首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
搭建了基于可视化燃烧管道的预混火焰精细结构实验台,通过理论分析和实验等手段对预混火焰的瞬态传播过程及加速传播特性进行了研究,分析得出了不同甲烷含量的预混火焰加速传播规律及预混火焰由层流向湍流的转变规律.  相似文献   

2.
使用自行设计的火焰加速试验系统,研究了3种立体结构障碍物对管道内预混火焰传播速度和超压的影响。选用长方体、正四棱柱和圆柱,其阻塞比均为40%。结果表明,管道内障碍物对火焰传播的初始阶段起阻碍作用,当火焰越过障碍物后,障碍物加速火焰传播过程。有障碍物时管道内最大火焰传播速度和峰值超压比无障碍物时要大。随着点火距离的增大,管道中最大火焰传播速度和超压先变大后减小。当障碍物位于约6倍管径处时,对管道中火焰传播速度和超压影响最大。点火距离的改变对火焰传播速度的影响大于对管道内超压的影响。  相似文献   

3.
为了研究障碍物结构对预混甲烷管道内火焰传播速度和峰值超压的影响,自行设计一套火焰加速系统。在火焰加速管道上安装光电传感器和压力传感器分别测定火焰传播速度和超压,试验中选取5种结构障碍物,即平板、长方体、三棱柱、四棱柱和圆柱,其阻塞比分别为20%,40%和60%3种。研究结果表明:初始阶段障碍物阻碍火焰传播,当火焰越过障碍物后,障碍物能显著加速火焰传播。随着阻塞比增加,相同结构障碍物的火焰传播速度总体上不断增加,而峰值超压先变大后减小。相同阻塞比下,平板、三棱柱对火焰传播速度和超压影响相对较大;长方体居中;圆柱、四棱柱对增加火焰传播速度和超压作用相对较小。较小阻塞比障碍物管道内超压与无障碍物管道中的超压相比显著增加,但此后,管道中超压随阻塞比变化不明显。  相似文献   

4.
路长  李毅  潘荣锟 《火灾科学》2015,24(2):68-74
为研究管道截面对氢气/空气预混火焰形状与传播速度的影响,选用三个长度都为1m而截面尺寸不同的方形管道进行实验。实验结果表明,在截面为80mm×80mm的管道中,四种氢气浓度下预混火焰都发展形成了郁金香火焰。火焰传播速度呈现上升,下降,再上升的波动。在截面为100mm×100mm和150mm×150mm的管道中,只有在氢气浓度20%下形成郁金香火焰,并且传播速度也出现上述的波动。而在氢气浓度25%,30%,40%下,预混火焰都呈指尖形传至管口,未出现郁金香火焰,传播速度都是不断上升。三个管道对比中,截面为100mm×100mm的管道内火焰平均传播速度最快,且压力波第一峰值最大。  相似文献   

5.
为了进一步探究瓦斯煤尘耦合爆炸火焰的传播规律,用自行搭建的半封闭垂直管道爆炸试验系统,研究障碍物对瓦斯煤尘耦合爆炸火焰传播规律的影响。研究结果表明:障碍物能显著提高瓦斯煤尘爆炸火焰的传播速度,其加速机理主要是障碍物诱导的湍流区会促进火焰的传播;火焰在传播过程中的加速度不是一直增加,随着火焰速度的增加会出现上下波动;煤尘的加入会使瓦斯爆炸产生的火焰传播速度显著增大及速度的最大值距离点火端较远;通过障碍物时爆炸产生的火焰形状发生较大的改变,出现拉伸和褶皱现象。  相似文献   

6.
管道内可燃气体火焰传播与障碍物相互作用的过程的研究对爆炸场所预估和防爆工程设计具有重要的意义,在实际生产、生活中,火焰传播方向上的障碍物往往具有立体结构,基本没有平面结构,因此,利用长管密闭容器,在立体障碍物存在的条件下,研究了瓦斯爆炸压力和火焰传播速度。研究结果表明:随着障碍物数量的增加,瓦斯爆炸压力和火焰传播速度随之增大;阻塞率增加,瓦斯爆炸压力和火焰传播速度出现先增大后减小的现象,当阻塞率为50%时,其爆炸压力和火焰传播速度达到最大;障碍物的摆放形式对瓦斯爆炸压力和火焰传播速度也有一定的影响。  相似文献   

7.
障碍物场中预混燃烧火焰的数值模拟   总被引:4,自引:0,他引:4  
利用k-ε湍流模型和拉切滑(SCASM)预混燃烧模型,对障碍物场中预混燃烧火焰进行了三维空间数值模拟。通过对控制方程添加不同的源项以反映障碍物对流场的影响,采用交错网格控制容积法将计算区域进行离散,用SIMPLE算法求解离散控制方程。模拟结果表明,障碍物的存在改变了燃烧流场的结构,成为加速燃烧甚至诱导爆炸过程的不稳定因素。该研究结果对有效预测障碍物场中火焰走势及其流场的分布情况,加强人们对火焰传播规律的认识,对预防工业灾害有重要参考价值。  相似文献   

