首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

评估生态系统碳储量,对区域生态管理具有重要意义。利用InVEST模型和PLUS模型,基于解译的土地利用数据和未来土地利用预测数据,研究2000-2020年漓江流域土地利用变化和碳储量时空特征,并预测未来不同发展情景下碳储量的变化。结果表明:2000-2020年漓江流域土地利用变化表现为耕地、林地和草地面积减少,水域、建设用地和未利用地面积增加;受土地利用变化的影响,2000-2020年漓江流域碳储量减少了0.945×106 t,其中2015-2020年减幅最大;碳储量高的区域主要分布在流域西北、西南及东部高海拔地区,碳储量低的区域主要分布在流域中部平原地区且2000-2020年明显扩大,流域内的临桂区、兴安县和灵川县碳储量减少较为显著。预测2030年漓江流域在自然发展情景下碳储量会进一步下降,耕地保护情景下碳储量相较自然发展情景增加0.345×106 t,生态保护情景下碳储量比自然发展情景、耕地保护情景分别增加1.540×106、1.195×106 t。耕地保护情景能够保护耕地数量,但建设用地扩张受到较大限制;生态保护情景能够增强固碳能力,但不能有效控制耕地面积的缩减。未来漓江流域国土空间规划需综合统筹生态保护和耕地保护措施,提升区域碳汇能力,实现绿色可持续发展。

  相似文献   

2.
土地利用变化是影响陆地生态系统碳储量变化的重要因素,研究土地利用变化与碳储量之间关系对优化区域土地利用结构,维持区域碳平衡可提供可靠的数据支撑.以江西省为例,分析1990~2020年土地利用变化,基于PLUS模型,结合自然发展情景、生态优先情景和经济发展情景设置,对2030年江西省土地利用格局进行模拟分析,运用InVEST模型测算1990~2020年及未来不同情景下江西省碳储量变化,利用空间自相关分析探索江西省不同情景下陆地生态系统碳储量时空变化特征,并提出相应的政策建议.结果表明:①1990~2020年江西省碳储量整体呈下降趋势,共减少4.58×107 t.其中,水域和建设用地的面积增加,耕地、林地、草地及未利用地面积减少是导致碳储量减少的主要原因.②2030年江西省陆地生态系统碳储量在自然发展情景、生态优先情景和经济发展情景下分别为2.20×109、2.24×109和2.19×109 t.③3种情景下的碳储量值在空间分布上具有相似性,碳储量高值区域在江西省北部、西北部及西部区域出现集聚,低值区域则在中部区域聚集.研究结果可为江西省未来国土空间规划,提升陆地生态系统碳储量提供数据支撑.  相似文献   

3.
土地利用/覆被变化是引起陆地生态系统碳储量变化的重要驱动因素,影响整个生态系统的碳循环过程.以昆明市为研究案例,在修正碳密度系数的基础上,通过耦合InVEST模型碳储存模块和CA-Markov模型,分析2000~2020年及“三线”约束下未来不同土地利用情景陆地生态系统碳储量变化的时空差异特征.结果表明:(1)昆明市土地利用类型主要以耕地、林地和草地为主,土地利用转移也发生在三者之间.(2)2000~2020年,昆明市碳储量整体表现为南低北高的空间分布特征,碳储量逐年下降,累计损失5.27×106 t,林地和草地退化是碳储量减少的主要原因.(3)2020~2030年,4种情景碳储量均有所减少,其中惯性发展情景碳储量下降最明显,主要是建设用地快速扩张引起;耕地保护情景相比惯性发展情景有效减缓了碳储量减少幅度;生态保护情景则能够增强研究区固碳能力,碳储量达到262.49×106 t,但不能有效控制耕地面积的减少;防止城市扩张情景有效抑制了建设用地无序扩张,间接防止了碳储量进一步减少.因此,研究区可统筹考虑耕地保护情景、生态保护情景和防止城市扩张情...  相似文献   

