loss in runoff from agricultural fields has been identified as an important contributor to eutrophication. The objective of this research was to determine the relationship between phosphorus (P) in runoff from a benchmark soil (Cecil sandy loam; fine, kaolinitic, thermic Typic Kanhapludult) and Mehlich III-, deionized water-, and Fe(2)O(3)-extractable soil P, and degree of phosphorus saturation (DPS). Additionally, the value of including other soil properties in P loss prediction equations was evaluated. Simulated rainfall was applied (75 mm h(-1)) to 54 1-m(2) plots installed on six fields with different soil test phosphorus (STP) levels. Runoff was collected in its entirety for 30 min and analyzed for total P and dissolved reactive phosphorus (DRP). Soil samples were collected from 0- to 2-, 0- to 5-, and 0- to 10-cm depths. The strongest correlation for total P and DRP occurred with DPS (r(2) = 0.72). Normalizing DRP by runoff depth resulted in improved correlation with deionized water-extractable P for the 0- to 10-cm sampling depth (r(2) = 0.81). The STP levels were not different among sampling depths and analysis of the regression equations revealed that soil sampling depth had no effect on the relationship between STP and P in runoff. For all forms of P in runoff and STP measures, the relationship between STP and runoff P was much stronger when the data were split into groups based on the ratio of oxalate-extractable Fe to Al. For all forms of P in runoff and all STP methods, R(2) increased with the inclusion of oxalate-extractable Al and Fe in the regression equation. The results of this study indicate that inclusion of site-specific information about soil Al and Fe content can improve the relationship between STP and runoff P.  相似文献   

9.
Currently, several state and federal agencies are proposing upper limits on soil test phosphorus (P), above which animal manures cannot be applied, based on the assumption that high P concentrations in runoff are due to high soil test P. Recent studies show that other factors are more indicative of P concentrations in runoff from areas where manure is being applied. The original P index was developed as an alternative P management tool incorporating factors affecting both the source and transport of P. The objective of this research was to evaluate the effects of multiple variables on P concentrations in runoff water and to construct a P source component of a P index for pastures that incorporates these effects. The evaluated variables were: (i) soil test P, (ii) soluble P in poultry litter, (iii) P in poultry diets, (iv) fertilizer type, and (v) poultry litter application rate. Field studies with simulated rainfall showed that P runoff was affected by the amount of soluble P applied in the fertilizer source. Before manure applications, soil test P was directly related to soluble P concentrations in runoff water. However, soil test P had little effect on P runoff after animal manure was applied. Unlike most other P indices, weighting factors of the P source components in the P index for pastures are based on results from runoff studies conducted under various management scenarios. As a result, weighting factors for the P source potential variables are well justified. A modification of the P index using scientific data should strengthen the ability of the P index concept to evaluate locations and management alternatives for P losses.  相似文献   

10.
This study was conducted to evaluate the relationships among total suspended solids (TSS) and particulate phosphorus (PP) in runoff and selected soil properties. Nine Louisiana soils were subjected to simulated rainfall events, and runoff collected and analyzed for various parameters. A highly significant relationship existed between runoff TSS and runoff turbidity. Both runoff TSS and turbidity were also significantly related to runoff PP, which on average accounted for more than 98% of total P (TP) in the runoff. Runoff TSS was closely and positively related to soil clay content in an exponential fashion (y=0.10e0.01x, R2=0.91, P<0.001) while it was inversely related to soil electrical conductivity (EC) (y=0.02 x(-3.95), R2=0.70, P<0.01). A newly-devised laboratory test, termed "soil suspension turbidity" (SST) which measures turbidity in a 1:200 soil/water suspension, exhibited highly significant linear relationships with runoff TSS (y=0.06x-4.38, R2=0.82, P<0.001) and PP (y=0.04x+2.68, R2=0.85, P<0.001). In addition, SST alone yielded similar R2 value to that of combining soil clay content and EC in a multiple regression, suggesting that SST was able to account for the integrated effect of clay content and electrolytic background on runoff TSS. The SST test could be used for assessment and management of sediment and particulate nutrient losses in surface runoff.  相似文献   

