首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Temperature and salinity affected both length of larval development and mortality inNecora puber collected in the Ría de A Coruña during December 1984 and January 1985. Development time decreased considerably with increased temperature. This decrease was sharper when temperature increased from 15° to 20°C than when it increased from 20° to 25°C. At 35S, average development took 48, 32 and 28 d at 15°, 20° and 25°C, respectively. At the three salinities tested (25, 30 and 35), larval development was completed only at 15°C, at 20°C/30 and 35S, and at 25°C/35S. Development times at 15° and 20°C were highly significantly different at both 35 and 30S (P 0.01). However, there were no significant differences between development times at 20° and 25°C (P > 0.05). Within any one specific temperature series, no significant difference was observed between the salinity values tested (P > 0.05). The duration of each of the five zoeal stages was similar within each and the same temperature/salinity combination, whereas the duration of the megalop was twice as long as any of the zoeal stages. The combination of the lowest temperature (15°C) and the highest salinity (35) tested resulted in the greatest larval survival of 28%. Highest mortality occurred at 25°C, at which temperature development was completed only at 35S. A sharp drop in larval survival was observed in the transition period Zoea V — megalop in all combinations of temperature and salinity tested. Within the limits of tolerance to temperature and salinity, the former effected more pronounced differences in the duration of larval development, while salinity appeared to constitute a limiting factor for survival.  相似文献   

2.
Larvae of Lithodes antarcticus Jacquinot were reared in October, 1981 from hatching to the glaucothoe stage at 16 temperature/salinity combinations (5.5°; 7.5°; 9.5° and 13.5°C; 26, 29, 32 and 35 S) to determine optimal environmental conditions for larval development. The highest survival percentage was obtained in the culture at 7.5°C and diminished according to temperature increase or decrease. High temperature cultures significantly shorten the larval life duration, but produce large mortalities. At 5.5°C mortality occurred almost exclusively during the moult to glaucothoe stage. Higher survival percentages were obtained as salinity was increased. In the lowest salinity culture (26 S) no zoea reached the post-larvae stage at culture temperatures. The best T/S combination was obtained at 7.5°C and 35 S, with a survival percentage of 29%. The shortest zoeal developments were obtained at 32 S in all culture temperatures. Salinity also affects larvae coloration: there is a pigment concentration on erythrophores, which causes a color decrease.  相似文献   

3.
The survival of Orchestia chiliensis (Milne Edwards, 1840) was investigated at salinities between 0.3 and 68 and constant or 10 C° cyclic temperatures between 5° and 25° C. Mortality increased with age, temperature and at salinity extremes. Small individuals show little seasonal acclimatisation apart from increased thermal tolerance at the highest exposure temperature. Larger individuals show a lateral shift in the mortality curve to the right in summer, giving increased survival at most salinities. Salinity had less effect on amphipods in cyclic regimes and survival was similar in 5° to 15° C and 10° to 20° C cycles. Mortality of larger individuals was higher in the 15° to 25° C cycle, but seasonal acclimatisation gave increased resistance at all fluctuating temperatures during the summer. Mortality in cyclic temperatures was higher than at similar constant temperatures. O. chiliensis does not actively evade immersion and diel temperature changes of 10 C° represent an important stress factor. This would affect all life stages and influence field populations both in the winter and the summer.  相似文献   

4.
Larvae of Rhithropanopeus harrisii (Gould) were reared from hatching to the first or second crab stages in 11 combinations of salinities and cyclic temperatures (5, 20, and 35 S at 20° to 25°C, 25° to 30°C, and 30° to 35°C; 25 S at 20° to 25°C and 30° to 35°C). The larvae survived to the megalops and first crab stages in all salinities and cycles of temperature other than 5 S at 30° to 35°C. The best survival to the megalops (94%) and first crab (90%) stages occurred in 20 S, 20° to 25°C. In all other combinations of salinities and temperatures there was a reduction in survival to the first crab stage. The duration of the larval stages was affected significantly by temperature, whereas the effect of salinity on the mean days from hatching to the first crab stage was not consistent at the different temperature cycles. Development to the first crab stage required the shortest time in 20 S, 30° to 35°C (mean 12.3 days), and the longest time in 5 and 35 S, 20° to 25°C (mean 22.6 days and 21.6 days, respectively). Megalops larvae reared in 35 S at all cycles of temperature, as well as larvae in 20 and 25 S, 30° to 35°C, showed a high percentage of abnormality, with the highest percentage occurring in 35 S, 30° to 35°C. It appears that larval development of R. harrisii is strongly influenced by environmental factors and not solely related to genetic differences.This research was supported by grants from the Nordic Council for Marine Biology and the U.S. Atomic Energy Commission [Grant No. At-(40-1)-4377].Contribution No. 116, Zoological Museum, University of Oslo, Norway.  相似文献   

