首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
人工湿地在污水治理中已获得广泛应用,但其温室气体排放通量是自然湿地的 2~10倍,对人工湿地温室气体的减排已是亟待解决的问题。通过在温室构建潜流人工湿地系统装置,均为间歇曝气,设立不同填料的填充配比和填充顺序,分别为:添加20%铁碳+80%沸石 (其中铁碳在上层沸石在下层记为T2F8,铁碳在下层沸石在上层记为F8T2,下同) 、40%铁碳+60%沸石 (记为T4F6和F6T4) 、60%铁碳+40%沸石 (记为T6F4和F4T6) 、以添加100%沸石为对照组 (F) ,探究了基质的填充方式对人工湿地系统中温室气体排放的影响。结果表明,与铁碳填充在表层的湿地组1 (T2F8、T4F6、T6F4) 相比,铁碳填充在底层的湿地组2 (F8T2、F6T4、F4T6) 均显著实现了人工湿地中CH4、N2O的减排 (P<0.05) ;同时,铁碳-沸石体积比对CH4、N2O减排效果影响显著,且铁碳占比越低CH4和N2O排放越少 (P<0.05) ;典型周期中曝气段出现CH4和N2O排放峰值,湿地F8T2的排放峰值均显著低于其他湿地 (P<0.05) ,其综合GWP最大减排值达到75.82%。铁碳填充在底层及铁碳-沸石体积比为2:8铁碳-沸石人工湿地 (F8T2) 的综合GWP最低,温室气体的减排效果最好。本研究结果可为人工湿地温室气体减排的实践提供参考。  相似文献   

2.
It is widely recognized that wetlands, especially those rich in organic matter and receiving appreciable atmospheric mercury (Hg) inputs, are important sites of methylmercury (MeHg) production. Extensive wetlands in the southeastern United States have many ecosystem attributes ideal for promoting high MeHg production rates; however, relatively few mercury cycling studies have been conducted in these environments. We conducted a landscape scale study examining Hg cycling in coastal Louisiana (USA) including four field trips conducted between August 2003 and May 2005. Sites were chosen to represent different ecosystem types, including: a large shallow eutrophic estuarine lake (Lake Pontchartrain), three rivers draining into the lake, a cypress-tupelo dominated freshwater swamp, and six emergent marshes ranging from a freshwater marsh dominated by Panicum hemitomon to a Spartina alterniflora dominated salt marsh close to the Gulf of Mexico. We measured MeHg and total Hg (THg) concentrations, and ancillary chemical characteristics, in whole and filtered surface water, and filtered porewater. Overall, MeHg concentrations were greatest in surface water of freshwater wetlands and lowest in the profundal (non-vegetated) regions of the lake and river mainstems. Concentrations of THg and MeHg in filtered surface water were positively correlated with the highly reactive, aromatic (hydrophobic organic acid) fraction of dissolved organic carbon (DOC). These results suggest that DOC plays an important role in promoting the mobility, transport and bioavailability of inorganic Hg in these environments. Further, elevated porewater concentrations in marine and brackish wetlands suggest coastal wetlands along the Gulf Coast are key sites for MeHg production and may be a principal source of MeHg to foodwebs in the Gulf of Mexico. Examining the relationships among MeHg, THg, and DOC across these multiple landscape types is a first step in evaluating possible links between key zones for Hg(II)-methylation and the bioaccumulation of mercury in the biota inhabiting the Gulf of Mexico region.  相似文献   

3.
We used the Dynamic Land Ecosystem Model (DLEM) to estimate carbon (C) storage and to analyze the impacts of environmental changes on C dynamics from 1971 to 2001 in Great Smoky Mountain National Park (GRSM). Our simulation results indicate that forests in GRSM have a C density as high as 15.9kgm(-2), about twice the regional average. Total carbon storage in GRSM in 2001 was 62.2Tg (T=10(12)), 54% of which was in vegetation, the rest in the soil detritus pool. Higher precipitation and lower temperatures in the higher elevation forests result in larger total C pool sizes than in forests at lower elevations. During the study period, the CO(2) fertilization effect dominated ozone and climatic stresses (temperature and precipitation), and the combination of these multiple factors resulted in net accumulation of 0.9Tg C in this ecosystem.  相似文献   