11.
Phosphorus leaching in relation to soil type and soil phosphorus content   总被引:6,自引:0,他引:6  
Phosphorus losses from arable soils contribute to eutrophication of freshwater systems. In addition to losses through surface runoff, leaching has lately gained increased attention as an important P transport pathway. Increased P levels in arable soils have highlighted the necessity of establishing a relationship between actual P leaching and soil P levels. In this study, we measured leaching of total phosphorus (TP) and dissolved reactive phosphorus (DRP) during three years in undisturbed soil columns of five soils. The soils were collected at sites, established between 1957 and 1966, included in a long-term Swedish fertility experiment with four P fertilization levels at each site. Total P losses varied between 0.03 and 1.09 kg ha(-1) yr(-1), but no general correlation could be found between P concentrations and soil test P (Olsen P and phosphorus content in ammonium lactate extract [P-AL]) or P sorption indices (single-point phosphorus sorption index [PSI] and P sorption saturation) of the topsoil. Instead, water transport mechanism through the soil and subsoil properties seemed to be more important for P leaching than soil test P value in the topsoil. In one soil, where preferential flow was the dominant water transport pathway, water and P bypassed the high sorption capacity of the subsoil, resulting in high losses. On the other hand, P leaching from some soils was low in spite of high P applications due to high P sorption capacity in the subsoil. Therefore, site-specific factors may serve as indicators for P leaching losses, but a single, general indicator for all soil types was not found in this study.  相似文献   

12.
Phosphorus transport from agricultural soils contributes to eutrophication of fresh waters. Computer modeling can help identify agricultural areas with high potential P transport. Most models use a constant extraction coefficient (i.e., the slope of the linear regression between filterable reactive phosphorus [FRP] in runoff and soil P) to predict dissolved P release from soil to runoff, yet it is unclear how variations in soil properties, management practices, or hydrology affect extraction coefficients. We investigated published data from 17 studies that determined extraction coefficients using Mehlich-3 or Bray-1 soil P (mg kg(-1)), water-extractable soil P (mg kg(-1)), or soil P sorption saturation (%) as determined by ammonium oxalate extraction. Studies represented 31 soils with a variety of management conditions. Extraction coefficients from Mehlich-3 or Bray-1 soil P were not significantly different for 26 of 31 soils, with values ranging from 1.2 to 3.0. Extraction coefficients from water-extractable soil P were not significantly different for 17 of 20 soils, with values ranging from 6.0 to 18.3. The relationship between soil P sorption saturation and runoff FRP (microg L(-1)) was the same for all 10 soils investigated, exhibiting a split-line relationship where runoff FRP rapidly increased at P sorption saturation values greater than 12.5%. Overall, a single extraction coefficient (2.0 for Mehlich-3 P data, 11.2 for water-extractable P data, and a split-line relationship for P sorption saturation data) could be used in water quality models to approximate dissolved P release from soil to runoff for the majority of soil, hydrologic, or management conditions. A test for soil P sorption saturation may provide the most universal approximation, but only for noncalcareous soils.  相似文献   

