首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
This paper estimates the impact of climate change on the prevalence of criminal activity in the United States. The analysis is based on a 30-year panel of monthly crime and weather data for 2997 US counties. I identify the effect of weather on monthly crime by using a semi-parametric bin estimator and controlling for state-by-month and county-by-year fixed effects. The results show that temperature has a strong positive effect on criminal behavior, with little evidence of lagged impacts. Between 2010 and 2099, climate change will cause an additional 22,000 murders, 180,000 cases of rape, 1.2 million aggravated assaults, 2.3 million simple assaults, 260,000 robberies, 1.3 million burglaries, 2.2 million cases of larceny, and 580,000 cases of vehicle theft in the United States.  相似文献   

2.
Application of public health insecticides for mosquito control has increased dramatically with the recent outbreaks in the continental United States of dengue, chikungunya, and Zika. Mosquito control is often controversial because of the potential impacts on health and the environment due to the chemicals used. The emphasis in this review is to examine the transport, fate, and potential effects of the active ingredients in selected public health insecticides used for mosquito control. Due to the many potential entry points for insecticides, especially in urban areas where use is less monitored and application may be in greater amounts per unit area, this review suggests that a potential focus might be on the prevalence and quantification of the cumulative concentrations of these insecticides in natural systems. Often concentrations resulting from a single application are unlikely to cause mortality, but multiple applications may result in concentrations of environmental concern. Minimizing entrance to waterways and public water supply sources can be achieved by applying insecticides during prime meteorological conditions where drift and volatilization are minimized, using vegetated buffer zones in agricultural areas to prevent runoff, and avoiding application to impervious surfaces in urban areas.  相似文献   

3.
Climate change shifts the distributions of a set of climatic variables, including temperature, precipitation, humidity, wind speed, sunshine duration, and evaporation. This paper explores the importance of those additional climatic variables other than temperature and precipitation. Using the county-level agricultural data from 1980 to 2010 in China, we find that those additional climatic variables, especially humidity and wind speed, are critical for crop growth. Therefore, omitting those variables is likely to bias the predicted impacts of climate change on crop yields. In particular, omitting humidity tends to overpredict the cost of climate change on crop yields, while ignoring wind speed is likely to underpredict the effect. Our preferred specification indicates that climate change is likely to decrease the yields of rice, wheat, and corn in China by 36.25%, 18.26%, and 45.10%, respectively, by the end of this century.  相似文献   

4.
Abstract:  Climate change and invasive species are often treated as important, but independent, issues. Nevertheless, they have strong connections: changes in climate and societal responses to climate change may exacerbate the impacts of invasive species, whereas invasive species may affect the magnitude, rate, and impact of climate change. We argue that the design and implementation of climate-change policy in the United States should specifically consider the implications for invasive species; conversely, invasive-species policy should address consequences for climate change. The development of such policies should be based on (1) characterization of interactions between invasive species and climate change, (2) identification of areas where climate-change policies could negatively affect invasive-species management, and (3) identification of areas where policies could benefit from synergies between climate change and invasive-species management.  相似文献   

5.
This Impacts article proposes strategies for mitigating negative impacts of urbanization in rural locations in the United States. Issues addressed include impacts of population growth and development, loss of agricultural lands, and impacts of climate change on agriculture and rural communities. Conclusions are supported by stakeholder survey data, geographic information systems-based data, and desktop reviews of research journal publications. We propose a sustainable, diversified approach that supports mitigation of issues, including increasing demand on food production and decline of rural communities. A key issue that we address is where we will find suitable landscapes to reduce enough food for 9.6 billion people living in 2050.

Urban and rural development planners are grappling with solutions to escalating impacts global populations, stresses on food production, and effects of climate change. Solutions are identified, including strengthening rural and urban contexts by establishing connected and interdependent links that support diversification of rural and urban contexts as viable solutions to these issues.