5.
E. His  R. Robert  A. Dinet 《Marine Biology》1989,100(4):455-463
The combined effects of temperature, salinity and nutrition on survival and growth of larvae of the Mediterranean mussel Mytilus galloprovincialis and the Japanese oyster Crassostrea gigas were studied over a period of 7 d in the laboratory. Ripe adults, collected in spring and summer 1987 from natural populations in the Bay of Arcachon, France, were induced to spawn. Larvae of both species were cultured at four temperatures (15°, 20°, 25° and 30°C), four salinities (20, 25, 30 and 35S) per temperature, and two levels of nutrition (fed and unfed) per temperature/salinity combination. The fed larvae received a mixed algal diet of 50 cells each of Isochrysis galbana and Chaetoceros calcitrans forma pumilum per microlitre. In both bivalve species, larvae survived over a wide range of temperature and salinity, with the exception of mussel larvae, which died at 30°C. Statistical analysis indicated that nutrition had the greatest effect on larval development, explaining 64 to 75% of the variance in growth of M. galloprovincialis and 54 to 70% in growth of Crassostrea gigas. Unfed mussel larvae displayed little growth. Compared with temperature, the effect of salinity was very slight. M. galloprovincialis larvae exhibited best growth at 20°C and 35S and C. gigas at 30°C and 30S.  相似文献   

6.
Larvae of the bivalve molluso Adula californiensis (Phillippi, 1847) were reared for 3 days, from fertilization to veliger stage, at optimum conditions (15°C, 32.2 S), and then transferred to experimental temperatures and salinities for 22 more days to determine the effects of these factors on survival and growth. For larvae surviving to 25 days, maximum survival was estimated, by response-surface techniques, to occur at temperatures below 10°C and at salinities above 25. A comparison of 60% survival response contours for 3, 15 and 25-day old larvae indicated a progressive shift in temperature and salinity tolerance with age of larvae. The older larvae became more tolerant to reduced salinity, but less tolerant to high temperatures. Growth of the larvae over 25 days of culture was slight, and relatively independent of temperature and salinity conditions found in the environment. Oxygen consumption of 3-day old veliger larvae measured at various combinations of temperature and salinity generally increased from 7° to 18°C, and then sharply decreased from 18° to 21°C. A plateau of oxygen consumption from 9° to 15°C at 32.9 S indicated that the larvae are adapted to oceanic rather than estuarine conditions. A comparison of 25-day larval survival, mean length, and growth, with oxygen consumption of 3-day old veliger larvae indicated that high temperatures (15°C, and above) coupled with reduced salinities (26.1, and below) were unfavorable for prolonged larval life. Because of the lack of larval adaptations to estuarine conditions, larva survival and, hence, successful recruitment of this species within Yaquina Bay (Oregon, USA) depends upon the essentially oceanic conditions found only during the summer in the lower part of the Bay.  相似文献   

7.
The developmental stages from megalopa to third crab of the blue crab Callinectes sapidus Rathbun were tested in 12 combinations of cadmium (0, 50, and 150 ppb) and salinity (10, 20, 30, and 40) at 25°C. A reduction in survival and a significant delay in development from megalopa to third crab occurred within each salinity regime in 50 ppb compared with the control. Comparison of the delay in development within each salinity regime revealed that the sublethal effect of cadmium was most pronounced in the salinities normally preferred by C. sapidus. A similar comparison within each cadmium concentration, however, showed that the developmental time from megalopa to third crab was approximately the same irrespective of salinity. The developmental stages from hatch to first crab of the mud-crab Rhithropanopeus harrisii (Gould) were examined in 63 combinations of cadmium (0, 50, and 150 ppb), salinity (10, 20, and 30), constant temperature (20°, 25°, 30°, and 35°C) and cycling temperature (20° to 25°C, 25° to 30°C, and 30° to 35°C). The results indicated that cycling temperatures may have a stimulating effect on survival of the larvae compared to constant temperatures, both in the presence and in the absence of cadmium. Effects of cadmium and salinity and their interaction on the survival of the larvae from zoeae to megalopa were documented at most of the temperatures by analyses of variance. The zoeal larvae were more susceptible to cadmium than the megalopa. Effects of different combinations of cadmium and salinity on the duration of larval development were assessed by a t-test.  相似文献   