4.
研究土地利用时空演变对生态系统碳储量的影响,对研究区未来的国土空间规划以及减排增汇提供理论依据.基于1985、1995、2005、2015和2020年这5期土地利用数据,结合InVEST模型分析了研究区碳储量时空变化,运用PLUS模型预测研究区2035年自然发展情景、耕地保护情景、生态保护情景以及耕地和生态双保护情景土地利用变化并估算不同情景下的生态系统碳储量.结果表明:①1985~2020年研究区耕地面积持续减少,2015~2020年土地利用变化较快,综合土地利用动态度达到了34.62 %;②1985~2020年碳储量呈下降趋势,减少1.55×105 t,其中在2005~2015年间,碳储量减少了1.22×105 t,年均减少量达1.22×104 t;③碳储量较高区域分布在研究区的东部,碳储量较低区域分布在研究区中部和西北部;耕地碳储量占比从66.89 %下降到57.73 %,但耕地仍是研究区最主要的碳库;其他地类向草地和林地转化有利于生态系统碳储量的增加;④2035年,自然发展情景、耕地保护情景、生态保护情景以及双保护情景下的碳储量分别为81.77×105 、82.45×105、82.82×105和82.51×105 t.  相似文献   

5.
丁岳  王柳柱  桂峰  赵晟  朱望远 《环境科学》2023,44(6):3343-3352
研究土地利用方式与生态系统服务碳储量的关系,对于区域碳排放管理具有重要意义.利用InVEST模型碳储量模块和PLUS模型,探究并预测研究区2000~2018年和2018~2030年生态系统碳储量时空变化特征及其与土地利用方式之间的关系.结果表明,研究区2000、 2010和2018年碳储量分别为7.250×108、 7.227×108和7.241×108 t,呈先减后增趋势.土地利用类型变化是导致生态系统碳储量变化的主要因素,建设用地的快速扩张导致碳储量降低.与土地利用类型相对应,研究区碳储量空间分异显著,并以碳储量分界线为界,呈现“东北低西南高”特征.预测结果显示,至2030年碳储量为7.344×108 t,较2018年增加1.42%,林地面积的增长是主要原因.  相似文献   

6.
在生态文明建设高质量的发展环境下,探究国土空间规划视角下土地利用合理规划与碳减排关系有重大现实意义.山地生态系统作为自然、社会和经济的综合生态系统,对区域生态环境质量提高和可持续发展具有重要影响.以河南省伏牛山区为研究对象,采用InVEST与CA-Markov模型预测2000~2030年多情景下伏牛山生态系统碳储量的时空分布差异.结果表明:(1) 2000~2020年,伏牛山地耕地和林地大面积减少,水域和建设用地增加.自然增长情景下耕地持续减少;耕地保护情境下耕地面积减少速度得到有效缓解;生态保护情景下,林地草地面积得到了有效保护.(2) 2000~2020年,伏牛山地生态系统碳储量减少2.62×106 t;自然增长情景下,生态系统碳储量持续减少;耕地保护情景稍有缓解;生态保护措施有效缓解了碳损失.(3)碳储量随海拔升高呈驼峰状变化,随着坡度升高而呈现增加的趋势.因此,在未来伏牛山地区国土空间规划中,可综合考虑生态保护与耕地保护情景,在增加碳储量的同时也保证了粮食生产.  相似文献   

7.
为了有效评估城市群碳储量变化,以天山北坡城市群为研究对象,运用PLUS模型和InVEST模型,动态评估2000~2020年及2030年不同情景下土地利用变化及碳储量变化特征.结果表明,2000~2020年天山北坡城市群碳储量呈现持续增加趋势,且碳储量变化与土地利用变化密切相关,主要表现为2000~2010年林地面积的减少导致其碳储量减少约266×106t,2010~2020年草地面积的增加使其碳储量增加约69.14×106t.2030年自然发展情景、生态保护情景和经济快速发展情景下碳储量预测值分别为8875.88×106t、8895.58×106t和8841.58×106t;经济快速发展情景下碳储量最低,生态保护情景下碳储量最高.土地利用是影响碳储量空间变化分布的第一主导因素,贡献率接近于90%,土地利用强度与碳储量协调性分析与两者双变量空间自相关分析进一步验证了这一结论.土地利用变化在一定程度上能够对碳储量产生积极影响,对于本研究区而言,生态保护发展情景可能更符合未来城市发展模式,研究结果能够为土...  相似文献   

