首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Freshwater management requires balancing and tradingoff multiple objectives, many of which may be competing. Ecological needs for freshwater are often described in terms of environmental flow recommendations (e.g., minimum flows), and there are many techniques for developing these recommendations, which range from hydrologic rules to multidisciplinary analyses supported by large teams of subject matter experts. Although hydrologic rules are well acknowledged as overly simplified, these techniques remain the state‐of‐the‐practice in many locations. This article seeks to add complexity to the application of these techniques by studying the emergent properties of hydrologic environmental flow methodologies. Two hydrologic rules are applied: minimum flow criteria and sustainability boundaries. Objectives and metrics associated with withdrawal rate and similarity to natural flow regimes are used to tradeoff economic and environmental needs, respectively, over a range of flow thresholds and value judgments. A case study of hypothetical water withdrawals on the Middle Oconee River near Athens, Georgia is applied to demonstrate these techniques. For this case study, sustainability boundaries emerge as preferable relative to both environmental and economic outcomes. Methods applied here provide a mechanism for examining the role of stakeholder values and tradeoffs in application of hydrologic rules for environmental flows.  相似文献   

2.
Regional municipal water plans typically do not recognize complex coupling patterns or that increased withdrawals in one location can result in changes in water availability in others. We investigated the interaction between urban growth and water availability in the Baltimore metropolitan region where urban growth has occurred beyond the reaches of municipal water systems into areas that rely on wells in low‐productivity Piedmont aquifers. We used the urban growth model SLEUTH and the hydrologic model ParFlow.CLM to evaluate this interaction with urban growth scenarios in 2007 and 2030. We found decreasing groundwater availability outside of the municipal water service area. Within the municipal service area we found zones of increasing storage resulting from increased urban growth, where reduced vegetation cover dominated the effect of urbanization on the hydrologic cycle. We also found areas of decreasing storage, where expanding impervious surfaces played a larger role. Although the magnitude of urban growth and change in water availability for the simulation period were generally small, there was considerable spatial heterogeneity of changes in subsurface storage. This suggests that there are locally concentrated areas of groundwater sensitivity to urban growth where water shortages could occur or where drying up of headwater streams would be more likely. The simulation approach presented here could be used to identify early warning indicators of future risk.  相似文献   

3.
Few quantitative studies have been done on the hydrology of fens, bogs, and mires. Consequently predicting the cumulative impacts of disturbances on their hydrologic functions is extremely difficult. For example, few data are available on the role of bogs and fens with respect to flood desynchronization and shoreline anchoring. However, recent studies suggest that very small amounts of groundwater discharge are sufficient to radically modify mire surface-water chemistry, and consequently, vegetation communities and their associated surface-water hydrology. Bogs and fens are, in a sense, hydrobiologic systems, and any evaluation of cumulative impacts will have to (1) consider the complicated and little understood interactions among wetland hydrology, water chemistry, and biota, and (2) place the effect of individual wetland impacts within the context of the cumulative impacts contributed to the watershed from other geomorphic areas and land uses.It is difficult to evaluate the potential cumulative impacts on wetland hydrology because geologic settings of wetlands are often complex and the methods used to measure wetland streamflow, groundwater flow, and evapotranspiration are inexact (Winter 1988). This is especially so for bogs, fens, and mires underlain by thick organic soils. These wetlands, found in the circumboreal areas of North America, Europe, and Asia, are major physiographic features in eastern North America, northern Europe, and Siberia (Kivenen and Pakarinen 1981, Gore 1983, Glaser and Janssens 1986). Their very scale makes it difficult to quantify the hydrologic function accurately. The hydrology of small bogs and fens found elsewhere is just as poorly understood because of conflicting conceptual models of pertinent hydrologic processes.This article (1) reviews our current understanding of the hydrologic function of bogs, fens, and mires at different scales and in different physiographic settings and (2) presents hypotheses on potential cumulative impacts on the hydrologic function that might occur with multiple disturbances.  相似文献   