8.
E. E. Deason 《Marine Biology》1980,60(2-3):101-113
Grazing experiments were performed with temperatureacclimated Acartia hudsonica fed the diatom Skeletonema costatum in concentrations ranging from 50 to 3×104 cell ml-1 at 5°, 10° and 15°C. The ingestion data were best fit by an Ivlev equation. Feeding threshold values of 39 and 59 cells ml-1 were not significantly different from zero; however, filtration rates were depressed at low food concentrations. Maximum filtration rates increased exponentially with temperature, reaching a maximum with copepods collected at 14°–15°C, and then declining. Both the increase in ingestion rate with increasing food concentration and the maximum ingestion rate were significantly greater as experimental temperature was increased. Maximum ingestion rates were reached at concentrations greater than 6×103 cells ml-1. Percent of body carbon ingested per day at 5 g C L-1 increased from 1.5% at 5°C to 6.7% at 15°C. At 500 g C L-1, the ingestion increased from 84% (5°C) to 660% (15°C). Percent of body nitrogen at 0.5 g N L-1 increased from 0.6% per day at 5°C to 2.5% per day at 15°C. At 50 g N L-1, the ingestion was 42% body nitrogen at 5°C and 250% at 15°C. The influence of grazing by A. hudsonica on phytoplankton in Narragansett Bay, USA was estimated for 1972–1977. The percent of standing stock removed by grazing rarely exceeded 5% per day except during the late spring when S. costatum growth becomes nutrient limited and higher temperatures favor the rapid population growth of A. hudsonica.  相似文献   

9.
Temperature is one of the most critical environmental factors for fish ontogeny, affecting the developmental rate, survival and phenotypic plasticity in both a species- and stage-specific way. In the present paper we studied the egg and yolk-sac larval development of Pagellus erythrinus under different water temperature conditions, 15°C, 18°C and 21°C for the egg stage and 16°C, 18°C and 21°C for the yolk-sac larval stage. The temperature-independent thermal sum of development was estimated as 555.6 degree-hours above the threshold temperature (the temperature below which development is arrested), i.e. 7°C for the egg and 12.1°C for the yolk-sac larval stage. Higher hatching and survival rates occurred at 18–21°C. At the end of the yolk-sac larval stage, body morphometry differed significantly (p<0.05) between the temperatures tested. The growth rate of the total length increased as temperature rose from 16°C to 18°C, while in the range of 18–21°C it stabilized and was independent of water temperature. The estimated Gompertz growth curve for the yolk-sac larvae of P. erythrinus was (r2=0.992) for the 16°C, (r2=0.991) for the 18°C and (r2=0.981) for the 21°C treatment. The efficiency of vitelline utilization during the yolk-sac larval stage was higher at 18°C.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

10.
Chondrus crispus (Stackhouse) is a perennial red seaweed, common in intertidal and shallow sublittoral communities throughout the North Atlantic Ocean. In the intertidal zone, C. crispus may experience rapid temperature changes of 10 to 20C° during a single immerison-emerision cycle, and may be exposed to temperatures that exceed the thermal limits for long-term survival. C. crispus collected year-round at Long Cove Point, Chamberlain, Maine, USA, during 1989 and 1990, underwent phenotypic acclimation to growth temperature in the laboratory. This phenotypic acclimation enhanced its ability to withstand brief exposure to extreme temperature. Plants grown at summer seawater temperature (20°C) were able to maintain constant rates of lightsaturated photosynthesis at 30°C for 9 h. In contrast, light-saturated photosynthetic rates of plants grown at winter seawater temperature (5°C) declined rapidly following exposure to 30°C, reached 20 to 25% of initial values within 10 min, and then remained constant at this level for 9 h. The degree of inhibition of photosynthesis at 30°C was also dependent upon light intensity. Inhibition was greatest in plants exposed to 30°C in darkness or high light (600 mol photons m-2s-1) than in plants maintained under moderate light levels (70 to 100 mol photons m-2s-1). Photosynthesis of 20°C-acclimated plants was inhibited by exposure to 30°C in darkness or high light, but the degree of inhibition was less than that exhibited by 5°C-grown plants. Not only was light-saturated photosynthesis of 20°C plants less severely inhibited by exposure to 30°C than that of 5°C plants, but the former also recovered faster when they were returned to growth conditions. The mechanistic basis of this acclimation to growth temperature is not clear. Our results indicate that there were no differences between 5 and 20°C-grown plants in the thermal stability of respiration, electron transport associated with Photosystems I or II, Rubisco or energy transfer between the phycobilisomes and Photosystem II. Overall, our results suggest that phenotypic acclimation to seawater temperature allows plants to tolerate higher temperatures, and may play an important role in the success of C. crispus in the intertidal environment.  相似文献   

