首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
低浓度氯苯废水在曝气生物填料塔中的降解   总被引:3,自引:1,他引:2  
研究了曝气生物填料塔处理难生化降解化合物氯苯的特性,得出初始浓度为15mg/L的氯苯废水的适宜运行条件为:溶解氧约为5.5mg/L,水力停留时间约为5h,葡萄糖浓度为800mg/L,在此条件下单独用生物填料塔处理60h降解率可达16.80%。并考察了氯苯废水用超声预处理后生物降解与直接用生物降解比较,结果表明超声预处理可大大提高氯苯的可生物降解性,在30kHz+60kHz+100kHz的频率组合下超声预处理2h后再生物降解38h,氯苯的降解率可达70.12%。  相似文献   

2.
为了实现4-氟苯酚(4-FP)废水的快速持续降解,本文构建了光催化与生物膜直接耦合系统.该耦合系统由N掺杂TiO2涂覆光催化光纤束、生物膜、核孔膜和紫外-可见LED光源构成.实验研究了单独光催化、单独微藻生物膜及光催化-生物膜耦合3种体系对4-FP的降解性能.研究发现:光催化系统降解4-FP速率慢、脱氟效率低,12h内降解率为94.3%,脱氟率仅为24.7%.微藻生物膜在第一个周期内对4-FP的降解性能高于单独光催化,10h内降解率达到98.9%,脱氟率达到90.9%,但3个周期后4-FP降解率降低至75.5%,脱氟率降低至69.5%.在耦合系统中,生物膜中微生物种群发生了自适应调整,富集了大量的红球菌、假单胞菌和无色杆菌,导致了光催化、生物降解及光合作用三者亲密协作,实现了4-FP快速持续地降解,运行12个周期后,5h即可将4-FP完全降解,同时溶解有机碳及脱氟率分别达到89.4%和78.3%.  相似文献   

3.
纳米TiO2光催化降解海洋石油污染   总被引:1,自引:1,他引:0  
以紫外灯为光源,考察了自制纳米TiO2在TiO2/H2O2光催化体系中降解海洋石油污染的效率.研究光催化降解催化剂用量、溶液pH值、污染物浓度以及催化时间等因素对光催化降解海洋石油污染的影响。结果表明,纳米TiO2/H2O2光催化体系能有效降解海洋石油污染,且比单独使用纳米TiO2光催化效果好,纳米TiO2光催化/H2O2体系中由于在紫外光的照射下H2O2分解为大量的.OH从而使得降解效率在短时间内大大提高。优化的光催化降解条件为:降解1 L油污染海水的催化剂用量为10 mg、油污染海水的初始浓度为120 mg/L、催化时间为30 min,当pH=6~7时,加入H2O2的体积(质量浓度为60%)为10 mL,油污染海水的降解率可达98.12%。  相似文献   

4.
作者以热解法制备生物炭负载铁锰氧化物复合材料,将其用于去除水体中的环丙沙星(CIP)。通过扫描电镜、X射线光电子能谱、氮气吸附-脱附曲线、红外光谱和拉曼光谱对材料进行表征,同时探究材料投加量、CIP初始浓度、溶液pH值和反应时间对CIP去除的影响。实验结果表明,复合材料投加量为0.05 g/(100 mL),CIP初始浓度为5 mg/L,pH值为5时,BCFe_(0.5)Mn_1的去除率达80.85%,且复合材料中Fe/Mn高不利于CIP的去除,BCFe_1Mn_(0.5)的去除效率甚至低于BC的去除效率。活性因子捕获试验、吸附/脱附试验,以及电子顺磁共振结果表明,CIP的去除过程既包括吸附,也包括降解,而降解是体系中存在的活性物质导致的。·OH、·O~(2-)和~1O_2是CIP去除过程的主要活性因子,其中·O~(2-)和~1O_2的影响更为显著。  相似文献   

5.
对生物膜填料塔净化低浓度甲苯废气进行研究,结果表明,构成生物膜的假单胞菌属中的短杆菌对废气中甲苯有很强的生物降解能力,每升体积的生物膜填料对甲苯的生化去除量最大可达104.4mg/h,且当入口气体甲苯浓度低于约2.0mg/L时,单塔净化效率可保持在80%以上.甲苯在生物膜内的一级和零级表面生化降解反应速度常数分别为K_(1a)=0.1802m/h和K_(0a)=193.61mg/m~2·h,反应级数的转换约在其液相浓度为0.8~1.2mg/L(相当于气相浓度约1.7~2.1mg/L)时发生.  相似文献   