8.
崔写  董燕  张露尹  王荣耀 《环境科学》2024,45(5):2817-2827
探索未来气候变化情景下土地利用/覆盖变化(LUCC)和生态系统碳储量的空间分布,可以为优化土地资源再分配和制定社会经济可持续发展政策提供科学依据.研究整合了斑块生成土地利用模拟(PLUS)模型和生态系统服务与权衡综合评价(InVEST)模型,基于CMIP6提供的共享社会经济路径和代表性浓度路径(SSP-RCP)情景,评估了黄土高原LUCC和生态系统碳储量的时空动态变化,分析驱动因素对不同区域的影响程度,探讨各区域碳储量空间相关性.结果表明:①未来3种情景LUCC变化模式相似,耕地、草地和未利用地面积都有不同程度的减少,建设用地急剧扩张,3种情景下的增幅分别为29.23%~53.56%(SSP126)、34.59%~63.28%(SSP245)和42.80%~73.27%(SSP585).②与2020年相比,2040年SSP126情景碳储量增加1.813 8×106 t,其余情景持续下降;到2060年,3种情景草原碳储量分别减少13.391×106、33.548×106和85.871×106 t.③从空间相关性来看,黄土高原碳储量在市域间存在相关性,未来情景差异不显著,热点分布在研究区中部及中部以北地区,没有明显的冷点区域.④土地利用变化会增加或损失碳储量.林地、耕地和草地比其它土地类型有更多的碳储量,增加它们的面积和限制向其它土地类型转换会增加生态系统碳储量.  相似文献   

9.
区域土地利用变化是导致生态系统碳储量变化的主要原因,预测未来土地利用变化对碳储量的影响对于碳储功能的可持续发展具有重要意义.近年来,在自然和人为因素的共同作用下,黄河源区土地利用变化显著,其碳储功能也相应发生改变.本研究结合InVEST和GeoSoS-FLUS模型,评估黄河源区2000~2020年以及不同情景下2020~2040年土地利用变化及其对碳储量的影响.结果表明:① 2000~2020年黄河源区碳储量整体呈上升趋势,共增加11.59×106 t.② 20年间,黄河源区土地利用变化以低覆盖度草地、建设用地和湿地的面积增加和高覆盖度草地、中覆盖度草地和未利用地面积减少为主,未利用地大面积减少以及草地和湿地的面积增加是导致碳储量增加的主要原因.③ 2040年自然变化情景下黄河源区生态系统碳储量为871.34×106 t,较2020年增加3.92×106 t.生态保护情景下碳储量增幅明显,较2020年增加13.53×106 t.该研究结果可以为黄河源区土地利用管理决策以及碳储功能的可持续发展提供科学参考.  相似文献   

10.
构建土地利用碳储量数据库,基于InVEST模型Carbon模块,得到广东省1990~2020年碳储量时空分布情况.用Moran’s I指数和Getis-Ord Gi*分析格网尺度下碳储量时空分布特征,用Anselin Local Moran’s I得到LISA集聚图.然后运用PLUS模型和14个土地利用驱动因子预测2050年土地利用及其碳储量分布.结果表明,土地利用变化直接影响区域碳储量高低,林地、草地等具有生态服务功能地类碳密度最高,分别是188.44,329.34Mg/hm2.碳储量空间格局整体呈现出中部低、北部高、东西中等的特点.碳储量空间分布特征与土地利用特征一致,碳储量显著高值集聚区域分布在建设用地少、生态用地多且连片的粤北地区,显著低值区域分布在国土开发强度和生态用地破碎化程度高的珠三角地带.在自然发展情景下,到2050年广东省土地利用碳储量将减少4327.21万Mg,随着国土空间进一步开发,环珠江口沿岸城市碳储量持续下降.增加植被生态系统碳储量,是实现碳中和的重要手段之一.要继续维持粤北山区生态保护屏障的重要地位,减缓珠三角城市土地开发强度,提高建设用地集约节约能力,形成平衡协调的土地利用和碳储量格局.  相似文献   

11.
李月  罗红芬 《环境科学》2024,45(2):961-973
探析黔中喀斯特地区典型县域碳储量时空演变和未来空间分布趋势,对优化土地生态安全格局,提升区域碳储量,促进城市低碳可持续发展具有重要意义.以黔中喀斯特地区典型县域——普定县为例,耦合PLUS-InVEST模型,基于解译的土地利用数据和未来土地预测,反演1973~2020年普定县的土地利用变化与碳储量时空演变特征,并模拟预测2060年不同情景下土地利用空间格局演变及其碳储量变化.结果表明:①1973~2020年普定县碳储量整体增加6.61×105 t,呈上升趋势,空间上呈现出“东和西部上升,中南部下降”的变化特征.②普定县历史时期土地利用变化主要表现为建设用地持续扩张,有林地和灌木林地面积占比波动上升,2060年不同情景下土地利用变化延续了历史时期的变化特征.③2060年普定县在自然演变、生态保护和经济发展情景下碳储量较2020年分别增加2.93×105、5.40×105和1.11×105 t,其中生态保护情景增加最为显著,旱地向灌木林地转移是区域固碳能力增加的主要原因.研究结果可为普定县土地利用管理决策以及减排增汇政策制定提供科学参考.  相似文献   