Diversified rural-to-urban sustainable agriculture production is a promising approach to addressing climate change impacts. Organic agriculture principles exhibit strong diversity and are accredited by United States Department of Agriculture as the only federally certified sustainable agriculture practice in the United States. Sustainable agriculture practices are evolving into profitable diversified alternative food sources. We offer substantiated alternative solutions for remediating impacts of urbanization on rural agriculture and communities. Collectively, these solutions can strengthen symbiotic relationships between sustainable agriculture and rural communities, addressing our growing population issues and preserving our dwindling farmlands and rural communities.  相似文献   


6.
Abstract: As human populations expand into previously unoccupied habitats, conflicts with wild vertebrate species are inevitable. On the basis of literature concerning human attitudes toward nature, we hypothesized that the intensity of conflicts and impacts would vary with the type of land use expansion. We tested our hypothesis by examining data on socioeconomic profiles of discrete expanding human populations in relation to the frequency of wildlife law violations in the central Rocky Mountains of the United States. We estimated possible human-related effects by comparing rates of wildlife law violations among populations varying in growth rates and socioeconomic status over an eleven-year period 1969–1980. We found that agrarian-based population centers had fewer violations per capita than areas with industrial-based (petroleum development) boom towns. Recreation-oriented (ski) boom towns had the lowest number of violations during periods of the most rapid growth. While the relationship between wildlife law violations and actual impact on animal population sizes remains unknown, our findings underscore the necessity of a priori recognition and planning by government and private agencies to combat potential harmful effects when expanding human population centers are likely to be characterized by immigrants with a low regard for wild species.  相似文献   

7.
Despite the high profile of amphibian declines and the increasing threat of drought and fragmentation to aquatic ecosystems, few studies have examined long‐term rates of change for a single species across a large geographic area. We analyzed growth in annual egg‐mass counts of the Columbia spotted frog (Rana luteiventris) across the northwestern United States, an area encompassing 3 genetic clades. On the basis of data collected by multiple partners from 98 water bodies between 1991 and 2011, we used state‐space and linear‐regression models to measure effects of patch characteristics, frequency of summer drought, and wetland restoration on population growth. Abundance increased in the 2 clades with greatest decline history, but declined where populations are considered most secure. Population growth was negatively associated with temporary hydroperiods and landscape modification (measured by the human footprint index), but was similar in modified and natural water bodies. The effect of drought was mediated by the size of the water body: populations in large water bodies maintained positive growth despite drought, whereas drought magnified declines in small water bodies. Rapid growth in restored wetlands in areas of historical population declines provided strong evidence of successful management. Our results highlight the importance of maintaining large areas of habitat and underscore the greater vulnerability of small areas of habitat to environmental stochasticity. Similar long‐term growth rates in modified and natural water bodies and rapid, positive responses to restoration suggest pond construction and other forms of management can effectively increase population growth. These tools are likely to become increasingly important to mitigate effects of increased drought expected from global climate change. Papeles de las Características del Fragmento, Frecuencia de Sequía y Restauración en las Tendencias a Largo Plazo de un Anfibio Ampliamente Distribuido  相似文献   