11.
The influence of 49 combinations of salinity (10–40 S, at 5 S intervals) and temperature (0°–30°C, at 5C° intervals) on the maximum daily division rate (K) and 18 combinations of light intensity (six levels) and temperature (5°, 15°, and 25°C) on photosynthesis, cell division, and chlorophyll a was examined using two clones of Thalassiosira rotula Meunier isolated from the upwelling area of Baja California (clone C8) and from Narragansett Bay, Rhode Islands (clone A8). Physiological differences appear to characterize these to clones with regard to their temperature tolerance (C8 5°–30°C, A8 0°–25°C), maximum growth rate (C8 K=2.9, A8 K=2.4), chlorophyll a content, and in the rates of growth and photosynthesis in response to light intensity and temperature. Optimum salinity for both clones (25–30 S) was generally independent of temperature, while chlorophyll a content decreased with temperature. T. rotula is a cosmopolitan paractic species; experimental studies indicate that it is eurythermal and moderately euryhaline. Comparison of five additional Narragansett Bay isolates of T. rotula reveal minimal spacial or temporal variability in genetically determined physiological characteristics within this local population.  相似文献   

12.
M. Nagaraj 《Marine Biology》1988,99(3):353-358
The calanoid copepodEurytemora velox was collected from rock pools at Castletown, Isle of Man, UK. Its optimum environmental requirements, particularly temperature and salinity, were determined, with a view to its possible future use as living food in intensive fish and shellfish farming. The species was cultured in 21 different temperature and salinity combinations. Investigations covered a period of two years from December 1983 to December 1985. Complete development from hatching to adult stage was followed in 21 temperature and salinity combinations. Nauplii suffered relatively high mortalities, indicating the sensitivity of this development stage to variations in temperature and salinity. Highest nauplii survival was observed in the combinations 15°C with 25 and 20 S and 20°C with 20 S, the highest copepodite survival at 10°C and 20 S. Lower salinities were tolerated better at higher temperatures and higher salinities at lower temperatures. Development time varied with the temperature and salinity combinations. Lower salinities at the lower temperatures of 10° and 15°C and both lower and higher salinities at 20°C prolonged development, particularly of the naupliar stage. Highest Q5 values (i.e., rate of change of development with a 5 C° increase in temperature) were recorded for the naupliar stage. Statistical analysis indicated that salinity influences the survival of both nauplii and copepodites; however, this effect is not linear.  相似文献   

13.
A. C. Anil  J. Kurian 《Marine Biology》1996,127(1):115-124
Influence of food concentration (0.5, 1 and 2 x 105 cell ml–1 ofSkeletonema costatum), temperature (20 and 30°C) and salinity (15, 25 and 35) on the larval development ofBalanus amphitrite (Cirripedia: Thoracica) was examined. The mortality rate at 20°C was lower than at 30°C in general. Increase in food concentration from 0.5 to 1 x 105 cells ml–1 improved the survival rate, but this was not evident when food concentration was increased to 2 x 105 cells ml–1. The results indicate that food availability and temperature jointly determine the energy allocation for metamorphic progress. It was observed that the influence of the tested variables varied with instar. At 20 °C the mean duration of the second instar exceeded 3 d and was much longer than other instar durations. The fourth, fifth and sixth instars and the total naupliar period showed that the effect of different salinities at given food concentrations was negligible at 20°C, while at 30°C there was a marked decrease in duration with increasing salinity.  相似文献   