12.
研究城市群地区土地利用变化对陆地生态系统碳储量的影响,对城市群地区土地利用结构优化及可持续发展具有重要意义.基于PLUS模型和InVEST模型,模拟预测了不同情景下关中平原城市群2040年土地利用变化与碳储量,并进一步分析了土地利用变化对碳储量的影响.结果表明:①关中平原城市群土地利用类型以耕地、林地和草地为主,占研究区总面积的90 %以上.②2000~2020年,关中平原碳储量呈持续下降的趋势,耕地、林地和草地是关中平原碳储量的主要来源,总体碳储量下降了15.12×106 t,空间分布呈现“南北高,中间低”的分布特征.③到2040年,城镇发展情景下碳储量减少最多,共减少27.08×106 t,生态发展情景下碳储量减少最少,共减少4.14×106 t.研究结果可为关中城市群地区高质量发展和土地利用合理规划提供数据支撑.  相似文献   

13.
InVEST模型对锡林郭勒草原碳储量研究的适用性分析   总被引:1,自引:0,他引:1       下载免费PDF全文
锡林郭勒草原是我国四大草原之一,也是内蒙古主要的天然草场。近年来,在各种因素影响下,锡林郭勒草原区生态系统发生重大变化,导致草原区碳储量也发生改变。本文尝试应用In VEST模型中的碳储量模块对2013年锡林郭勒草原碳储量进行研究,从而探究In VEST模型在碳储量研究中的适用性。结果表明:(1)锡林郭勒草原各草地类型的地下碳储量明显多于地上碳储量;(2)草甸草原碳储量典型草原碳储量荒漠草原碳储量;(3)应用In VEST模型计算不同草地类型地上和地下碳储量,草甸草原分别为196.7 g?m~(-2)和1385.2 g?m~(~(-2));典型草原的分别为133.4 g?m~(-2)和688.9 g?m~(-2);荒漠草原的分别为56.6 g?m~(-2)和301 g?m~(-2)。应用In VEST模型计算出来的碳储量值与前人采用实地采样得出的结果基本一致,所以In VEST模型对于草原区碳储量的研究具有一定的适用性。  相似文献   

14.
中原城市群区域碳储量的时空变化和预测研究   总被引:5,自引:0,他引:5  
为了有效评估中原城市群碳储量,运用灰色预测模型获取动态碳密度数据,结合Dyna-CLUE模型和InVEST模型,动态评估2005~2030年土地利用变化下不同情景的碳储量演变特征,以及城市发展对碳储量的影响.结果表明,2005~2020年中原城市群碳储量分别为1689.59×106t、2035.36×106t、2066.34×106t和2093.05×106t,呈现持续增加趋势;2030年经济发展情景、生态保护情景和经济生态协调发展情景下碳储量分别为2162.45×106t、2179.39×106t和2174.28×106t,经济发展情景下碳储量最低,生态保护情景下碳储量最高.碳储量变化与土地利用面积变化密切相关,主要表现为耕地面积的下降导致其碳储量减少约250×106t,林地面积的扩张导致其碳储量增加约103.4×106t,建设用地的扩张导致其碳储量增加约87.77×106t;耕地和草地面积与总碳储量呈较弱的负相关关系,林地、水域、建设用地和未利用地面积与总碳储量呈较强的正相关关系.2005~2030年中原城市群30个城市的碳储量分别为11.38×106t~214.24×106t,碳储量的变化反映出城市土地碳排放在2030年之前已经达到峰值,且经济生态协调发展情景可能更适合未来城市发展的目标.  相似文献   