8.
Land-use change significantly contributes to biodiversity loss, invasive species spread, changes in biogeochemical cycles, and the loss of ecosystem services. Planning for a sustainable future requires a thorough understanding of expected land use at the fine spatial scales relevant for modeling many ecological processes and at dimensions appropriate for regional or national-level policy making. Our goal was to construct and parameterize an econometric model of land-use change to project future land use to the year 2051 at a fine spatial scale across the conterminous United States under several alternative land-use policy scenarios. We parameterized the econometric model of land-use change with the National Resource Inventory (NRI) 1992 and 1997 land-use data for 844 000 sample points. Land-use transitions were estimated for five land-use classes (cropland, pasture, range, forest, and urban). We predicted land-use change under four scenarios: business-as-usual, afforestation, removal of agricultural subsidies, and increased urban rents. Our results for the business-as-usual scenario showed widespread changes in land use, affecting 36% of the land area of the conterminous United States, with large increases in urban land (79%) and forest (7%), and declines in cropland (-16%) and pasture (-13%). Areas with particularly high rates of land-use change included the larger Chicago area, parts of the Pacific Northwest, and the Central Valley of California. However, while land-use change was substantial, differences in results among the four scenarios were relatively minor. The only scenario that was markedly different was the afforestation scenario, which resulted in an increase of forest area that was twice as high as the business-as-usual scenario. Land-use policies can affect trends, but only so much. The basic economic and demographic factors shaping land-use changes in the United States are powerful, and even fairly dramatic policy changes, showed only moderate deviations from the business-as-usual scenario. Given the magnitude of predicted land-use change, any attempts to identify a sustainable future or to predict the effects of climate change will have to take likely land-use changes into account. Econometric models that can simulate land-use change for broad areas with fine resolution are necessary to predict trends in ecosystem service provision and biodiversity persistence.  相似文献   

9.
Climatic Change, Wildfire, and Conservation   总被引:11,自引:0,他引:11  
Abstract:  Climatic variability is a dominant factor affecting large wildfires in the western United States, an observation supported by palaeoecological data on charcoal in lake sediments and reconstructions from fire-scarred trees. Although current fire management focuses on fuel reductions to bring fuel loadings back to their historical ranges, at the regional scale extreme fire weather is still the dominant influence on area burned and fire severity. Current forecasting tools are limited to short-term predictions of fire weather, but increased understanding of large-scale oceanic and atmospheric patterns in the Pacific Ocean (e.g., El Niño Southern Oscillation, Pacific Decadal Oscillation) may improve our ability to predict climatic variability at seasonal to annual leads. Associations between these quasi-periodic patterns and fire occurrence, though evident in some regions, have been difficult to establish in others. Increased temperature in the future will likely extend fire seasons throughout the western United States, with more fires occurring earlier and later than is currently typical, and will increase the total area burned in some regions. If climatic change increases the amplitude and duration of extreme fire weather, we can expect significant changes in the distribution and abundance of dominant plant species in some ecosystems, which would thus affect habitat of some sensitive plant and animal species. Some species that are sensitive to fire may decline, whereas the distribution and abundance of species favored by fire may be enhanced. The effects of climatic change will partially depend on the extent to which resource management modifies vegetation structure and fuels.  相似文献   

10.
Food web theory predicts that the loss of large carnivores may contribute to elevated predation rates and, hence, declining prey populations, through the process of mesopredator release. However, opportunities to test predictions of the mesopredator release hypothesis are rare, and the extent to which changes in predation rates influence prey population dynamics may not be clear due to a lack of demographic information on the prey population of interest. We utilized spatial and seasonal heterogeneity in wolf distribution and abundance to evaluate whether mesopredator release of coyotes (Canis latrans), resulting from the extirpation of wolves (Canis lupus) throughout much of the United States, contributes to high rates of neonatal mortality in ungulates. To test this hypothesis, we contrasted causes of mortality and survival rates of pronghorn (Antilocapra americana) neonates captured at wolf-free and wolf-abundant sites in western Wyoming, USA, between 2002 and 2004. We then used these data to parameterize stochastic population models to heuristically assess the impact of wolves on pronghorn population dynamics due to changes in neonatal survival. Coyote predation was the primary cause of mortality at all sites, but mortality due to coyotes was 34% lower in areas utilized by wolves (P < 0.001). Based on simulation modeling, the realized population growth rate was 0.92 based on fawn survival in the absence of wolves, and 1.06 at sites utilized by wolves. Thus, wolf restoration is predicted to shift the trajectory of the pronghorn population from a declining to an increasing trend. Our results suggest that reintroductions of large carnivores may influence biodiversity through effects on prey populations mediated by mesopredator suppression. In addition, our approach, which combines empirical data on the population of interest with information from other data sources, demonstrates the utility of using simulation modeling to more fully evaluate ecological theories by moving beyond estimating changes in vital rates to analyses of population-level impacts.  相似文献   