4.
ABSTRACT: Riparian buffers have potential for reducing excess nutrient levels in surface water. Spatial variation in riparian buffer effectiveness is well recognized, yet researchers and managers still lack effective general tools for understanding the relevance of different hydrologic settings. We present several terrain‐based GIS models to predict spatial patterns of shallow, subsurface hydrologic flux and riparian hydrology. We then link predictions of riparian hydrology to patterns of nutrient export in order to demonstrate potential for augmenting the predictive power of land use/land cover (LU/LC) maps. Using predicted hydrology in addition to LUILC, we observed increases in the explained variation of nutrient exports from 290 sites across Lower Michigan. The results suggest that our hydrologic predictions relate more strongly to patterns of nutrient export than the presence or absence of wetland vegetation, and that in fact the influence of vegetative structure largely depends on its hydrologic context. Such GIS models are useful and complimentary tools for exploring the role of hydrologic routing in riparian ecosystem function and stream water quality. Modeling efforts that take a similar GIS approach to material transport might be used to further explore the causal implications of riparian buffers in heterogeneous watersheds.  相似文献   

5.
ABSTRACT: Although the curve number method of the Natural Resources Conservation Service has been used as the foundation of the hydrology algorithms in many nonpoint source water quality models, there are significant problematic issues with the way it has been implemented and interpreted that are not generally recognized. This usage is based on misconceptions about the meaning of the runoff value that the method computes, which is a likely fundamental cause of uncertainty in subsequent erosion and pollutant loading predictions dependent on this value. As a result, there are some major limitations on the conclusions and decisions about the effects of management practices on water quality that can be supported with current nonpoint source water quality models. They also cannot supply the detailed quantitative and spatial information needed to address emerging issues. A key prerequisite for improving model predictions is to improve the hydrologic algorithms contained within them. The use of the curve number method is still appropriate for flood hydrograph engineering applications, but more physically based algorithms that simulate all streamflow generating processes are needed for nonpoint source water quality modeling. Spatially distributed hydrologic modeling has tremendous potential in achieving this goal.  相似文献   

6.
ABSTRACT: Law and hydrology are inextricably woven together in the pattern of water resource development in the west. The former attempts to allocate a limited and valuable resource as the latter tries to define the limits of the resource. In the past an inadequate data base has made hydrologic estimates difficult and political factors have pushed the law into possibly conflicting commitments in the Colorado River Basin. Through the use of tree-ring research, hydrologists have produced a more definitive data base and placed water allocations such as the Colorado River Compact of 1922 in a clearer long-term perspective. This data base leads to the conclusion that the surface-water supply is about 13.5 million acre-feet per year. This hydrologic limit must be apportioned within an existing legal framework - the “Law of the River.” As development approaches the resource limit in the Upper Colorado River Basin, lawyers and hydrologists must act in concert toward the equitable solution of allocation and reallocation problems.  相似文献   

7.
Wetland loss alters the hydrology of wetlandscapes in poorly understood ways. To quantify the effects of wetland loss on subsurface hydrology, a physically based hydrologic model that simulates the timing and pathways of subsurface hydrologic connections was coupled with wetland inventories over a 50‐year period during which substantial wetland loss occurred. The model revealed, based on vertical variations in saturated hydraulic conductivities, wetland loss of different degrees led to a contraction of catchment contributing areas to local surface waters but an expansion of contributing areas to the regional surface water body. This shift in groundwater contributing areas reflected (1) a decrease in baseflow contribution to the local surface water bodies, and (2) an increase in the transit time and length of subsurface hydrologic connections with an associated increase in the magnitude and age of baseflow discharging to the regional surface water body. The model also showed regions with thick permeable aquifers were particularly sensitive to the loss of wetlands. Our ability to predict these changes in hydrology of the watershed provides important support for designing science‐based policies to promote sustainable water resource management.  相似文献   

8.
ABSTRACT: According to a concept known as partial area hydrology, watershed areas are separated into hydrologically active and passive subareas. The literature relating to the development of the partial area concept is reviewed briefly and the relationship of partial area hydrology to geology, soils, and micrometeorology is illustrated. The potential application of partial area hydrology is discussed with respect to present hydrologic techniques, future hydrologic models, urban hydrology, water quality, and water management. Suggestions for identifying and delineating the contributing areas are discussed.  相似文献   

9.
ABSTRACT: This paper presents a quantitative assessment framework for determining the instream flow under multiobjective water allocation criteria. The Range of Variability Approach (RVA) is employed to evaluate the hydrologic alterations caused by flow diversions, and the resulting degrees of alteration for the 32 Indicators of Hydrologic Alteration (IHAs) are integrated as an overall degree of hydrologic alteration. By including this index in the objective function, it is possible to optimize the water allocation scheme using compromise programming to minimize the hydrologic alteration and water supply shortages. The proposed methodology is applied to a case study of the Kaoping diversion weir in Taiwan. The results indicate that the current release of 9.5 m3/s as a minimum instream flow does not effectively mitigate the highly altered hydrologic regime. Increasing the instream flow would reduce the overall degree of hydrologic alteration; however, this is achieved at the cost of increasing the water supply shortages. The effects on the optimal instream flow of the weighting factors assigned to water supplies and natural flow variations are also investigated. With equal weighting assigned to the multiple objectives, the optimal instream flow of 26 m3/s leads to a less severely altered hydrologic regime, especially for those low‐flow characteristics, thereby providing a better protection of the riverine environment.  相似文献   