6.
方苗苗  阎宁  张永明 《环境科学》2012,33(2):488-494
吡啶是一种难降解的含氮杂环化合物,难以用单一的生物方法使其有效降解.本研究采用气升式内循环紫外光辐射与生物膜一体化反应器,通过单独紫外辐射降解(photolysis,P)、单独生物降解(biodegradation,B)以及紫外辐射与生物同步耦合降解(photobiodegradation,P&B)3种方法对吡啶进行间歇降解和连续降解,以比较吡啶的降解规律.结果表明,间歇降解过程中,方法 P&B对吡啶的降解速率最快,其次是方法 B,而方法 P的速率最慢.初始浓度为100 mg.L-1的吡啶溶液分别采用方法 P、B和P&B进行间歇降解,其去除速率分别是:4.95、10.2和14.58 mg.(L.h)-1.根据Monod模型求解出吡啶在方法 B和方法 P&B降解下的动力学方程,其饱和常数KS从1 920.4 mg.L-1下降至1 094.1 mg.L-1.采用连续流方式对进水浓度分别为50、100和300 mg.L-1的吡啶溶液分别采用方法 P、B和P&B进行降解,其单位体积平均体积去除速率分别是:15.8(P)、23.1(B)和24.9 mg.(L.h)-1(P&B),且高于间歇降解方法.研究结果表明,紫外辐射与生物膜同步耦合,可以缓解吡啶对生物膜的抑制,并且生物仍能保持其降解吡啶的生物活性,从而提高吡啶生物降解的速率.  相似文献   

7.
环丙沙星对膜生物反应器运行效能的影响及其去除特性   总被引:2,自引:2,他引:0  
采用膜生物反应器(membrane bioreactor,MBR)处理含环丙沙星(ciprofloxacin,CIP)的模拟废水,考察了不同CIP投加浓度(0、5、10 mg·L~(-1))下的污染物去除效果和微生物群落的变化.结果表明,随着CIP投加浓度从0 mg·L~(-1)增加至5 mg·L~(-1)再增加至10 mg·L~(-1),反应器中污泥浓度呈现先减少后波动平衡的趋势;COD和TOC平均去除率分别从98.40%和97.80%下降至84.20%和94.10%,表明CIP对有机物去除有所影响但影响程度不大;氨氮去除效率受CIP投加浓度的影响较大,随着CIP投加浓度从0 mg·L~(-1)增加至5 mg·L~(-1)再增加至10 mg·L~(-1),氨氮去除效率从96.91%降低至84.14%再降低至77.80%,亚硝化单胞菌属(Nitrosomonas)、产碱菌属(Alcaligenes)、硝化螺旋菌属(Nitrospira)和硝化杆菌属(Nitrobacter)的活性明显下降;而CIP去除率总体呈现先增后减的趋势.物料衡算分析表明,MBR中CIP的去除主要是通过生物降解和污泥吸附,在CIP投加浓度为5 mg·L~(-1)时分别去除了30.13%和0.25%的CIP,在CIP投加浓度为10 mg·L~(-1)时分别去除了7.55%和1.81%的CIP.  相似文献   

8.
萃取膜生物反应器处理苯酚废水的试验研究   总被引:2,自引:0,他引:2  
戴宁  张晟禹  张凤君  李隋  赵文生 《环境科学》2008,29(8):2214-2218
从经过驯化的活性污泥中筛选出苯酚降解菌.制备成菌悬液,对比活性污泥体系和菌悬液体系的萃取膜生物反应器(EMB)对苯酚废水的处理效果,考察了料液苯酚浓度、反应器温度等因素对膜萃取速率及生物降解效果的影响.结果表明,通过以苯酚为唯一碳源,逐渐提高苯酚浓度的方法对活性污泥进行驯化.当进水苯酚浓度为700 mg·L-1时,苯酚去除率达99%以上;适当提高反应器温度和料液初始浓度有利于提高膜萃取速率;当初始料液苯酚浓度为2000 mg·L-1时,膜萃取速率高于生物降解速率,生物相中产生苯酚积累;菌悬液体系EMB的生物膜厚度明显小于活性污泥体系,且水力反冲洗可有效控制生物膜厚度.对苯酚生物降解产物的GC-MS分析结果表明,苯酚的生物降解较彻底,基本无苯酚中间产物的残留.  相似文献   

