首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Singh S  Singh JS  Kashyap AK 《Chemosphere》1999,38(1):175-189
Growth of three rice varieties (Heera, Dhala Heera and Narendra-118) and their relationship with methane consumption was investigated under rainfed (dryland) condition. Overall methane flux rates ranged between -0.58 to 1.25 mg m(-2) h(-1) across varieties, treatments, and dates of measurements. Except for two days when soil was saturated, the soil consumed 0.05-0.58 mg CH4 m(-2) h(-1); these rates were inversely related with soil moisture. N-fertilization reduced consumption rates. Although all plant growth parameters, except for number of tillers, exhibited relationship with methane consumption in control plots, only root porosity did so in fertilized plots. Combinations of plant growth characteristics explained 74-92% variability in seasonal CH4 consumption in unfertilized plots. It was concluded that methane consumption by dryland soils was influenced by rice variety, soil moisture and nitrogen fertilization.  相似文献   

2.
Anthropogenic and natural CO2 emission sources in an arid urban environment   总被引:2,自引:0,他引:2  
Recent research has shown the Phoenix, AZ metropolitan region to be characterized by a CO2 dome that peaks near the urban center. The CO2 levels, 50% greater than the surrounding non-urban areas, have been attributed to anthropogenic sources and the physical geography of the area. We quantified sources of CO2 emissions across the metropolitan region. Anthropogenic CO2 emission data were obtained from a variety of government and NGO sources. Soil CO2 efflux from the dominant land-use types was measured over the year. Humans and automobile activity produced more than 80% input of CO2 into the urban environment. Soil CO2 efflux from the natural desert ecosystems showed minimal emissions during hot and dry periods, but responded rapidly to moisture. Conversely, human maintained vegetation types (e.g. golf courses, lawns, irrigated agriculture) have greater efflux and are both temperature and soil moisture dependent. Landfills exhibited the most consistent rates, but were temperature and moisture independent. We estimate the annual CO2 released from the predominant land-use types in the Phoenix region and present a graphical portrayal of soil CO2 emissions and the total natural and anthropogenic CO2 emissions in the metropolitan region using a GIS-based approach. The results presented here do not mimic the spatial pattern shown in previous studies. Only, with sophisticated mixing models will we be able to address the total effect of urbanization on CO2 levels and the contribution to regional patterns.  相似文献   

3.
Ectomycorrhizal Scots pine seedlings were grown in unfertilized forest soil at ambient and double (ca 700 ppm) atmospheric concentrations of CO2. The biomass of seedlings and fungal biomass both in the roots and in the soil and the numbers of certain groups of soil animals were measured under summer conditions and after an artificial winter acclimation period. No biomass parameter showed any significant change due to CO2 elevation. Increases were found during the winter acclimation period in total and fine root biomasses, fungal biomass in the soil and total fungal biomass both in the roots and in the soil, while the ratio of needle biomass: fungal biomass and the shoot: root ratio decreased. The N concentration in previous-year needles was lower in the double CO2 environment than with ambient CO2. Enchytraeids almost disappeared in the double CO2 environment during winter acclimation, while the numbers of nematodes increased at the same time in both treatments.  相似文献   

4.
To study individual and combined impacts of two important atmospheric trace gases, CO2 and O3, on C and N cycling in forest ecosystems; a multi-year experiment using a small-scale ponderosa pine (Pinus ponderosa Laws.) seedling/soil/litter system was initiated in April 1998. The experiment was conducted in outdoor, sun-lit chambers where aboveground and belowground ecological processes could be studied in detail. This paper describes the approach and methodology used, and presents preliminary data for the first two growing seasons. CO2 treatments were ambient and elevated (ambient + 280 ppm). O3 treatments were elevated (hourly averages to 159 ppb, cumulative exposure > 60 ppb O3, SUM 06 approximately 10.37 ppm h), and a low control level (nearly all hourly averages <40 ppb. SUM 06 approximately 0.07 ppm h). Significant (P < 0.05) individual and interactive effects occurred with elevated CO2 and elevated O3. Elevated CO2 increased needle-level net photosynthetic rates over both seasons. Following the first season, the highest photosynthetic rates were for trees which had previously received elevated O3 in addition to elevated CO2. Elevated CO2 increased seedling stem diameters, with the greatest increase at low O3. Elevated CO2 decreased current year needle % N in the summer. For 1-year-old needles measured in the fall there was a decrease in % N with elevated CO2 at low O3, but an increase in % N with elevated CO2 at elevated O3. Nitrogen fixation (measured by acetylene reduction) was low in ponderosa pine litter and there were no significant CO2 or O3 effects. Neither elevated CO2 nor elevated O3 affected standing root biomass or root length density. Elevated O3 decreased the % N in coarse-fine (1-2 mm diameter) but not in fine (< 1 mm diameter) roots. Both elevated CO2 and elevated O3 tended to increase the number of fungal colony forming units (CFUs) in the AC soil horizon, and elevated O3 tended to decrease bacterial CFUs in the C soil horizon. Thus, after two growing seasons we showed interactive effects of O3 and CO2 in combination, in addition to responses to CO2 or O3 alone for a ponderosa pine plant/litter/soil system.  相似文献   