10.
The hydrogeomorphic (HGM) approach to wetland classification and functional assessment is becoming more widespread in the United States but its use has been limited by the length of time needed to develop appropriate data sets and functional assessment models. One particularly difficult aspect is the transferability among geographic regions of specific models used to assess wetland function. Sharing of models could considerably shorten development and implementation of HGM throughout the United States and elsewhere. As hydrology is the driving force behind wetland functions, we assessed the comparability of hydrologic characteristics of three HGM subclasses (slope, headwater floodplain, mainstem floodplain) using comparable long-term hydrologic data sets from different regions of the United States (Ridge and Valley Province in Pennsylvania and the Willamette Valley in Oregon). If hydrology by HGM subclass were similar between different geographic regions, it might be possible to more readily transfer extant models between those regions. We found that slope wetlands (typically groundwater-driven) had similar hydrologic characteristics, even though absolute details (such as depth of water) differed. We did not find the floodplain subclasses to be comparable, likely due to effects of urbanization in Oregon, regional differences in soils and, perhaps, climate. Slight differences in hydrology can shift wetland functions from those mediated by aerobic processes to those dominated by anaerobic processes. Functions such as nutrient cycling can be noticeably altered as a result. Our data suggest considerable caution in the application of models outside of the region for which they were developed.  相似文献   

11.
Abstract: We used a retrospective approach to identify hydrologic metrics with the greatest potential for ecological relevance for use as resource management tools (i.e., hydrologic indicators) in rapidly urbanizing basins of the Puget Lowland. We proposed four criteria for identifying useful hydrologic indicators: (1) sensitive to urbanization consistent with expected hydrologic response, (2) demonstrate statistically significant trends in urbanizing basins (and not in undeveloped basins), (3) be correlated with measures of biological response to urbanization, and (4) be relatively insensitive to potentially confounding variables like basin area. Data utilized in the analysis included gauged flow and benthic macroinvertebrate data collected at 16 locations in 11 King County stream basins. Fifteen hydrologic metrics were calculated from daily average flow data and the Pacific Northwest Benthic Index of Biological Integrity (B‐IBI) was used to represent the gradient of response of stream macroinvertebrates to urbanization. Urbanization was represented by percent Total Impervious Area (%TIA) and percent urban land cover (%Urban). We found eight hydrologic metrics that were significantly correlated with B‐IBI scores (Low Pulse Count and Duration; High Pulse Count, Duration, and Range; Flow Reversals, TQmean, and R‐B Index). Although there appeared to be a great deal of redundancy among these metrics with respect to their response to urbanization, only two of the metrics tested – High Pulse Count and High Pulse Range – best met all four criteria we established for selecting hydrologic indicators. The increase in these high pulse metrics with respect to urbanization is the result of an increase in winter high pulses and the occurrence of high pulse events during summer (increasing the frequency and range of high pulses), when practically none would have occurred prior to development. We performed an initial evaluation of the usefulness of our hydrologic indicators by calculating and comparing hydrologic metrics derived from continuous hydrologic simulations of selected basin management alternatives for Miller Creek, one of the most highly urbanized basins used in our study. We found that the preferred basin management alternative appeared to be effective in restoring some flow metrics close to simulated fully forested conditions (e.g., TQmean), but less effective in restoring other metrics such as High Pulse Count and Range. If future research continues to support our hypothesis that the flow regime, particularly High Pulse Count and Range, is an important control of biotic integrity in Puget Lowland streams, it would have significant implications for stormwater management.  相似文献   