11.
Predicting future impacts of temperature change require consideration of multiple impacts of temperature on organisms from different populations. We explored the impacts of temperature on feeding, growth, and mortality of emarginated dogwhelks, Nucella emarginata, from three populations (34.459, ?120.473; 34.435, ?119.930; 34.355, ?119.441) that are separated by a total distance of <100 km. Collections and experiments took place September–December 2012. Populations differed both in the number of mussels consumed at 16 and 20 °C and in the difference in feeding at these temperatures. Despite differences in feeding, increases in whelk mortality with temperature did not differ among populations, and in the 16 °C treatment changes in whelk mass did not differ among populations. These results indicate population-specific responses may differ even among geographically close populations. However, some traits may be more adaptable than others and impacts of a given change may be limited by various constraints (e.g., changes in feeding may accompany changes in metabolic needs). Improving our predictions of climate change impacts will require considering these issues, which may be especially important for marine communities where species differ widely in developmental mode, population connectivity, and other traits which may affect responses to changing temperatures.  相似文献   

12.
Effects of land-use change on the conservation of biodiversity have become a concern to conservation scientists and land managers, who have identified loss and fragmentation of natural areas as a high-priority issue. Despite urgent calls to inform national, regional, and state planning efforts, there remains a critical need to develop practical approaches to identify where important lands are for landscape connectivity (i.e., linkages), where land use constrains connectivity, and which linkages are most important to maintain network-wide connectivity extents. Our overall goal in this paper was to develop an approach that provides comprehensive, quantitative estimates of the effects of land-use change on landscape connectivity and illustrate its use on a broad, regional expanse of the western United States. We quantified loss of habitat and landscape connectivity for western forested systems due to land uses associated with residential development, roads, and highway traffic. We examined how these land-use changes likely increase the resistance to movement of forest species in non-forested land cover types and, therefore, reduce the connectivity among forested habitat patches. To do so, we applied a graph-theoretic approach that incorporates ecological aspects within a geographic representation of a network. We found that roughly one-quarter of the forested lands in the western United States were integral to a network of forested patches, though the lands outside of patches remain critical for habitat and overall connectivity. Using remotely sensed land cover data (ca. 2000), we found 1.7 million km2 of forested lands. We estimate that land uses associated with residential development, roads, and highway traffic have caused roughly a 4.5% loss in area (20 000 km2) of these forested patches, and continued expansion of residential land will likely reduce forested patches by another 1.2% by 2030. We also identify linkages among forest patches that are critical for landscape connectivity. Our approach can be readily modified to examine connectivity for other habitats/ecological systems and for other geographic areas, as well as to address more specific requirements for particular conservation planning applications.  相似文献   

13.
Connectivity Planning to Address Climate Change   总被引:1,自引:0,他引:1  
As the climate changes, human land use may impede species from tracking areas with suitable climates. Maintaining connectivity between areas of different temperatures could allow organisms to move along temperature gradients and allow species to continue to occupy the same temperature space as the climate warms. We used a coarse‐filter approach to identify broad corridors for movement between areas where human influence is low while simultaneously routing the corridors along present‐day spatial gradients of temperature. We modified a cost–distance algorithm to model these corridors and tested the model with data on current land‐use and climate patterns in the Pacific Northwest of the United States. The resulting maps identified a network of patches and corridors across which species may move as climates change. The corridors are likely to be robust to uncertainty in the magnitude and direction of future climate change because they are derived from gradients and land‐use patterns. The assumptions we applied in our model simplified the stability of temperature gradients and species responses to climate change and land use, but the model is flexible enough to be tailored to specific regions by incorporating other climate variables or movement costs. When used at appropriate resolutions, our approach may be of value to local, regional, and continental conservation initiatives seeking to promote species movements in a changing climate. Planificación de Conectividad para Atender el Cambio Climático  相似文献   