8.
基于有障碍物氢气燃烧实验装置进行数值模拟研究,采用Fluent软件分析了半开口管道内障碍物对氢气/空气燃烧特性的影响。结果表明:障碍物会促进实验管段内氢气火焰加速,随着障碍物阻塞率和数量的增加,火焰加速更快且燃烧压力峰值更大;在相同阻塞率下,障碍物形状对氢气火焰速度和燃烧压力峰值的影响很小;燃烧压力随障碍物间距的增大先增大后减小,障碍物间距为3倍管道内径时产生的燃烧压力峰值最大。  相似文献   

9.
为了研究水平管道内障碍物数量对瓦斯爆炸的影响,利用自制的水平管道式气体爆炸试验装置,选用阻塞率为60%的圆环型障碍物,在常温常压下对管道内障碍物数量分别为1片、3片、5片和7片时瓦斯(试验气体为甲烷与空气的混合物,下同)爆炸过程进行试验研究。结果表明:瓦斯的爆炸压力及其上升速率均随障碍物数量的增加呈先增后减的变化规律,而火焰传播速度则随着障碍物数量的增加单调递增,但递增幅度逐渐减小。在密闭置障管道内瓦斯的爆炸压力及其上升速率随测试位置长径比的增大先减小后增大,而火焰传播速度则随测试位置长径比的增大单调递减。  相似文献   

10.
为研究多孔材料对封闭管道内甲烷-空气预混气体火焰传播的影响,设计加工了横截面积为80 mm×80 mm的方形试验管道,运用自发光拍摄技术和动态压力传感器对甲烷-空气预混火焰在该管道内传播过程中形状变化和压力特性进行了实验研究。结果表明,在管道尾部放置3种不同材质的多孔材料时,其对爆炸压力均有一定的抑制作用,聚氨酯泡沫对管道内压力的衰减效果优于聚苯乙烯泡沫和自制泡沫材料。对压力曲线进行一次求导,得出了压力变化速率,结果与空管道实验相比,在放置多孔材料的管道内压力降低的速率更快,时间更短。  相似文献   

11.
以甲烷/空气为研究对象,建立小尺寸管道气体爆炸实验平台,利用高速纹影技术,探测了泄爆过程中预混气体火焰在管道内的传播特性,并得出流场压力、火焰传播速度变化曲线;同时建立k-ε模型,对管道内甲烷/空气预混气体泄爆过程进行模拟,得到数值模拟情况下的流场压力和火焰传播速度变化曲线.模拟图像和实验图像变化趋势大体一致.  相似文献   

12.
为提供煤尘爆炸事故预防和缓解所需的科学依据,对煤尘爆炸火焰传播过程进行试验研究。所用试验装置,其主要部分为直径0.3 m的圆形管道与断面边长为80 mm的方形管道对接形成的一个长2 m的爆炸腔体。在其中共进行9次煤尘爆炸试验。结果表明,煤尘爆炸火焰传播具有速度快,波动大,稳定性较差的特点,火焰区长度远大于扬尘区长度,最大火焰速度和传播距离与煤尘量均不存在正比例关系,但存在一个特定的煤尘质量浓度。在这个特定质量浓度处,最大火焰速度达到最大值。当煤尘质量浓度大于这个特定质量浓度时,火焰传播速度曲线整体下降,暂时缺氧被认为是导致这一情况的重要因素。  相似文献   

13.
为进一步开发煤矿井下瓦斯爆炸事故的隔抑爆技术装备,利用截面为0.2 m×0.2 m的方形管道、纹影仪和高速摄像机,开展无障碍物时和球形障碍物存在情况下的瓦斯爆燃传播试验.研究发现,无障碍物时,密闭管道内爆燃火焰的结构和传播速度受反射压力波的影响很大,湍流火焰、化学反应作用能力与反射压力波的相互作用是造成火焰传播速度变化...  相似文献   

14.
为深入了解核电厂横向多层电缆桥电缆火灾,针对横向多层电缆火焰撞击障碍物形成的溢流火焰融合现象开展试验研究.试验分别在10、14、28、42、56和84 kW等不同火焰热释放速率(HRR)和0.1、0.2、0.3、0.4和0.5m等不同挡板-燃烧器距离条件下进行.对比分析不同工况下的火焰间歇概率图,引入火焰融合概率来描述...  相似文献   

15.
为了研究不同形状障碍物对瓦斯爆炸传播的影响机理,对直径0.2 m、长6.5 m的密闭直管道内的瓦斯爆炸过程进行数值模拟。研究结果表明:在该实验条件下,对于火焰通过整个管道的时间,方形障碍物时间最长,球形障碍物与无障碍物时间接近,且用时最短;无障碍物时,在反射压力波作用下火焰传播速度存在明显的波动特性;有障碍物时,障碍物的诱导作用要大于反射压力波的作用,火焰传播的这种波动特性得到抑制,提升了火焰前锋向未燃区域传播的能力;压力波的波动频率与气流震荡、压力波反射叠加有关,波幅则主要与正向压力波和反射压力波的叠加效果有关。研究结果为煤矿瓦斯爆炸事故防治及隔抑爆技术应用提供技术支撑。  相似文献   