12.
ABSTRACT: The St. Johns River Water Management District (SJR-WMD) is using a Geographic Information System (GIS) screening model to estimate annual nonpoint source pollution loads to surface waters and determine nonpoint source pollution problem areas within the SJRWMD. The model is a significant improvement over current practice because it is contained entirely within the district's GIS software, resulting in greater flexibility and efficiency, and useful visualization capabilities. Model inputs consist of five spatial data layers, runoff coefficients, mean runoff concentrations, and stormwater treatment efficiencies. The spatial data layers are: existing land use, future land use, soils, rainfall, and hydrologic boundaries. These data layers are processed using the analytical capabilities of a cell-based GIS. Model output consists of seven spatial data layers: runoff, total nitrogen, total phosphorous, suspended solids, biochemical oxygen demand, lead, and zinc. Model output can be examined visually or summarized numerically by drainage basin. Results are reported for only one of the SJRWMD's ten major drainage basins, the lower St. Johns River basin. The model was created to serve a major planning effort at the SJRWMD; results are being actively used to address nonpoint source pollution problems.  相似文献   

13.
ABSTRACT A detailed review of current methods and criteria used in parameter estimation in hydrology is presented. The effect of errors in the data set and the effect of interactions between methods of analysis, criteria, data set errors, and modeling assumptions are reviewed and discussed briefly. It is concluded that study of techniques, criteria, data set errors and particularly interactions between these, is essential to further progress in hydrologic modeling.  相似文献   

14.
Ensuring an adequate, reliable, clean, and affordable water supply for citizens and industries requires informed, long-range water supply planning, which is critically important for water security. A balance between water supply and demand must be considered for a long-term plan. However, water demand projections are often highly uncertain. Climate change could impact the hydrologic processes, and consequently, threaten water supply. Thus, understanding the uncertainties in future water demand and climate is critical for developing a sound water supply plan. In Illinois, regional water supply planning attempts to explore the impacts of future water demand and climate on water supply using scenario analyses and hydrologic modeling. This study is aimed at developing a water supply planning framework that considers both future water demand and climate change impacts. This framework is based on the Soil and Water Assessment Tool to simulate the watershed hydrology and conduct scenario analyses that consider the uncertainties in both future water demand and climate as well as their impacts on water supply. The framework was applied to water supply planning efforts in the Kankakee River watershed. The Kankakee River watershed model was calibrated and validated to observed streamflow records at four long-term United States Geological Survey streamflow gages. Because of the many model parameters involved, the calibration process was automated and was followed by a manual refinement, resulting in good model performance. Long-range water demand projections were prepared by the Illinois State Water Survey. Six future water demand scenarios were established based on a suite of assumptions. Climate scenarios were obtained from the Coupled Model Intercomparison Projection Phase 5 datasets. Three representative concentration pathways (RCPs), RCP2.6, RCP4.5, and RCP8.5, are used in the study. The scenario simulation results demonstrated that climate change appears to have a greater impact on water availability in the study area than water demand. The framework developed in this study can also be used to explore the impacts of uncertainties of water demand and climate on water supply and can be extended to other regions and watersheds.  相似文献   

15.
Abstract: This article describes the development of a calibrated hydrologic model for the Blue River watershed (867 km2) in Summit County, Colorado. This watershed provides drinking water to over a third of Colorado’s population. However, more research on model calibration and development for small mountain watersheds is needed. This work required integration of subsurface and surface hydrology using GIS data, and included aspects unique to mountain watersheds such as snow hydrology, high ground‐water gradients, and large differences in climate between the headwaters and outlet. Given the importance of this particular watershed as a major urban drinking‐water source, the rapid development occurring in small mountain watersheds, and the importance of Rocky Mountain water in the arid and semiarid West, it is useful to describe calibrated watershed modeling efforts in this watershed. The model used was Soil and Water Assessment Tool (SWAT). An accurate model of the hydrologic cycle required incorporation of mountain hydrology‐specific processes. Snowmelt and snow formation parameters, as well as several ground‐water parameters, were the most important calibration factors. Comparison of simulated and observed streamflow hydrographs at two U.S. Geological Survey gaging stations resulted in good fits to average monthly values (0.71 Nash‐Sutcliffe coefficient). With this capability, future assessments of point‐source and nonpoint‐source pollutant transport are possible.  相似文献   

16.
ABSTRACT: Selected studies from the literature were reviewed to determine the extent of knowledge about the relationship between hydrology and wetland ecosystem studies. Wetland studies of chemical input-output relationships have been the most dependent on hydrologic data of all wetland investigations; yet, very few of these studies have attempted to measure all components of a wetland's water balance. Usually, unmeasured components were calculated as the difference between measured inputs and outputs. Ground water frequently was overlooked. Chemical input-output investigations primarily were concerned with determining the amount of input retained in the wetlands. Few studies also included direct measurement of biogeochemical processes within wetlands of elements that were part of simultaneous input-output investigations. The importance of uncertainties in chemical budgets that are due to uncertainties in hydrologic budgets has been addressed in very few wetland investigations. Although many studies have emphasized the importance of hydrology to wetland ecosystem research, few studies have documented this, so that hydrology remains one of the least understood components of wetland ecosystems.  相似文献   