14.
Protected areas are considered vital for the conservation of biodiversity. Given their central role in many conservation strategies, it is important to know whether they adequately protect biodiversity within their boundaries; whether they are becoming more isolated from other natural areas over time; and whether they play a role in facilitating or reducing land‐cover change in their surroundings. We used matching methods and national and local analyses of land‐cover change to evaluate the combined effectiveness (i.e., avoided natural‐cover loss), isolation (i.e., changes in adjacent areas), and spillover effects (i.e., impacts on adjacent areas) of 19 national parks in South Africa from 2000 to 2009. All parks had either similar or lower rates of natural‐cover loss than matched control samples. On a national level, mean net loss of natural cover and mean net gain of cultivation cover decreased with distance from park boundary, but there was considerable variation in trends around individual parks, providing evidence for both increased isolation and buffering of protected areas. Fourteen parks had significant positive spillover and reduced natural‐cover loss in their surroundings, whereas five parks experienced elevated levels of natural‐cover loss. Conclusions about social‐ecological spillover effects from protected areas depended heavily on the measures of land‐cover change used and the scale at which the results were aggregated. Our findings emphasize the need for high‐resolution data when assessing spatially explicit phenomena such as land‐cover change and challenge the usefulness of large‐scale (coarse grain, broad extent) studies for understanding social‐ecological dynamics around protected areas.  相似文献   

15.
Land use and land cover (LULC) change occurs at a local level within contiguous ownership and management units (parcels), yet LULC models primarily use pixel-based spatial frameworks. The few parcel-based models being used overwhelmingly focus on small geographic areas, limiting the ability to assess LULC change impacts at regional to national scales. We developed a modified version of the Forecasting Scenarios of land use change model to project parcel-based agricultural change across a large region in the United States Great Plains. A scenario representing an agricultural biofuel scenario was modeled from 2012 to 2030, using real parcel boundaries based on contiguous ownership and land management units. The resulting LULC projection provides a vastly improved representation of landscape pattern over existing pixel-based models, while simultaneously providing an unprecedented combination of thematic detail and broad geographic extent. The conceptual approach is practical and scalable, with potential use for national-scale projections.  相似文献   

16.
Canham CD  Thomas RQ 《Ecology》2010,91(12):3433-3440
There have been many attempts to model the impacts of climate change on the distributions of temperate tree species, but empirical analyses of the effects of climate on the distribution and abundance of tree species have lagged far behind the models. Here, we used forest inventory data to characterize variation in adult tree abundance along climate gradients for the 24 most common tree species in the northeastern United States. The two components of our measure of species abundance--local frequency vs. relative abundance--showed dramatically different patterns of variation along gradients of mean annual temperature and precipitation. Local frequency (i.e., the percentage of plots in a given climate in which a species occurred) varied strongly for all 24 species, particularly as a function of temperature. Relative abundance when present in a plot, on the other hand, was effectively constant for most species right up to their estimated climatic range limits. Although the range limits for both temperature and precipitation were quite broad for all of the species, the range of climates within which a species was common (i.e., high frequency) was much narrower. Because frequency in sites within a given climate shows a strong sensitivity to temperature, at least, this suggests that the processes determining canopy tree recruitment on new sites also vary strongly with climate.  相似文献   

17.
The objective of this assessment is to quantify some of the environmental effects of a significant increase in United States oil production by tertiary or enhanced oil recovery (EOR) methods. The problems associated with each EOR technology are discussed and controls and regulations are briefly summarised. A tertiary oil production scenario for the United States was developed focussing only on mainland fields in the lower 48 states. It included all of the EOR methods expected to be in use during the next two decades. The environmental impacts, including water requirements, air emissions and generation of solid wastes, are then scaled to this scenario. The effects of control technologies and state regulations are considered. A comparison is also made between the impacts of EOR as an energy source and impacts associated with coal and synthetic fuels which concludes that EOR is preferable in many respects. There are environmental risks associated with EOR technologies, specific projects and specific fields in the production scenario; however, most problems are solvable by responsible regulation, enforcement of regulations and application of the best professional engineering by project operators.  相似文献   