4.
This article reports a dataset on 8 years of monitoring carbon fluxes in a subarctic palsa mire based on micrometeorological eddy covariance measurements. The mire is a complex with wet minerotrophic areas and elevated dry palsa as well as intermediate sub-ecosystems. The measurements document primarily the emission originating from the wet parts of the mire dominated by a rather homogenous cover of Eriophorum angustifolium. The CO(2)/CH(4) flux measurements performed during the years 2001-2008 showed that the areas represented in the measurements were a relatively stable sink of carbon with an average annual rate of uptake amounting to on average -46 g C m(-2) y(-1) including an equally stable loss through CH(4) emissions (18-22 g CH(4)-C m(-2) y(-1)). This consistent carbon sink combined with substantial CH(4) emissions is most likely what is to be expected as the permafrost under palsa mires degrades in response to climate warming.  相似文献   

5.
Several microcosm wetlands unplanted and planted with five macrophytes (Phragmites australis, Commelina communis, Penniserum purpureum, Ipomoea aquatica, and Pistia stratiotes) were employed to remove nitrate from groundwater at a concentration of 21-47 mg NO3-N/l. In the absence of external carbon, nitrate removal rates ranged from 0.63 to 1.26 g NO3-N/m2/day for planted wetlands. Planted wetlands exhibited significantly greater nitrate removal than unplanted wetlands (P<0.01), indicating that macrophytes are essential to efficient nitrate removal. Additionally, a wetland planted with Penniserum showed consistently higher nitrate removal than those planted with the other four macrophytes, suggesting that macrophytes present species-specific nitrate removal efficiency possibly depending on their ability to produce carbon for denitrification. Although adding external carbon to the influent improved nitrate removal, a significant fraction of the added carbon was lost via microbial oxidation in the wetlands. Planting a wetland with macrophytes with high productivity may be an economic way for removing nitrate from groundwater. According to the harvest result, 4-11% of nitrogen removed by the planted wetland was due to vegetation uptake, and 89-96% was due to denitrification.  相似文献   

6.
The biogeochemical processes governing leachate attenuation inside a landfill leachate plume (Banisveld, the Netherlands) were revealed and quantified using the 1D reactive transport model PHREEQC-2. Biodegradation of dissolved organic carbon (DOC) was simulated assuming first-order oxidation of two DOC fractions with different reactivity, and was coupled to reductive dissolution of iron oxide. The following secondary geochemical processes were required in the model to match observations: kinetic precipitation of calcite and siderite, cation exchange, proton buffering and degassing. Rate constants for DOC oxidation and carbonate mineral precipitation were determined, and other model parameters were optimized using the nonlinear optimization program PEST by means of matching hydrochemical observations closely (pH, DIC, DOC, Na, K, Ca, Mg, NH4, Fe(II), SO4, Cl, CH4, saturation index of calcite and siderite). The modelling demonstrated the relevance and impact of various secondary geochemical processes on leachate plume evolution. Concomitant precipitation of siderite masked the act of iron reduction. Cation exchange resulted in release of Fe(II) from the pristine anaerobic aquifer to the leachate. Degassing, triggered by elevated CO2 pressures caused by carbonate precipitation and proton buffering at the front of the plume, explained the observed downstream decrease in methane concentration. Simulation of the carbon isotope geochemistry independently supported the proposed reaction network.  相似文献   

7.
Although studies on carbon burial in lake sediments have shown that lakes are disproportionately important carbon sinks, many studies on gaseous carbon exchange across the water-air interface have demonstrated that lakes are supersaturated with CO(2) and CH(4) causing a net release of CO(2) and CH(4) to the atmosphere. In order to more accurately estimate the net carbon source/sink function of lake ecosystems, a more comprehensive carbon budget is needed, especially for gaseous carbon exchange across the water-air interface. Using two methods, overall mass balance and gas exchange and carbon burial balance, we assessed the carbon source/sink function of Lake Donghu, a subtropical, eutrophic lake, from April 2003 to March 2004. With the overall mass balance calculations, total carbon input was 14 905 t, total carbon output was 4950 t, and net carbon budget was +9955 t, suggesting that Lake Donghu was a great carbon sink. For the gas exchange and carbon burial balance, gaseous carbon (CO(2) and CH(4)) emission across the water-air interface totaled 752 t while carbon burial in the lake sediment was 9477 t. The ratio of carbon emission into the atmosphere to carbon burial into the sediment was only 0.08. This low ratio indicates that Lake Donghu is a great carbon sink. Results showed good agreement between the two methods with both showing Lake Donghu to be a great carbon sink. This results from the high primary production of Lake Donghu, substantive allochthonous carbon inputs and intensive anthropogenic activity. Gaseous carbon emission accounted for about 15% of the total carbon output, indicating that the total output would be underestimated without including gaseous carbon exchange.  相似文献   