5.
Greenhouse experiments were conducted to determine the effects of soil enriched in fine tailings (FT), produced by the oil sands extraction, on germination, seedling growth and physiology of several plant species of the boreal forest. The germination of seeds was initially delayed by 15% FT in dogwood (Cornus stolonifera Michx) and jack pine (Pinus banksiana Lamb) but not in white spruce [Picea glauca (Moench) Voss]. In the second set of experiments we showed that all dogwood seedlings survived 6 months of treatment with 15% FT while the survival rates of raspberry, jack pine and white spruce seedlings were reduced to 44, 55 and 94%, respectively. FT reduced root and shoot dry weights in raspberry seedlings and the number of lateral shoots in jack pine and white spruce seedlings. In raspberry and jack pine seedlings, reductions of gas exchange were recorded. The results of our study suggest that the modifications of soil chemistry, texture and structure by FT may all contribute to the observed phytotoxic effects.  相似文献   

6.
Loblolly pine (Pinus taeda) seedlings from three full-sib families were exposed to 0, 50, 100 or 150 ppb ozone (O(3)) (5 h/d, 5 d/week for 6 or 12 weeks). Soil water potential was maintained near pot capacity (-0.03 MPa) or soil was allowed to dry to approximately -1.0 MPa and resaturated. Chlorotic mottling and flecking of needles due to O(3) injury were observed for seedlings from all pine families. Soil water deficit lessened the intensity of O(3) symptoms, possibly due to stomatal closure. Exposure to O(3) and soil water deficit each resulted in less seedling volume growth and dry weight, and changed the nonstructural carbohydrate content of seedlings compared with controls. Increasing O(3) concentrations resulted in a linear reduction in foliar starch content but did and affect hexose or sucrose content. Soil water deficit resulted in less starch and soluble sugar contents in above- and below-ground plant parts compared with controls. Soil water deficit did not affect numbers or percentages of roots that formed ectomycorrhizal tips. A linear dose-response relationship between O(3) and ectomycorrhizae was observed. The number of ectomycorrhizal tips/cm long root and the percentage of feeder roots that formed ectomycorrhizae were lower as O(3) concentration increased. Overall, each stress alone caused less seedling growth and carbohydrate content compared with controls, but only O(3) was responsible for suppression of ectomycorrhizae.  相似文献   

7.
Sixteen black cherry (Prunus serotina, Ehrh.), 10 white ash (Fraxinus americana, L.) and 10 red maple (Acer rubrum, L.) 1-year old seedlings were planted per plot in 1997 on a former nursery bed within 12 open-top chambers and six open plots. Seedlings were exposed to three different ozone scenarios (ambient air: 100% O3; non-filtered air: 98% ambient O3; charcoal-filtered air: 50% ambient O3) within each of two different water regimes (nine plots irrigated, nine plots non-irrigated) during three growing seasons.During the 1998 and 1999 growing season, leaf gas exchange, plant water relations, and foliar injury were measured. Climatic data,ambient- and chamber-ozone-concentrations were monitored. We found that seedlings grown under irrigated conditions had similar (in 1998) but significantly higher gas exchange rates (in 1999) than seedlings grown within non-irrigated plots among similar ozone exposures. Cherry and ash had similar ozone uptake but cherry developed more ozone-induced injury (< 34% affected leaf area, LAA) than ash (<5% LAA), while maple rarely showed foliar injury, indicating the species differed in ozone sensitivity. Significantly more severe injury on seedlings grown under irrigated conditions than seedlings grown under non-irrigated conditions demonstrated that soil moisture altered seedling responses to ambient ozone exposures.  相似文献   