15.
耦合InVEST与GeoSOS-FLUS模型的桂林市碳储量可持续发展研究   总被引:3,自引:0,他引:3  
为了量化桂林市碳储量并快速评估分级保护措施对区域碳储功能的影响,耦合InVEST模型碳储存模块和GeoSOS-FLUS模型,并基于土地利用数据和不同情景未来土地预测结果,对2000~2040年桂林市域范围六区十一县市内的碳储时空特征进行分析.结果表明:桂林市2000年、2010年和2020年的总碳储量分别为554.02×106t,553.58×106t,550.21×106t,呈现“逐年下降”的变化态势.同时,受人类活动和土地利用类型变化的影响,桂林市域各区县的碳储水平存在较大的时空差异,碳储量整体表现为“西北、西南及东部较高,东北、东南及中部较低”的空间分布特征.将桂林市碳储量高值区确定为碳储资源的优先保护区域,与自然变化情景相比,资源保护情景下桂林市林地得到有效保护,建设用地规模扩大受到限制.采取资源保护措施后,桂林市2040年总碳储量达到552.16×106t,较2020年增加了1.95×106t,中低密度碳储区所占比例明显下降,区域固碳能力大大增强.该研究结果可为桂林市国家可持续发展示范城市建设提供指导,也可为碳储资源精准保护和土地利用管理决策提供科学参考.  相似文献   

16.
郑慧玲  郑辉峰 《环境科学》2024,45(4):2321-2331
土地利用/覆被变化会增加区域碳储量或引发碳损耗,进而影响全球气候.研究湾区土地利用与碳储量变化的影响机制,对区域生态系统保护及社会经济可持续发展具有重要意义.基于InVEST模型和PLUS模型,分析了粤港澳大湾区土地利用与碳储量的动态变化特征及影响机制,进一步模拟预测了2030年3种发展情景(自然趋势情景、建设用地优先情景和生态优先情景)下土地利用类型变化对碳储量的影响.结果表明:(1)2000~2020年粤港澳大湾区的耕地(减少5.38%)和建设用地(增加8.68%)变化最显著,其余用地类型的变化较小.林地作为大湾区的主要用地类型,同样也是重要的碳库,空间上集中分布于东、北、西三面的台地和丘陵地区,碳储存低值区集中于中部平原,以建设用地为主.(2)受不同用地类型相互转化的影响,粤港澳大湾区的碳损失了20.12×106 Mg.耕地和林地面积的减少以及建设用地面积的增加是碳损耗的主要原因.(3)模拟研究发现生态保护措施将有效提高区域碳储量.具体来说,当耕地、林地和草地向建设用地的转化减少20%,湿地和水体向建设用地的转化减少30%时(生态优先情景),区域碳储量可增加2.58×106 Mg...  相似文献   

17.
官厅水库是北京市及其周边地区重要的水源地之一,曾因水质污染严重而被迫退出北京市饮用水供应系统,经过全面治理后于2007年恢复成为北京市备用水源地.为了从整体上定量分析官厅水库流域生态系统的产水和水质净化服务,基于InVEST模型,选择官厅水库退出北京市饮用水供应系统和恢复成为北京市备用水源地为时间节点,定量评估1995-2010年官厅水库流域生态系统的产水量和TN、TP输出量,分析其产水服务和水质净化服务的时空变化.结果表明:1995-2010年,官厅水库流域产水服务表现为先减弱后增强,但整体呈减弱趋势,流域产水量由1995年的18.85×108 m3降至2010年的14.33×108 m3,产水服务减弱24.0%.水质净化服务表现为先减弱后增强,但整体呈增强趋势,流域的TN、TP输出量分别由1995年的4028.7、379.7 t降至2010年的3611.4和354.0 t,TN、TP净化服务分别增强10.4%和6.8%.研究显示,气候变化和土地利用变化是导致官厅水库流域产水服务发生改变的主要原因,不同时期的水资源保护政策导向也与水质净化服务变化趋势相吻合.   相似文献   