13.
A measure of soil P status in agricultural soils is generally required for assisting with prediction of potential P loss from agricultural catchments and assessing risk for water quality. The objectives of this paper are twofold: (i) investigating the soil P status, distribution, and variability, both spatially and with soil depth, of two different first-order catchments; and (ii) determining variation in soil P concentration in relation to catchment topography (quantified as the "topographic index") and critical source areas (CSAs). The soil P measurements showed large spatial variability, not only between fields and land uses, but also within individual fields and in part was thought to be strongly influenced by areas where cattle tended to congregate and areas where manure was most commonly spread. Topographic index alone was not related to the distribution of soil P, and does not seem to provide an adequate indicator for CSAs in the study catchments. However, CSAs may be used in conjunction with soil P data for help in determining a more "effective" catchment soil P status. The difficulties in defining CSAs a priori, particularly for modeling and prediction purposes, however, suggest that other more "integrated" measures of catchment soil P status, such as baseflow P concentrations or streambed sediment P concentrations, might be more useful. Since observed soil P distribution is variable and is also difficult to relate to nationally available soil P data, any assessment of soil P status for determining risk of P loss is uncertain and problematic, given other catchment physicochemical characteristics and the sampling strategy employed.  相似文献   

14.
The growing concerns about water eutrophication have made it urgent to restrict losses of phosphorus (P) from agricultural soils and to develop methods for predicting such losses. In this work, we used the paradigm of P sorption-desorption curves to confirm the hypothesis that the amount of dissolved reactive phosphorus (DRP) released to a dilute electrolyte tends to be proportional to the concentration of DRP in the soil solution raised to a power that decreases with increasing solution to soil ratio (W). The hypothesis was tested for a group of 12 widely ranging European agricultural soils fertilized with P in excess of crop needs. Phosphorus desorption was studied under near-static and turbulent conditions in laboratory experiments. The concentration of DRP in the 1:1 soil to water extract (P1:1) was used as a proxy for the DRP concentration in the soil solution. The amount of desorbed P was found to be correlated with P1:1 raised to a power that decreased from 0.7 to 0.9 at W=100 to 0.2 to 0.4 at W=10 000. Correlation was not improved by introducing additional variables related to P sorption-desorption properties. Olsen P was found to be of lower predictive value than P1:1. Also, the index of degree of soil saturation with phosphorus (DSSP) based on oxalate extraction failed to predict P desorption. The fact that P1:1 seemingly predicts P desorption accurately for a wide range of soils makes it potentially useful in areas of high soil diversity.  相似文献   

15.
Influence of flooding on phosphorus mobility in manure-impacted soil   总被引:1,自引:0,他引:1  
Agricultural lands are often used for constructing stormwater treatment areas (STAs) to abate nutrient loading to adjacent aquatic systems. Flooding agricultural lands to create STAs could stimulate a significant release of phosphorus (P) from soil to the water column. To assess the suitability of agricultural lands, specifically those impacted by animal operations, for the construction of STAs, soils from different components of the New Palm-Newcomer dairies (Nubbin Slough Basin, Okeechobee, Florida, USA) were collected by horizon and their P retention and release capacities estimated. In general, P released from A-horizon soil under flooded (anaerobic) conditions was greater than under drained (aerobic) conditions due to redox effect on iron (Fe) and consequent P releases. However, the P released from Bh-horizon soil was greater under aerobic conditions than under anaerobic conditions, possibly due to excessive aluminum (Al) content in the horizon. Double acid-extractable calcium (Ca), magnesium (Mg), Al, and P explained 87% of the variability in P release under aerobic conditions, and 80% of that under anaerobic conditions. The P release maxima indicated a high solubility of P in A-horizon soil from both active and abandoned dairies (13 and 8% of the total P, respectively), suggesting that these soils could function as potential sources of P to the overlying water column when used in STA construction. Preestablishment of vegetative communities or chemical amendment, however, could ameliorate high P flux from soil to the water column.  相似文献   