8.
Biochar has been recently proposed as a management strategy to improve crop productivity and global warming mitigation. However, the effect of such approach on soil greenhouse gas fluxes is highly uncertain and few data from field experiments are available. In a field trial, cultivated with wheat, biochar was added to the soil (3 or 6 kg m−2) in two growing seasons (2008/2009 and 2009/2010) so to monitor the effect of treatments on microbial parameters 3 months and 14 months after char addition. N2O, CH4 and CO2 fluxes were measured in the field during the first year after char addition. Biochar incorporation into the soil increased soil pH (from 5.2 to 6.7) and the rates of net N mineralization, soil microbial respiration and denitrification activity in the first 3 months, but after 14 months treated and control plots did not differ significantly. No changes in total microbial biomass and net nitrification rate were observed. In char treated plots, soil N2O fluxes were from 26% to 79% lower than N2O fluxes in control plots, excluding four sampling dates after the last fertilization with urea, when N2O emissions were higher in char treated plots. However, due to the high spatial variability, the observed differences were rarely significant. No significant differences of CH4 fluxes and field soil respiration were observed among different treatments, with just few exceptions. Overall the char treatments showed a minimal impact on microbial parameters and GHG fluxes over the first 14 months after biochar incorporation.  相似文献   

9.
Nitrogen (N) remaining as inorganic ('mineral') soil N at crop harvest (N(minH)) contributes to nitrate leaching. N(minH) data from 20 (grass) and 78 (maize) experiments were examined to identify main determinants of N(minH). N-rate (A) explained 51% (grass) and 34% (maize) of the variance in N(minH). Best models included in addition crop N-offtake (U), offtake in unfertilised plots (U(0)), and N(minH) in unfertilised plots (N(minH,0)) and then explained up to 75% of variance. At low N-rates where apparent N recovery rho keeps to its initial value rho(ini), N(minH) keeps to its base level N(minH,0). At N-rates that exceed the value A(crit) where rho drops below rho(ini), N(minH) rises above N(minH,0) by an amount proportional to (rho(ini)-rho)A. About 80% of (rho(ini)-rho)A was found as N(minH,) in grass as well as in maize. The fraction (1-rho(ini))A does not appear to contribute to N(minH) at low N-rates (A< or =A(crit)) or at high N-rates (A>A(crit)).  相似文献   

10.
Elevated levels of atmospheric CO2 are expected to increase photosynthetic rates of C3 tree species, but it is uncertain whether this will result in an increase in wetland seedling productivity. Separate short-term experiments (12 and 17 weeks) were performed on two wetland tree species, Taxodium distichum and Acer rubrum, to determine if elevated CO2 would influence the biomass responses of seedlings to flooding. T. distichum were grown in replicate glasshouses (n = 2) at CO2 concentrations of 350 or 700 ppm. and A. rubrum were grown in growth chambers at CO2 concentrations of 422 or 722 ppm. Both species were grown from seed. The elevated CO2 treatment was crossed with two water table treatments, flooded and non-flooded. Elevated CO2 increased leaf-level photosynthesis, whole-plant photosynthesis, and trunk diameter of T. distichum in both flooding treatments, but did not increase biomass of T. distichum or A. rubrum. Flooding severely reduced biomass, height, and leaf area of both T. distichum and A. rubrum. Our results suggest that the absence of a CO2-induced increase in growth may have been due to an O2 limitation on root production even though there was a relatively deep (approximately 10 cm) aerobic soil surface in the non-flooded treatment.  相似文献   