8.
Nonmethane organic carbon (NMOC) is a measure of total organic carbon except for that from CH4. We recently reported the development of online instrumentation for continuous NMOC monitoring. This instrument, referred to as C-NMOC, uses a microsorbent trap in combination with a gas-sampling valve as the sampling interface. A conventional oxidation/reduction NMOC detector is used for quantitation. In addition to being an online concentrator and an injector, the microtrap serves as a separator that isolates NMOC from H2O, CO, CO2, CH4, and other background gases. Therefore, the C-NMOC is able to handle high concentrations of background gases commonly found in stack emissions and has detection limits in the ppb levels. This paper reports the results of field validation and testing of a C-NMOC analyzer at a coatings facility in the eastern United States. The instrument was able to monitor the process transients in real time, based on which corrective actions could be taken. It demonstrated good accuracy, high precision, and long-term stability.  相似文献   

9.
人工湿地是温室气体的重要排放源,为了探索减少其温室气体排放的措施,通过在温室内构建了空白-人工湿地(湿地Ⅰ)、铁矿石-人工湿地(湿地Ⅱ)、生物炭-人工湿地(湿地Ⅲ)和铁矿石+生物炭-人工湿地(湿地Ⅳ)4组湿地,研究了铁矿石和生物炭基质的添加对潜流人工湿地污水处理效果和温室气体排放的影响。结果表明,4组湿地的平均出水COD分别是(34.99±1.60)、(35.57±1.69)、(30.87±1.65)和(27.52±2.37) mg·L−1,COD去除率均达到90%以上。4组湿地系统的出水平均TN浓度分别是(24.75±0.96)、(24.99±0.72)、(15.04±0.61)和(15.63±0.61) mg·L−1,湿地Ⅲ和湿地Ⅳ的TN平均去除率分别为65.73%和64.41%,均高于湿地Ⅰ(43.61%)和湿地Ⅱ(43.08%)。和TN类似,4组湿地系统出水的${\rm{NH}}_4^ + $-N去除率分别是45.04%、43.92%、67.52%和65.19%。铁矿石和生物炭的添加对于系统中CH4和N2O的减排也有一定作用,以1 g·m−2 CO2的GWP为1,湿地Ⅱ和湿地Ⅲ系统排放CH4和N2O所产生的综合GWP分别是69.88和22.73,相较于湿地Ⅰ(103.36)分别减少了32.39%和78.01%。湿地Ⅳ排放CH4和N2O所产生的综合GWP与单独添加生物炭的湿地Ⅲ相似,GWP为24.62。生物炭的添加相较于铁矿石具有较好的污水处理效果,且具有较低的CH4和N2O排放量。铁矿石生物炭联合添加的湿地中生物炭起主要的污染物去除和温室气体减排作用。以上研究结果可为人工湿地的改进提供有效建议。  相似文献   

10.
Liu H  Zhang S  Li Z  Lu X  Yang Q 《Ambio》2004,33(6):306-310
The Small Sanjiang Plain (SSP), was formerly the largest wetland complex in China, located in the Northeastern part of Heilongjiang Province, China. Home to vast numbers of waterfowls, fish, and plants, the SSP is globally significant for biodiversity conservation. The loss and fragmentation of wetlands as a result agricultural development over 50 years has impacted wetland communities and their biodiversity. We used GIS to inventory large-scale land-use changes from 1950 to 2000, together with other statistical data. We found that 73.6% of the wetlands were lost due to agricultural development. Consequences of these land-use changes included: i) a rapid decline in waterfowl and plant species with the loss and fragmentation of natural wetlands and wetland ecosystem degradation; ii) greater variation in wetland water levels as the result of land-use changes over the years; iii) disruption of the dynamic river-floodplain connection by construction of drainage ditches and levees; and iv) a decrease in floodplain area that caused increased flooding peak flows and runoff. Here we show how these changes affect wetland biodiversity and impact important wetland species.  相似文献   