16.
The degree of phosphorus saturation (DPS) has been used in evaluating the risk of P loss from soil to runoff. While techniques are available for calculating DPS for acid soils, no widely used technique exists for neutral to calcareous soils that are typical of the Northern Great Plains, including Manitoba (Canada) soils. This study aimed to develop techniques of calculating the DPS of neutral to alkaline soils. Four measures of soil labile P and ten indices of P sorption capacity were used to calculate the DPS of 115 Manitoba soils. The various DPS calculated were evaluated using water-extractable ((H2O)) P as an index of P susceptibility to runoff loss. The DPS obtained using Olsen-extractable ((Ols)) P and the Langmuir adsorption maximum (ES(max)) ranged from 0.5 to 31.9% while those obtained from P(Ols) and the single-point adsorption index (P(150)) ranged from 0.9 to 73.9%. Of all the DPS evaluated, those that included P(Ols) and Mehlich 3-extractable ((M3)) P as the numerator with either P(150) or ES(max) as the denominator were fairly well correlated with P(H2O) (r values ranged between 0.45 and 0.63). Along with ES(max) and P(150), a new method of calculating DPS was formulated as the ratio of P(Ols) or P(M3) to Ca(M3) or (Ca + Mg)(M3). We found that the ratio of ammonium oxalate-extractable ((ox)) P to (Al + Fe)(ox), which has been widely used to calculate DPS in acid soils, was not suitable for neutral to alkaline soils of Manitoba. In these neutral to alkaline soils, Ca(M3) or (Ca + Mg)(M3) were better indices of P sorption capacity while P(Ols) and P(M3) provided better estimates of labile soil P. The DPS calculated using Ca(M3) or (Ca + Mg)(M3) were well correlated with P(H2O); however, they were numerically smaller than those obtained from the Langmuir adsorption maximum. As such, a saturation coefficient (alpha) with a value of 0.2 was generated to improve the numerical values of the newly estimated DPS. This new approach can be used to estimate the DPS in neutral and calcareous soils without the need to generate a P adsorption maximum.  相似文献   

17.
In situ stabilization of Pb contaminated soils can be accomplished by adding P and Mn(IV) oxide. However, the long-term efficacy of in situ stabilization under continual P removal through plant growth is unknown. Moreover, the effects these treatments have on phytoavailability of other metals (Cd and Zn) commonly associated with Pb in soil are not well understood. Greenhouse experiments using sudax [Sorghum vulgare (L.) Moench] and Swiss chard [Beta vulgaris (L.) Koch] were carried out to evaluate the effects of plant growth on soil Pb bioavailability to humans after addition of P and other amendments, and the effects of these treatments on Pb, Cd, and Zn phytoavailability in three metal-contaminated soils. Eight treatments were used: zero P; 2500 mg of P as triple superphosphate (TSP); 5000 mg of P as TSP or phosphate rock (PR); 5000 mg of Mn oxide/kg; and combinations of Mn oxide and P as TSP or PR. The addition of P and/or Mn oxide significantly reduced bioavailable Pb, as measured by the physiologically based extraction test (PBET), in soils compared with the control even after extensive cropping. The PBET data also suggested that removal of P from soluble P sources by plants could negate the beneficial effects of P on bioavailable Pb, unless sufficient soluble P was added or soluble P was combined with Mn oxide. In general, Ph, Cd, and Zn concentrations in shoot tissues of sudax and Swiss chard were reduced significantly by TSP and did not change with the addition of PR. The combination of PR and Mn oxide significantly reduced Pb concentrations in plants compared with the control.  相似文献   

18.
Enzymatic hydrolysis of organic phosphorus in swine manure and soil   总被引:5,自引:0,他引:5  
Organic phosphorus (Po) exists in many chemical forms that differ in their susceptibility to hydrolysis and, therefore, bioavailability to plants and microorganisms. Identification and quantification of these forms may significantly contribute to effective agricultural P management. Phosphatases catalyze reactions that release orthophosphate (Pi) from Po compounds. Alkaline phosphatase in tris-HCl buffer (pH 9.0), wheat (Triticum aestivum L.) phytase in potassium acetate buffer (pH 5.0), and nuclease P1 in potassium acetate buffer (pH 5.0) can be used to classify and quantify Po in animal manure. Background error associated with different pH and buffer systems is observed. In this study, we improved the enzymatic hydrolysis approach and tested its applicability for investigating Po in soils, recognizing that soil and manure differ in numerous physicochemical properties. We applied (i) acid phosphatase from potato (Solanum tuberosum L.), (ii) acid phosphatases from both potato and wheat germ, and (iii) both enzymes plus nuclease P1 to identify and quantify simple labile monoester P, phytate (myo-inositol hexakis phosphate)-like P, and DNA-like P, respectively, in a single pH/buffer system (100 mM sodium acetate, pH 5.0). This hydrolysis procedure released Po in sequentially extracted H2O, NaHCO3, and NaOH fractions of swine (Sus scrofa) manure, and of three sandy loam soils. Further refinement of the approach may provide a universal tool for evaluating hydrolyzable Po from a wide range of sources.  相似文献   