11.
Tropical peatland could be a source of greenhouse gases emission because it contains large amounts of soil carbon and nitrogen. However these emissions are strongly influenced by soil moisture conditions. Tropical climate is characterized typically by wet and dry seasons. Seasonal changes in the emission of carbon dioxide (CO(2)), methane (CH(4)) and nitrous oxide (N(2)O) were investigated over a year at three sites (secondary forest, paddy field and upland field) in the tropical peatland in South Kalimantan, Indonesia. The amount of these gases emitted from the fields varied widely according to the seasonal pattern of precipitation, especially methane emission rates were positively correlated with precipitation. Converting from secondary forest peatland to paddy field tended to increase annual emissions of CO(2) and CH(4) to the atmosphere (from 1.2 to 1.5 kg CO(2)-C m(-2)y(-1) and from 1.2 to 1.9 g CH(4)-C m(-2)y(-1)), while changing land-use from secondary forest to upland tended to decrease these gases emissions (from 1.2 to 1.0 kg CO(2)-C m(-2)y(-1) and from 1.2 to 0.6 g CH(4)-C m(-2)y(-1)), but no clear trend was observed for N(2)O which kept negative value as annual rates at three sites.  相似文献   

12.
The effects of artificially applied acid precipitation on growth and nutrient concentrations of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies [L.] Karst.) seedlings were investigated in a long-term acid irrigation experiment in field conditions. Seedlings of northern and southern origin were planted in boxes containing peat and composted soil rich in nutrients, and sprinkler irrigated with water acidified with nitric and sulphuric acids to pH 3 or pH 4 for periods varying from two to three and a half growing seasons during 1986-1989. Water irrigated (pH 5.4-7.6) and non-irrigated groups of seedlings were also included in the experiment. At the end of the experiment needles, main and lateral shoots and roots were collected from the seedlings for the determination of height growth and biomass partitioning, and for the analysis of S, N, Mg, P, K, Ca, Mn and Fe concentrations. The treatment effects compared to the irrigated control were studied using multivariate analyses of variance and covariance. In the pine seedlings the total dry matter production increased by 25-70% compared with the irrigated controls when the total wet deposition to the seedlings exceeded 67 kg S ha(-1) and 36 kg N ha(-1) (e.g. after two growing seasons' exposure of the pH 3 treatment). The increase was mainly due to an increase in needle dry weight (54-72% greater at pH 3) and root weight (20-65% greater at pH 3), whereas the height growth or shoot weight growth were less affected. The northern provenance pine seedlings responded more clearly to the pH 3 irrigation than the southern ones. The treatments had no consistent effects on any of the growth variables studied in the spruce seedlings, however. The pines had higher root and foliage Ca concentrations as a result of the acid irrigation, whereas in spruce, acid rain decreased the Ca concentration in needles and shoots. Root Mn and Fe concentrations were higher in both species as a result of the pH 3 treatment. A higher soil conductivity and Ca concentration resulted from the prolonged pH 3 treatment. The results strongly support the hypothesis that the long-term growth and nutrient allocation response of conifers to acid precipitation is dependent both on the tree species and on the nutritional status of the soil.  相似文献   

13.
Hotspots and coldspots of concentration and biodegradation of polycyclic aromatic hydrocarbons (PAHs) marginally overlapped at the 0.5-100 m scale in a creosote contaminated soil in southern Sweden, suggesting that concentration and biodegradation had little spatial co-variation. Biodegradation was substantial and its spatial variability considerable and highly irregular, but it had no spatial autocorrelation. The soil concentration of PAHs explained only 20-30% of the variance of their biodegradation. Soil respiration was spatially autocorrelated. The spatial uncoupling between biodegradation and soil respiration seemed to be governed by the aging of PAHs in the soil, since biodegradation of added 13C phenanthrene covaried with both soil respiration and microbial biomass. The latter two were also correlated with high concentrations of phospholipid fatty acids (PLFAs) that are common in gram-negative bacteria. However, several of the hotspots of biodegradation coincided with hotspots for the distribution of a PLFA indicative of fungal biomass.  相似文献   