11.
The authors used a global High Resolution Biosphere Model (HRBM), consisting of a biome model and a carbon cycle model, to estimate the changes of carbon storage in the major pools of the terrestrial biosphere from 18 000 BP to present. The climate change data to drive the biosphere for 18 000 BP were derived from an Atmospheric General Circulation Model. Using the AGCM anomalies interpolated to a 0.5 degrees grid, the HRBM data base of the present climate was recalculated for 18 000 BP. The most important processes which influenced the carbon storage include (1) climate-induced changes in biospheric processes and vegetation distribution, (2) the CO(2) fertilization effect, (3) the inundation of lowland areas resulting from the sea level rise of 100 m. Two scenarios were investigated. The first scenario, which ignored the CO(2) fertilization effect, led to total carbon losses from the terrestrial biosphere of -460 x 10(9) t. Scenario 2, which assumed that the model formulation of the CO(2) fertilization effect as used for preindustrial to present could be extrapolated to the glacial 200 microl litre(-1) (ppmv, parts per million per volume), gave a carbon fixation in the terrestrial biosphere of +213 x 10(9) t. The two scenarios were compared with CO(2) concentration data and isotopic ratios from air in ice cores. The results of Scenario 1 are not in agreement with the data. Scenario 2 gives realistic delta(13)C shifts in the atmosphere but the biospheric carbon storage at the end of the glacial period seems too large. The authors suggest that the low atmospheric CO(2) concentration may have favoured the C-4 plants in ice age vegetation types. As a consequence the influence of the low CO(2) concentration was eventually reduced and the glacial carbon storage in vegetation, litter, and soil was increased.  相似文献   

12.
We have examined how some major catchment disturbances may affect the aquatic greenhouse gas fluxes in the boreal zone, using gas flux data from studies made in 1994-1999 in the pelagic regions of seven lakes and two reservoirs in Finland. The highest pelagic seasonal average methane (CH(4)) emissions were up to 12 mmol x m(-2) x d(-1) from eutrophied lakes with agricultural catchments. Nutrient loading increases autochthonous primary production in lakes, promoting oxygen consumption and anaerobic decomposition in the sediments and this can lead to increased CH(4) release from lakes to the atmosphere. The carbon dioxide (CO(2)) fluxes were higher from reservoirs and lakes whose catchment areas were rich in peatlands or managed forests, and from eutrophied lakes in comparison to oligotrophic and mesotrophic sites. However, all these sites were net sources of CO(2) to the atmosphere. The pelagic CH(4) emissions were generally lower than those from the littoral zone. The fluxes of nitrous oxide (N(2)O) were negligible in the pelagic regions, apparently due to low nitrate inputs and/or low nitrification activity. However, the littoral zone, acting as a buffer for leached nitrogen, did release N(2)O. Anthropogenic disturbances of boreal lakes, such as increasing eutrophication, can change the aquatic greenhouse gas balance, but also the gas exchange in the littoral zone should be included in any assessment of the overall effect. It seems that autochthonous and allochthonous carbon sources, which contribute to the CH(4) and CO(2) production in lakes, also have importance in the greenhouse gas emissions from reservoirs.  相似文献   

13.
针对人工湿地中有机碳源不足造成的脱氮效率不高的问题,向人工湿地中投加植物碳源用以改善人工湿地内部碳氮比低的状况。通过比较芦苇秸秆、梧桐树皮、梧桐树叶、玉米芯4种植物碳源分解时有机物、氮元素的释放规律,从而确定玉米芯为最佳植物碳源,并采用水平潜流人工湿地系统模型研究了投加玉米芯对人工湿地系统脱氮效果的影响。试验发现,空白湿地系统COD的平均去除率为38.71%,总氮的平均去除率为34.24%,玉米芯湿地系统则在保证COD平均去除率38.52%的同时,提高总氮平均去除率到70.55%,证明了植物碳源调控提高人工湿地脱氮效果的可行性与高效性。  相似文献   