14.
Larvae of the estuarine grass shrimp Palaemonetes pugio (Holthuis) were reared from hatch through successful completion of metamorphosis in 80 combinations of salinity (3 to 31%), temperature (20° to 35°C), and zinc (0.00 to 1.00 ppm Zn++). Response-surface methodology was employed to depict the individual effects and interactions of the three factors on survival and developmental duration through total larval development. Outside the optimal salinity-temperature conditions of 17 to 27 S and 20° to 27°C, viability of larvae was reduced by both the individual effects of salinity and temperature and interactions between the two factors. Survival capacity of larvae and resistance adaptations to salinity and temperature were progresively reduced by zinc concentrations from 0.25 to 1.00 ppm Zn++. Response-surface analysis of the data suggested that the duration of total larval development of P. pugio was least at salinities from 18 to 23 and at temperatures from 30° to 32°C. At both higher and lower salinity-temperature conditions and in increasing zinc concentrations from 0.25 to 1.00 ppm Zn++, developmental rates were retarded. A significant zinc-temperature interaction existed, whereby increasing zinc concentrations reduced both survival and developmental rates of larvae more at suboptimal temperatures. Larval resistance to zinc toxicity was least at supraoptimal salinities, indicative of a significant zinc-salinity interaction. The reduced viability, restricted euryplasticity, and retarded developmental rates of P. pugio larvae developing in media with low-level zinc contamination would limit the distributive properties of the pelagic phase in the life cycle of the species and reduce recruitment both into and out of the parent estuarine population.  相似文献   

15.
Adult Patiriella pseudoexigua were collected in October 1989 from Wanlitung, Taiwan and then induced to spawn in the laboratory. Post-metamorphosed juvenile P. pseudoexigua were reared on a diet of benthic algae Navicula sp. at 25°C and salinity (34). Six weeks after metamorphosis, juvenile P. pseudoexigua at ca. 400 m in radius were reared on a diet of benthic algae Navicula sp. at different combinations of temperatures (20, 25, 30°C) and salinities (26, 30, 34) for 40 d. Both temperature and salinity had a significant effect on juvenile survival and growth. Juveniles survived best (>90%) at 25°C and 34 and grew best (to ca. 750 m in radius) at 30°C and 34. Variation in juvenile size was small immediately after metamorphosis and increased with time.  相似文献   

16.
Adults of the sea urchin Arachnoides placenta (L.) were induced to spawn, and eggs were fertilized at 28°C in September 1989. After 5 min, eggs were transferred to 28, 31, 34, or 37°C and reared to metamorphosis. Embryos were observed at 20-min intervals during the first 2 h; larvae were observed daily. The cleavage was higher at higher temperatures. Embryos reared at 28°C were still at the 4th cleavage (16-cell stage) after 100 min, while those at 34°C had reached the 5th cleavage (32-cell stage). All embryos reared at 37°C died on the second day. Incidence of abnormality was 20 to 30% at 28 and 31°C, 48% at 34°C, and 77% at 37°C. The 8-arm stage was reached after 4 d at 28°C, 3 d at 31°C and 2 d at 34°C. Larvae displayed decreasing body length and arm length with increasing temperature. Larvae at 31°C have relatively long arms, as a result of a decrease in body length, not because of increased arm length. Incidence of metamorphosis was 43.9±1.7% (mean/plusmn;SD) at 28°C, 24.5±1.9% at 31°C, and 5.3% at 34°C. The size of metamorphosed juveniles was significantly larger at 28°C than at 31 and 34°C. Temperatures of 31°C negatively affect larvae and juveniles of the sand dollar.  相似文献   

17.
The combined effects of salinity and temperature on survival and growth of larvae of the mussel Mytilus edulis (L.) were studied. The effects of salinity and temperature are significantly related only as the limits of tolerance of either factor are approached. Survival of larvae at salinities from 15 to 40 is uniformly good (70% or better) at temperatures from 5° to 20°C, but is reduced drastically at 25 °C, particularly at high (40) and low (20) salinities. Larval growth is rapid at a temperature of 15 °C in salinities from 25 to 35, at 20 °C in salinities from 20 to 35. Optimum growth occurs at 20 °C in salinities from 25 to 30. Growth decreases both at 25° and 10 °C; the decline is most drastic at high (40) and low (20) salinities.Part of a study completed at the Bureau of Commercial Fisheries, Biological Laboratory, Milford, Connecticut, USA, while on a UNESCO Fellowship.  相似文献   