14.
Reclaiming abandoned and unmaintained roads, built originally for forestry and mineral extraction, is an important part of ecological restoration, because the roads running through natural habitats cause fragmentation. The roads can be reclaimed in a passive way by blocking access to the road, but successful seedling recruitment may require additional management due to the physical constraints present at the road. We established a full factorial study to compare the effects of three road reclaiming measures, namely ripping, creation of safe sites by adding mulch and pine seed addition, on soil processes, recovery of understorey vegetation and seedling recruitment in three conservation areas in eastern Finland. We surveyed soil organic matter, frequency and cover of plant functional types, litter and mineral soil, and number of tree seedlings. The soil organic matter was, on average, 1.3-fold in the 50-cm-deep ripping treatment relative to unripped and 20-cm-deep ripping treatments. The germination and survival of deciduous seedlings and grass establishment were promoted by adding mulch. The addition of pine seeds counteracted the seed limitation and enhanced the regeneration of trees. The treatment combination consisting of ripping, adding mulch and pine seed addition enhanced the vegetation succession and tree-seedling recruitment most: the cover of grasses, herbs and ericaceous dwarf shrubs was 1.3–7.6-fold and the number of coniferous tree seedlings was 3.4–7.1-fold relative to the other treatment combinations. Differences between short-term (1–3 years) and longer-term (6 years) results indicate the need for a sufficient observation period in road reclamation studies.  相似文献   

15.
The effects of air pollutants on soil were studied in Scots pine (Pinus sylvestris L.) forests near the boundary of Russia and Estonia. The study area is characterized by large amounts of acidic and basic pollutants, mainly sulphur dioxide (SO(2)) and calcium (Ca). Several variables were measured in different horizons of the podzolic soil polluted by emissions from local sources in areas of several thousands of square kilometers. Alkalinization dominates the processes in the soil, since sulphur is absorbed only in small quantities and Ca is much better absorbed. Ca content in humus horizon may rise even to 100 000 mg kg(-1) and the pH of originally very acidic soil may rise to 8.3. Total aluminum (Al) content was high in the heavily polluted plots, since emissions contain much Al. On the other hand, the exchangeable Al was very low in these alkaline sites. A larger quantity of exchangeable Al occurred farther from the pollutant sources, even though total Al in these plots was low. These plots had acidic soils in which Al is in exchangeable form. Due to the neutralizing effect of acidic and basic pollutants, forest damage in the study area was not as serious as might be supposed. Complicated pollutant situations must be taken into consideration when pollution-caused environmental protection measures are planned. It is not reasonable to reduce only SO(2) emissions, but necessary to lower the basic emissions at the same time.  相似文献   

16.
Available information on soil volatile organic compound (VOC) exchange, emissions and uptake, is very scarce. We here describe the amounts and seasonality of soil VOC exchange during a year in a natural Mediterranean holm oak forest growing in Southern Catalonia. We investigated changes in soil VOC dynamics in drought conditions by decreasing the soil moisture to 30% of ambient conditions by artificially excluding rainfall and water runoff, and predicted the response of VOC exchange to the drought forecasted in the Mediterranean region for the next decades by GCM and ecophysiological models.The annual average of the total (detected) soil VOC and total monoterpene exchange rates were 3.2±3.2 and −0.4±0.3 μg m−2 h−1, respectively, in control plots. These values represent 0.003% of the total C emitted by soil at the study site as CO2 whereas the annual mean of soil monoterpene exchange represents 0.0004% of total C. Total soil VOC exchange rates in control plots showed seasonal variations following changes in soil moisture and phenology. Maximum values were found in spring (17±8 μg m−2 h−1). Although there was no significant global effect of drought treatment on the total soil VOC exchange rates, annual average of total VOC exchange rates in drought plots resulted in an uptake rate (−0.5±1.8 μg m−2 h−1) instead of positive net emission rates. Larger soil VOC and monoterpene exchanges were measured in drought plots than in control plots in summer, which might be mostly attributable to autotrophic (roots) metabolism.The results show that the diversity and magnitude of monoterpene and VOC soil emissions are low compared with plant emissions, that they are driven by soil moisture, that they represent a very small part of the soil-released carbon and that they may be strongly reduced or even reversed into net uptakes by the predicted decreases of soil water availability in the next decades. In all cases, it seems that VOC fluxes in soil might have greater impact on soil ecology than on atmospheric chemistry.  相似文献   