16.
为研究管道内氢气与空气预混气体的爆炸规律,使用尺寸为150 mm×150 mm×1000 mm的方形透明管道,通过试验观测了氢气体积分数从10%到40%的爆炸火焰形状、传播速度与压力变化规律。火焰传播与压力分别由高速摄像机与压力传感器记录测量。结果表明,爆炸火焰特征及压力变化受氢气体积分数的影响很大。火焰在管道内的最大传播速度及压力峰值随氢气体积分数增大而急剧增大。最大火焰传播速度由18.3 m/s增大到304.2 m/s,传播时间由123.5ms缩短到10.5 ms。压力峰值由2.95 k Pa增大到34.06 k Pa。当氢气体积分数为25%及以上时,火焰速度持续上升,没有出现郁金香火焰,压力波先出现短时间强烈正负压振荡,后长时间微小振荡。火焰特征、传播速度、压力变化及爆炸响声均能够很好地反映氢气爆炸的强度。  相似文献   

17.
为研究惰性气体抑制瓦斯爆燃火焰传播特性,在自行搭建的中尺度爆炸激波管道上,采用数据采集系统、压电式传感器、火焰传感器、同步控制系统和激光纹影测试系统,通过对比4种不同喷射压力(0.5,1.5,2.5,3.5 MPa)的实验工况,选用N2做为惰性介质时抑制火焰的传播特性与喷射压力密切相关,火焰传播速度随着喷射压力增加呈现先增加后减弱的趋势。研究结果表明:少量N2在管道中扩散,加剧了未反应预混气体的扰动状态,造成火焰阵面褶皱的卷吸能力增强,进而加速化学反应进程,促进预混气体燃烧;喷射压力为1.5 MPa时,火焰阵面拉升、变形最强,火焰传播速度提高,最高可达到250 m/s;喷射压力为3.5 MPa时,火焰阵面出现明显三维凹陷结构,运动发生明显滞后现象,火焰传播速度大幅度降低至5.4 m/s,惰性气体抑制火焰传播效果明显。  相似文献   

18.
采用高速照相机记录火焰传播过程,并运用ProAnalyst软件分别对微乳化柴油的主火焰高度和闪火焰传播速度进行了测量和追踪分析。结果表明:各时刻的微乳化柴油主火焰均不是连续的,呈现“跳跃式”传播,并且主火焰的最大高度显著小于-10PD 的主火焰最大高度;微乳化柴油火焰传播的平均速度以及最大瞬时速度均远小于-10PD ,而 HS -10火焰传播的平均速度以及最大瞬时速度在3种不同含水量的微乳化柴油中也均为最小。微乳化柴油的阻燃防火性能明显优于-10PD 的主要原因是其中的水分对火焰燃烧产生了较强的抑制作用。  相似文献   

19.
为探究煤尘对甲烷爆燃火焰的直观影响,在定容燃烧弹(Constant Volume Chamber, CVC)内利用激光纹影技术获取了甲烷球形火焰纹影图像及含煤尘甲烷火焰纹影图像,分析了不同体积分数甲烷火焰(6.5%、8.0%、9.5%)的不稳定性,对比了不同质量浓度煤尘(5 g/m3、10 g/m3、15 g/m3、20 g/m3、25 g/m3)对甲烷火焰的影响,分析了含煤尘甲烷火焰传播机理。结果表明,定容燃烧弹内球形火焰发展经历了层流火焰、胞状不稳定火焰。煤尘对甲烷火焰的影响呈明显的阶段特性:在层流燃烧阶段,煤尘因吸热抑制火焰传播,且煤尘质量浓度越高,抑制作用越强;散布的煤尘可对火焰锋面产生扰动,使火焰加快发展为胞状不稳定火焰,且甲烷体积分数越接近化学当量比,煤尘质量浓度越高,火焰可更快发展为胞状不稳定火焰;随着化学反应速率提高,火焰温度上升,煤焦开始参与反应并增强流场自发光及反应持续时间。  相似文献   

20.
小型管道中瓦斯爆炸火焰传播特性的实验研究   总被引:2,自引:7,他引:2  
自行设计了内径88mm、壁厚6mm、总长1600mm、点火孔20mm的小型瓦斯爆炸实验管道,结构简单、操作方便,具有可观察性。采用高速摄录分析系统,对不同浓度瓦斯爆炸初期火焰传播特性进行了实验研究。结果表明:瓦斯爆炸初始阶段,火源引爆瓦斯到形成明显的、大强度的火焰传播的时间约为10~30ms;随着瓦斯浓度增大,爆炸感应期逐渐变短;瓦斯爆炸的火焰传播有一个突变过程,瓦斯浓度越大,达到突变的时间越短;当燃烧波在开始移动到5~10倍巷道宽度距离后,便开始明显加速,达到爆燃;当瓦斯爆炸火焰冲出管道时,爆炸火焰速度又一次加快。实验结果验证了该实验台研究瓦斯爆炸是可行的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号