18.
徐自为  张智杰 《环境科学研究》2018,31(11):1909-1917
为全面认识干旱区不同土地利用类型时空变化对区域生态系统碳储量的影响,以地处塔克拉玛干沙漠边缘生态脆弱区的新疆尉犁县为研究对象,基于详细的土地利用变更调查数据(2010-2016年),利用ArcGIS平台和InVEST模型,分析生态系统碳储量对土地利用变化尤其是二级土地利用类型变化的响应.结果表明:①研究区内,无论是区域平均碳密度还是灌木林地、其他林地、其他草地等主要土地利用类型的碳密度均较低,而面积较少的有林地和天然牧草地碳密度相对较高,因此对这些土地利用类型应着重加强保护.②2010-2016年新疆尉犁县碳存储量净减少24.23×104 t,这主要是由于其他草地、其他园地和果园等土地利用类型被开垦为水浇地,或被建设用地、交通用地占用所导致,而同时研究区内有林地和水浇地面积增加带来了碳储量的提高.③从空间变化看,受不同区域土地利用变化方式的影响,碳储量变化特征也有显著差异,但总体上变化敏感区域集中在塔里木河周边县、乡镇及兵团所在地等人类活动聚集区,这些区域平均碳密度较高,土地利用变化也更为剧烈.④尽管由于开垦行为带来耕地面积增加,从而使得研究区耕地总碳储量增加242.77×104 t,但由于塔里木河沿岸碳密度较高的耕地被建设用地占用,新增耕地多来源于土壤碳储量较低的其他草地等土地利用类型,导致耕地平均碳密度有所下降.研究显示,建设用地占用耕地、林地、草地等地类是尉犁县碳储量减少的重要原因,而林业建设能够带来碳储量增加.因此建议:一方面,推进林、草地建设提高区域生态系统固碳能力;另一方面,重点保护塔里木河周边碳密度较高区域,严控耕地开垦或建设用地占用,同时加强耕地保护,防止通过补充碳密度较低的耕地来弥补碳密度较高区域耕地的流失.   相似文献   

19.
基于1990~2020年四平市土地利用类型数据,运用GeoSOS-FLUS模型,设定自然发展、耕地保护和生态优先三种情景,模拟不同情景下2030年四平市土地利用空间格局,同时结合InVEST模型定量分析研究区1990~2020年碳储量的时空分异特征,并探讨不同情境下土地利用变化对碳储量的影响,评估未来碳储量的潜力.结果表明:1990~2020年四平市耕地和林地分别减少了951.5 5km2和357.54km2,且以1990~2000年间的降幅最大.草地和建设用地呈增加趋势,分别增加了702.97km2和587.64km2.2030年在生态优先情景下,林地呈扩张态势,耕地有少量增加,在耕地保护情景下,耕地数量得到有效保障,而林地和草地有不同程度缩减.建设用地在三种情景下都呈现扩张的趋势,在自然发展情景下增长幅度最大.1990~2020年,四平市陆地生态系统的总碳储量及平均碳密度呈连续减少的势态,以1990~2000年的降幅最大,主要原因是该时段内土地利用变化以耕地的减少和建设用地的增加为主.四平市碳储...  相似文献   

20.
基于InVEST模型的北京山区森林生态系统碳储量评估分析   总被引:1,自引:0,他引:1  
本文基于北京山区遥感影像数据和标准样地调查数据,利用In VEST模型碳储量模块,评估分析了北京山区森林生态系统的碳储量。结果表明,北京山区森林生态系统的平均碳密度为99. 95 Mg/hm~2,其中乔木层、灌木层、草本层、凋落物层和土壤层平均碳密度分别为10. 51、3. 16、0. 86、8. 61、76. 81 Mg/hm~2。植被碳密度与土壤碳密度呈现显著正相关关系,土壤碳密度与凋落物碳密度呈现显著正相关关系。各林分类型平均碳密度表现为落叶针叶林(153. 99 Mg/hm~2)针阔混交林(132. 45Mg/hm~2)落叶阔叶林(125. 10 Mg/hm~2)常绿针叶林(111. 78 Mg/hm~2)灌木林(72. 26 Mg/hm~2)。北京山区森林生态系统总碳储量为77. 41 Tg,其中乔木层、灌木层、草本层、凋落物层和土壤层的碳储量分别为8. 14、2. 45、0. 67、6. 67、59. 48 Tg。各林分类型总碳储量表现为落叶阔叶林(43. 23 Tg)灌木林(25. 90 Tg)常绿针叶林(6. 21 Tg)针阔混交林(1. 42 Tg)落叶针叶林(0. 65 Tg)。落叶阔叶林和灌木林是北京山区森林生态系统碳储量的主要贡献者,分别占55. 84%和33. 46%。在北京山区各个区县中,怀柔区碳储量最高(15. 37 Tg),平谷区碳储量最低(4. 89 Tg)。北京山区森林生态系统碳储量分布不均,总体表现为北京山区北部区县较高,西部区县偏低,中部和东部最低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号