14.
Costs of reforestation projects determine their competitiveness with alternative measures to mitigate rising atmospheric CO2 concentrations. We quantify carbon sequestration in above-ground biomass and soils of plantation forests and secondary forests in two countries in South America-Ecuador and Argentina-and calculate costs of temporary carbon sequestration. Costs per temporary certified emission reduction unit vary between 0.1 and 2.7 USD Mg(-1) CO2 and mainly depend on opportunity costs, site suitability, discount rates, and certification costs. In Ecuador, secondary forests are a feasible and cost-efficient alternative, whereas in Argentina reforestation on highly suitable land is relatively cheap. Our results can be used to design cost-effective sink projects and to negotiate fair carbon prices for landowners.  相似文献   

15.
River and sediment have unique carbon dynamics and are important sources of the dominant greenhouse gases (GHG), carbon dioxide (CO2) and methane (CH4). To understand the relationship between CO2/CH4 emissions and water quality/sediment characteristics, we have investigated critical parameters in the river water. Eight parameters of water quality (dissolved oxygen, oxidation-reduction potential [ORP], chemical oxygen demand, biochemical oxygen demand [BOD5], suspended solid, nitrate [NO3-], NH4+, and bacteria) and four sediment characteristics (total organic carbon [TOC], total nitrogen [T-N], NO3-, and ammonium [NH4+]) were measured in two of the larger rivers in Taiwan, and relevant environmental conditions were recorded. The experimental results indicated that CO2 emissions from the river were mainly affected by BOD5 concentrations and the levels of bacteria. CH4 emissions, on the other hand, were greatly affected by the ORP in the river. The correlation between CO2 emissions and sediment characteristics was insignificant (R2 < 0.3). However, TOC and T-N in the sediment may lead to increases in CH4 emissions into the atmosphere. A deeper analysis of the relationship between the different parameters and GHG emissions by ANOVA and the multiple regression method revealed that CO2 emission (y) was significantly related to bacteria number (x1) and BOD concentration (X2). The regression equation takes the form y = 0.00032x1 + 3.18089x2 + 25.37304. Also, the regression relationship between CH4 emission (y) and ORP (x) in the river can be described as y = -0.825216x + 169.02257. The relationship between CH4 emission and sediment characteristics may be described as y = 5.073962x1(TOC) + 2.871245x2(T-N) - 12.3262. Extra sampling data were collected to examine the feasibility of the developed multiple regression equations. The experimental results suggest that the emissions of such GHGs as CO2 and CH4 from rivers can be predicted using the regression equations developed here. Moreover, the emissions may be reduced by manipulating the proper factors.  相似文献   

16.
Sun G  Austin D 《Chemosphere》2007,68(6):1120-1128
A mass-balance study was carried out to investigate the transformation of nitrogenous pollutants in vertical flow wetlands. Landfill leachate containing low BOD, but a high concentration of ammonia, was treated in four wetland columns under predominately aerobic conditions. Influent total nitrogen in the leachate consisted mainly of ammonia with less than 1% nitrate and nitrite, and negligible organic nitrogen. There was a substantial loss of total nitrogen (52%) in one column, whereas other columns exhibited zero to minor losses (<12%). Net nitrogen loss under study conditions was unexpected. Correlations between pH, nitrite and nitrate concentrations indicated the removal of nitrogen under study conditions did not follow the conventional, simplistic, chemistry of autotrophic nitrification. Through mass-balance analysis, it was found that CANON (Completely Autotrophic Nitrogen-removal Over Nitrite) was responsible for the transformation of nitrogen into gaseous form, thereby causing the loss of nitrogen mass. The results show that CANON can be native to aerobic engineered wetland systems treating wastewater that contains high ammonia and low BOD.  相似文献   

17.
The most efficient system of horizontal subsurface flow constructed wetlands (HSSFCW) for removing dissolved organic carbon (DOC) in the presence of chlorothalonil pesticide (CLT) present in synthetic domestic wastewater was determined using the macrophyte Phragmites australis. Two concentrations of CLT (85 and 385 μg L?1) and one concentration of glucose (20 mg L?1) were evaluated in four pilot scale horizontal surface flow constructed wetlands coupled with two sizes of silica gravel, igneous gravel, fine chalky gravel (3.18–6.35 mm), coarse gravel (12.70–25.40 mm) and two water surface heights (20 and 40 cm). For a month, wetlands were acclimated with domestic wastewater. Some groups of bacteria were also identified in the biofilm attached to the gravel. In each treatment periodic samplings were conducted in the influent and effluent. Chlorothalonil was quantified by gas chromatography (GC-ECD m), DOC by an organic carbon analyzer and bacterial groups using conventional microbiology in accordance with Standard Methods. The largest removals of DOC (85.82%–85.31%) were found when using fine gravel (3.18–6.35 mm) and the lower layer of water (20 cm). The bacterial groups quantified in the biofilm were total heterotrophic, revivable heterotrophic, Pseudomonas and total coliforms. The results of this study indicate that fine grain gravel (3.18–6.35 mm) and both water levels (20 to 40 cm) can be used in the removal of organic matter and for the treatment of agricultural effluents contaminated with organo-chloride pesticides like CLT in HSSFCW.  相似文献   