18.
Effects of the juvenile hormone (JH) mimic hydroprene (Altozar®: ZR-512), which exhibits high activity against Lepidoptera, were studied on the larval development of the mud-crab Rhithropanopeus harrisii (Gould) (Brachyura: Xanthidae). Larvae reared in 20 S at 3 cycles of temperature of 20° to 25°C, 25° to 30°C and 30° to 35°C, were exposed to 0.01, 0.1 and 0.5 ppm hydroprene from hatching to the first crab stage. Larvae were also exposed to 0.1 and 0.5 ppm hydroprene only from the megalopa stage to the first crab stage. When larvae were treated with hydroprene throughout larval life, survival was significantly reduced with increasing concentrations of the compound at all temperature cycles. Synergistic effect between hydroprene and temperature on survival of zoeal larvae was not observed. On the average there was 11% less survival in the zoeal stages at the 0.01 ppm concentration. of hydroprene than in the control, an additional reduction of 13% occurred at 0.1 ppm, and finally there was a further decrease of 46% at 0.5 ppm hydroprene. Significant decrease in survival in the megalopa stage occurred only in the 0.5 ppm concentration of hydroprene at the lowest temperature cycle when larvae were exposed to the compound from hatching. When larvae were treated with hydroprene only within the megalopa stage, a significant reduction in survival was not observed. First-stage zoeae were the most sensitive of the larval stages to hydroprene. Duration of zoeal development was significantly delayed at 0.5 ppm hydroprene at the two lower temperature cycles, whereas in the megalopa stage the delay began at the 0.1 ppm level at all 3 temperature cycles when larvae were exposed to hydroprene from hatching. A significant delay was also observed at 0.1 ppm hydroprene at the two lower cycles when larvae were exposed to hydroprene only in the megalopa stage; at 30° to 35°C a significant delay was observed only at the 0.5 ppm level. The results show that metamorphosis to the first crab stage was not inhibited at the 0.5 ppm level of hydroprene or lower. Reduction in survival and increase in duration of larval development were presumably related to stress conditions caused by hydroprene. The results also suggest an interaction between temperature and hydroprene on survival of megalopa larvae and duration of larval development.  相似文献   

19.
Effects of temperature on survival, growth, and photosynthesis were compared for two USA populations of Laminaria saccharina Lamour. One population was located in New York State, near the southern latitudinal boundary of the species in the western North Atlantic. This southern boundary population was exposed to ambient temperatures 20°C for about 6 wk each summer. The second population was located in Maine, toward the center of the latitudinal range of the species, and was rarely exposed to temperatures>17°C. sporophytes from the New York (NY) population exhibited greater tolerance of high temperature than plants from the Maine (ME) site. Juvenile sporophytes from the two sites had similar rates of survivorship and growth at temperatures below 20°C, but showed different responses at 20°C in laboratory experiments. NY plants survived and grew for 6 wk at 20°C. ME plants showed negative growth during wk 2 and 100% mortality during wk 3. NY and ME plants held in situ at the NY site during June to September, 1985, also exhibited differential survivorship when ambient temperatures exceeded 20°C. Results of photosynthesis and dark respiration measurements on NY and ME plants grown at various temperatures suggested that the high-temperature tolerance of NY plants was attributable to their ability to maintain positive daily net C-fixation at 20°C. The high-temperature tolerance of the NY plants appeared to be due to genetic adaptation and is probably crucial to the persistence of the species near its southern boundary.  相似文献   

20.
Marine phytoplankton forms are frequently exposed to sudden biological changes such as rapid rise in water temperature and chlorine content of their environment, resulting from the use of sea water for cooling purposes by electric generators. The direct influence of these effluents, i.e. inhibitory effects of high temperature and residual chlorine on growth and photosynthesis of Chlamydomonas sp. and Skeletonema costatum, were investigated experimentally. Chlamydomonas sp. and S. costatum exposed to high temperatures were affected in their growth from 43° and 35°C, respectively, by immersion of the respective cultures in a warm bath for 10 min. Treatment at high temperatures of 40 °C and 30° 35°C for 10 min, influenced their photosynthetic activities, which were completely inhibited immediately after 10 min exposure at 42° and 37 °C, respectively. S. costatum was killed by chlorine at a concentration of 1.5 2.3 ppm when exposed for exactly 5 or 10 min, while Chlamydomonas sp. was not irreversibly damaged even at 20 ppm chlorine or more with the same exposure period. These results lead to the conclusion that the high temperature of, and residual chlorine in, effuents from a power plant discharging into the open sea, should not cause great damage to marine phytoplankton in that area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号