19.
A study was initiated to investigate the relationship between soil test P and depth of soil sampling with runoff losses of dissolved molybdate reactive phosphorus (DMRP). Rainfall simulations were conducted on two noncalcareous soils, a Windthorst sandy loam (fine, mixed, thermic Udic Paleustalf) and a Blanket clay loam (fine, mixed, thermic Pachic Argiustoll), and two calcareous soils, a Purves clay (clayey, smectitic, thermic Lithic Calciustoll) and a Houston Black clay (fine, smectitic, thermic Udic Haplustert). Soil (0- to 2.5-, 0- to 5-, and 0- to 15-cm depths) and runoff samples were collected from each of the four soils in permanent pasture exhibiting a wide range in soil test P levels (as determined by Mehlich III and distilled water extraction) due to prior manure applications. Simulated rain was used to produce runoff, which was collected for 30 min. Good regression equations were derived relating soil test P level to runoff DMRP for all four soil types, as indicated by relatively high r2 values (0.715 to 0.961, 0- to 5-cm depth). Differences were observed for the depth of sampling, with the most consistent results observed with the 0- to 5-cm sampling depth. Runoff DMRP losses as a function of the concentration of P in soil were lower in calcareous soils (maximum of 0.74 mg L(-1)) compared with noncalcareous soils (maximum of 1.73 mg L(-1)). The results indicate that a soil test for environmental P could be developed, but it would require establishing different soil test P level criteria for different soils or classes of soils.  相似文献   

20.
Field-scale relationships between soil test phosphorus (STP) and flow-weighted mean concentrations (FWMCs) of dissolved reactive phosphorus (DRP) and total phosphorus (TP) in runoff are essential for modeling phosphorus losses, but are lacking. The objectives of this study were (i) to determine the relationships between soil phosphorus (STP and degree of phosphorus saturation (DPS)) and runoff phosphorus (TP and DRP) from field-sized catchments under spring snowmelt and summer rainfall conditions, and (ii) to determine whether a variety of depths and spatial representations of STP improved the prediction of phosphorus losses. Runoff was monitored from eight field-scale microwatersheds (2 to 248 ha) for 3 yr. Soil test phosphorus was determined for three layers (0 to 2.5 cm, 0 to 5 cm, and 0 to 15 cm) in spring and fall and the DPS was determined for the surface layer. Average STP (0 to 15 cm) ranged from 3 to 512 mg kg(-1), and DPS (0 to 2.5 cm) ranged from 5 to 91%. Seasonal FWMCs ranged from 0.01 to 7.4 mg L(-1) DRP and from 0.1 to 8.0 mg L(-1) TP. Strong linear relationships (r2=0.87 to 0.89) were found between the site mean STP and the FWMCs of DRP and TP. The relationships had similar extraction coefficients, intercepts, and predictive power among all three soil layers. Extraction coefficients (0.013 to 0.014) were similar to those reported for other Alberta studies, but were greater than those reported for rainfall simulation studies. The curvilinear DPS relationship showed similar predictive ability to STP. The field-scale STP relationships derived from natural conditions in this study should provide the basis for modeling phosphorus in Alberta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号