17.
为了脱除CO2温室气体,提出了利用氨水土壤混合物去除CO2的新方法。分别考察了土壤颗粒粒径、CO2初始流量、氨水浓度(质量比)和温度对CO2脱除量和脱除率的影响。实验结果表明,该方法去除CO2的量较土壤物理吸附量和氨水化学吸收量的总和提高了大约15%;随着氨水浓度的增大,CO2的脱除率和脱除量都增大;随着土壤颗粒粒径和CO2初始流量的增大,CO2的脱除率和脱除量都减小;当温度由22℃升高到31℃,CO2的脱除率随着温度的升高而增大,但是继续升高温度到40℃,CO2的脱除率反而下降。  相似文献   

18.
The national Forest Health Monitoring (FHM) program requires protocols for monitoring soil carbon contents. In a pilot study, 30 FHM plots loblolly shortleaf (Pinus taeda L./Pinus echinata Mill.) pine forests across Georgia were sampled by horizon and by depth increments. For total soil carbon, approximately 40% of the variance was between plots, 40% between subplots and 20% within subplots. Results by depth differed from those obtained by horizon primarily due to the rapid changes in carbon content from the top to the bottom of the A horizon. Published soil survey information overestimated bulk densities for these forest sites. The measurement of forest floor depths as a substitute to sampling did not provide reliable estimates of forest floor carbon. Precision of replicate samples was approximately 10-30% for field duplicates and 5-10% for laboratory duplicates. Based on national indicator evaluation criteria, sampling by depth using bulk density core samplers has been recommended for national implementation. Additional procedures are needed when sampling organic soils or soils with a high percentage of large rock fragments.  相似文献   

19.
The performance of various algal indices to document improvements in water quality across a low nutrient concentration gradient was assessed during 2 years in the St Lawrence River (Quebec, Canada). Water-quality variables and periphyton samples were collected on navigational buoys near Montreal during the spring, summer and fall of 1994 and 1995. Exposure to urban wastewater varied widely within the sector surrounding the island of Montreal, with some areas upstream receiving no direct effluents and areas further downstream receiving treated and untreated wastewater. Faecal coliform concentrations provided a good tracer of effluents and were significantly correlated to nutrient concentrations (r = 0.33-0.72, p < 0.001) and water transparency (r = 0.70, p < 0.001). Despite a strong gradient in faecal coliform concentration (< 2 to > 20 000 UFC/100 ml), algal biomass and diversity did not reflect differences between sites with varying levels of urban wastewater. Taxonomic composition of periphyton communities, particularly the presence of the cyanophyte Plectonema notatum Schmidle, was related (r = 0.48, p = 0.004) to exposure to urban effluents. Variables describing seasonal changes (temperature, Julian day, river discharge, conductivity, NO2-NO3) explained a large fraction of total variance (38-52% of total variance) and thus exerted the predominant influence on algal biomass and species composition in the St Lawrence River. Variables describing the presence of effluents explained 1-22% of the variance in compositional data. Subtle changes in periphyton species composition were the only response to different levels of exposure to urban wastewater in the Montreal area, which represented relatively small differences in comparison to natural seasonal variability.  相似文献   

20.
The results of two field studies and an open-top chamber fumigation experiment showed that the response of mature Scots pine to SO(2) and NO(2) differed from that of mature Norway spruce. Moreover, the response of pine seedlings to SO(2) and NO(2) differed from that of mature trees. The greater increase in the needle total S concentrations of pine suggested more abundant stomatal uptake of SO(2) compared to spruce. Both pine seedlings and mature trees also seemed to absorb more N from atmospheric deposition. Mature pine was able to assimilate SO(4)(2-) derived from SO(2) into organic S more effectively than mature spruce at the high S and N deposition sites, whereas both pine and spruce seedlings accumulated SO(4)-S under NO(2)+SO(2) exposure. Spruce, in turn, accumulated SO(4)-S even when well supplied with N. Net assimilation of SO(4)(2-) in conifer seedlings was enhanced markedly by elevated temperature. To protect the northern coniferous forests against the harmful effects of S and N deposition, it is recommended that the critical level for SO(2) as a growing season mean be set at 5-10 microg m(-3) and NO(2) at 10-15 microg m(-3), depending on the 'effective temperature sum' and/or whether SO(2) and NO(2) occur alone or in combination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号