18.
Recovery of gray wolf ( Canis lupus ) populations in North America depends on minimizing human-caused mortality and enhancing migration from stable source populations to suitable habitat unoccupied by wolves. We used a combination of field observation and DNA microsatellite genotyping to examine natural wolf colonization of Glacier National Park, Montana, and surrounding lands. We found high genetic variation in the colonizing population, showing that these packs were founded by multiple, unrelated wolves from Canada. High dispersal rates, long dispersal distances, and lack of a founding population bottleneck indicate that wolves in the United States and Canada should be viewed and managed as a single population. Restoration in the United States by artificial transplants from Alberta to Yellowstone National Park and central Idaho began in 1995. The transplanted wolves will likely aid demographic recovery, but permanently retaining the high genetic variation of wolves in the United States will require assuring gene flow throughout the central Rocky Mountains.  相似文献   

19.
Abstract: Climate change will likely have profound effects on cold‐water species of freshwater fishes. As temperatures rise, cold‐water fish distributions may shift and contract in response. Predicting the effects of projected stream warming in stream networks is complicated by the generally poor correlation between water temperature and air temperature. Spatial dependencies in stream networks are complex because the geography of stream processes is governed by dimensions of flow direction and network structure. Therefore, forecasting climate‐driven range shifts of stream biota has lagged behind similar terrestrial modeling efforts. We predicted climate‐induced changes in summer thermal habitat for 3 cold‐water fish species—juvenile Chinook salmon, rainbow trout, and bull trout (Oncorhynchus tshawytscha, O. mykiss, and Salvelinus confluentus, respectively)—in the John Day River basin, northwestern United States. We used a spatially explicit statistical model designed to predict water temperature in stream networks on the basis of flow and spatial connectivity. The spatial distribution of stream temperature extremes during summers from 1993 through 2009 was largely governed by solar radiation and interannual extremes of air temperature. For a moderate climate change scenario, estimated declines by 2100 in the volume of habitat for Chinook salmon, rainbow trout, and bull trout were 69–95%, 51–87%, and 86–100%, respectively. Although some restoration strategies may be able to offset these projected effects, such forecasts point to how and where restoration and management efforts might focus.  相似文献   

20.
Abstract:  The effects of climate change and habitat destruction and their interaction are likely to be the greatest challenge to animal and plant conservation in the twenty-first century. We used the world's smallest butterfly, the Sinai baton blue ( Pseudophilotes sinaicus ), as an exemplar of how global warming and human population pressures may act together to cause species extinctions. We mapped the entire global range of this butterfly and obtained extensive data on the intensity of livestock grazing. As with an increasing number of species, it is confined to a network of small habitat patches and is threatened both by indirect human-induced factors (global warming) and by the direct activities of humans (in this case, livestock grazing and collection of medicinal plants). In the absence of global warming, grazing, and plant collection, our model suggested that the butterfly will persist for at least 200 years. Above a threshold intensity of global warming, the chance of extinction accelerated rapidly, implying that there may be an annual average temperature, specific to each endangered species, above which extinction becomes very much more likely. By contrast, there was no such threshold of grazing pressure—the chance of extinction increased steadily with increasing grazing. The impact of grazing, however, decreased with higher levels of year-to-year variation in habitat quality. The effect of global warming did not depend on the future level of grazing, suggesting that the impacts of global warming and grazing are additive. If the areas of habitat patches individually fall below certain prescribed levels, the butterfly is likely to go extinct. Two patches were very important for persistence: if either were lost the species would probably go extinct. Our results have implications for the conservation management of all species whose habitats are at risk because of the direct activities of humans and in the longer term because of climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号