18.
A review of the export of carbon in river water: fluxes and processes   总被引:3,自引:0,他引:3  
This review summarizes data on exports of carbon from a large number of temperate and boreal catchments in North America, Europe and New Zealand. Organic carbon losses, usually dominated by dissolved organic matter, show relatively little variation, most catchments exporting between 10 and 100 kg C ha(-1) yr(-1). Inorganic carbon exports occur at a similar rate. However, a lack of information on the flux of particulate organic carbon and dissolved CO2 is highlighted, particularly for rivers in Europe. Processes regulating the flux of organic carbon to streams and its subsequent fate in-stream are reviewed, along with the effects of land use and acidification on these processes. The size of the global riverine flux of carbon in relation to the global carbon cycle and the possible effects of environmental change on the export of carbon in rivers are considered.  相似文献   

19.
This study investigated the effects of various soil conditions, including drying-rewetting, nitrogen deposition, and temperature rise, on the quantities and the composition of dissolved organic matter leached from forest and wetland soils. A set of forest and wetland soils with and without the nitrogen deposition were incubated in the growth chambers under three different temperatures. The moisture contents were kept constant, except for two-week drying intervals. Comparisons between the original and the treated samples revealed that drying-rewetting was a crucial environmental factor driving changes in the amount of dissolved organic carbon (DOC). The DOC was also notably increased by the nitrogen deposition to the dry forest soil and was affected by the temperature of the dry wetland soil. A parallel factor (PARAFAC) analysis identified three sub-fractions of the fluorescent dissolved organic matter (FDOM) from the fluorescence excitation–emission matrices (EEMs), and their compositions depended on drying-rewetting. The data as a whole, including the DOC and PARAFAC components and other optical indices, were possibly explained by the two main variables, which were closely related with the PARAFAC components and DOC based on principal component analysis (PCA). Our results suggested that the DOC and PARAFAC component information could provide a comprehensive interpretation of the changes in the soil-leached DOM in response to the different environmental conditions.  相似文献   

20.
Effects of copper concentration on methane emission from rice soils   总被引:1,自引:0,他引:1  
Jiao Y  Huang Y  Zong L  Zheng X  Sass RL 《Chemosphere》2005,58(2):185-193
Outdoor pot experiments with various paddy soils representing five soil types were conducted at Nanjing Agricultural University during the 2000 and 2001 rice-growing seasons. Eighteen soils and ten out of the eighteen soils were involved in the 2000 and the 2001 experiment, respectively. Two treatments were designed as mineral fertilization (MF) and mineral fertilizer + wheat straw incorporation (MF + WS) for the 2001 experiment. Seasonal average rate of CH4 emission from different soils ranged from 1.96 to 11.06 mg m(-2) h(-1) in the 2000 experiment, and from 0.89 to 5.92 mg m(-2) h(-1) for the MF treatment in the 2001 experiment, respectively. Incorporation of wheat straw enhanced considerably CH4 emission with an average increment of 7.09 mg m(-2) h(-1). CH4 emissions from the two-year experiment were negatively correlated to soil available and total copper concentration. A further investigation showed that CH4 emission from the MF treatment was positively related to the dissolved organic carbon (DOC) in the soil (r = 0.904, p < 0.001), and that the DOC was negatively correlated to the concentrations of available copper (r = -0.844, p < 0.01) and total copper (r = -0.833, p < 0.01), respectively. Nevertheless, the incorporation of wheat straw did not enhance the soil DOC, and the relationship between CH4 emission and soil DOC was not statistically significant (r = 0.470, p < 0.20). It was concluded that higher concentration of copper in the soils resulted in lower soil DOC and thus reduced CH4 emission when there was no additional organic matter input. Incorporation of wheat straw did not affect soil DOC and available copper concentration but enhanced CH4 emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号