17.
The Watershed Flow and Allocation model (WaterFALL®) provides segment‐specific, daily streamflow at both gaged and ungaged locations to generate the hydrologic foundation for a variety of water resources management applications. The model is designed to apply across the spatially explicit and enhanced National Hydrography Dataset (NHDPlus) stream and catchment network. To facilitate modeling at the NHDPlus catchment scale, we use an intermediate‐level rainfall‐runoff model rather than a complex process‐based model. The hydrologic model within WaterFALL simulates rainfall‐runoff processes for each catchment within a watershed and routes streamflow between catchments, while accounting for withdrawals, discharges, and onstream reservoirs within the network. The model is therefore distributed among each NHDPlus catchment within the larger selected watershed. Input parameters including climate, land use, soils, and water withdrawals and discharges are georeferenced to each catchment. The WaterFALL system includes a centralized database and server‐based environment for storing all model code, input parameters, and results in a single instance for all simulations allowing for rapid comparison between multiple scenarios. We demonstrate and validate WaterFALL within North Carolina at a variety of scales using observed streamflows to inform quantitative and qualitative measures, including hydrologic flow metrics relevant to the study of ecological flow management decisions.  相似文献   

18.
The hydrologic and geochemical conditions that prevail in Mediterranean temporary ponds (MTPs), create a unique environment for many rare and endangered species. Mediterranean temporary ponds are habitats of high ecological value, which are vulnerable to imminent climatic changes, as well as to human activities. This article examines the hydrology and the nitrogen and phosphorous geochemical cycles of four MTPs in Crete. Field and laboratory studies provided the necessary information for the development of a conceptual understanding of the hydrologic and biogeochemical processes that affect the fate of nitrogen and phosphorous in these MTPs. Their hydrology was driven by deposition, infiltration, and evaporation. The hydroperiod of the ponds varied between 40 and 160 d. Mineralization and nutrient release capacity experiments illustrated the significant role that MTP sediments played in enhancing the geochemistry of the aqueous phase. Such ecosystem functions (i.e., mineralization, nutrient release) exhibited high variability among MTPs necessitating site-specific studies with immediate implications to management. It is very important to understand the local hydrogeochemical and climatic conditions to ensure appropriate environmental measures for their management and conservation.  相似文献   

19.
ABSTRACT: The great temporal and spatial variability of pine flat-woods hydrology suggests traditional short-term field methods may not be effective in evaluating the hydrologic effects of forest management. The FLATWOODS model was developed, calibrated and validated specifically for the cypress wetland-pine upland landscape. The model was applied to two typical flatwoods sites in north central Florida. Three harvesting treatments (Wetland Harvesting, Wetland + Upland Harvesting, and Control) under three typical climatic conditions (dry, wet, and normal precipitation years) were simulated to study the potential first-year effects of common forest harvesting activities on flatwoods. Long-term (15 years) simulation was conducted to evaluate the hydrologic impacts at different stages of stand rotation. This simulation study concludes that forest harvesting has substantial effects on hydrology during dry periods and clear cutting of both wetlands and uplands has greater influence on the water regimes than partial harvesting. Compared to hilly regions, forest harvesting in the Florida coastal plains has less impact on water yield.  相似文献   

20.
An important class of models, frequently used in hydrology for the forecasting of hydrologic variables one or more time periods ahead, or for the generation of synthetic data sequences, is the class of autoregressive(AR) models. As the AR models belong to the family of linear stochastic difference equations, they have both a deterministic and a stochastic component. The stochastic component is often assumed to have a Gaussian distribution. It is well known that hydrologic observations (e.g., stream flows) are heavily affected by noise. To account explicitly for the observation noise, the linear stochastic difference equation is expressed in state variable form and an observation model is introduced. The discrete Kalman filter algorithm can then be used to obtain estimates of the state variable vector. Typically, in hydrologic systems, model parameters, system noise statistics and measurement noise statistics are unknown, and have to be estimated. In this study an adaptive algorithm is discussed which estimates these quantities simultaneously with the state variables. The performance of the algorithm is evaluated by using simulated data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号