9.
微生物降解苯酚废水的特性研究   总被引:9,自引:0,他引:9  
通过对驯化微生物处理苯酚模拟废水的研究,考察了苯酚初始浓度、菌种投加量、葡萄糖添加量、废水pH值、反应温度等因素对苯酚降解效果的影响.结果表明,当苯酚浓度大于500mg/L时开始表现出对微生物的抑制作用,浓度高于700mg/L以后微生物降解效果不理想;当苯酚浓度为500mg/L时,微生物接种量大于400mg/L可获得最大降解速率;适量添加葡萄糖可促进微生物对苯酚的降解,但浓度超过0.2g/L以后由于底物竞争会对苯酚的降解形成抑制;生物降解苯酚的适宜pH值和温度范围分别为5.5~6.5和30~35℃.  相似文献   

10.
微波辅助光催化降解水中苯酚   总被引:8,自引:0,他引:8  
洪军  刘亚子  杨绍贵  孙成 《环境科学》2006,27(9):1808-1813
利用改装的家用微波炉、微波无电极灯(EDLs)和TiO2催化剂研究了水溶液中苯酚的光催化降解效果.结果表明,反应30 min,微波辅助光催化(MAPC)能去除92%的苯酚,溶液总有机碳(TOC)减少84%.MAPC的最佳反应条件为:苯酚初始浓度10 mg/L,微波功率900 W,反应液体积50 mL,EDLs-3,催化剂用量1~4 g/L,循环态流速15 mL/min.MAPC处理含酚废水具有较好的应用潜能.  相似文献   

11.
矿物油污染土壤中芳烃组分的生物降解与微生物生长动态   总被引:10,自引:4,他引:6  
以石油污染土壤中分离的细菌和真菌为供试微生物,研究不同微生物组合对矿物油芳烃组分降解及降解率与微生物生长间的关系.将不同组合的微生物接种到加有柴油浓度为1 000mg/L的液体培养基中,25~30℃经摇床连续培养100d.于0~60h内连续取样,进行微生物生长动态检测;于5~100d定期取样,研究微生物生长状况与矿物油降解率动态变化.同时,以草甸棕壤(0~20cm)制备的土壤悬浮液为土壤微生物对照,以灭菌培养基为非生物降解对照.结果表明,试验前期(约20d)外源菌的降解效果优于土壤微生物,试验中、后期,土壤微生物降解优势增大且保持持续.试验结束时,土壤微生物处理的液体培养基中芳烃降解率最高达79.24%,显著高于其它3组处理.  相似文献   

12.
全氟辛酸(PFOA)的可生物降解性对阐明其环境归趋具有重要意义.根据前人的还原降解研究成果,采用PFOA摩尔回收率、氟离子浓度、乙酸根浓度、2H-PFOA[F(CF_2)_6CHFCOOH]浓度和短链(C8)全氟羧酸(PFCAs)浓度的变化等作为指标,研究PFOA的厌氧可生物降解性.结果表明,活菌降解样中PFOA摩尔回收率由培养期初(3d)的101%±5%降至培养期末(250 d)的85.6%±3.9%,而氟离子浓度则由培养期初(3 d)的0.59 mg·L~(-1)±0.02 mg·L~(-1)增至培养期末(250 d)的0.63 mg·L~(-1)±0.02 mg·L~(-1),且检出了一定量的乙酸根、2H-PFOA和短链PFCAs,但是这却和其对照样中相应指标的变化类似,且不存在显著性差异.由此可见,尽管热力学计算结果表明还原脱氟产生的热量足够维持微生物生命活动,但在本研究的实验条件下却并没有发现PFOA可被生物降解的证据.  相似文献   

13.
生物法降解高氯酸盐及其优化研究   总被引:7,自引:2,他引:5  
钱慧静  奚胜兰  何平  徐新华 《环境科学》2009,30(5):1402-1407
利用经过驯化处理的厌氧活性污泥来处理高氯酸盐废水,以醋酸根为碳源,通过摇床实验考察了碳源浓度、pH值、生长温度、泥量和溶解氧等因素对高氯酸盐降解率的影响,初步确定最佳反应条件.结果表明,在35℃、初始pH值为 8.0的条件下,添加1.2 g/L的醋酸根,1.0 g厌氧培养的活性污泥能将50 mg/L的高氯酸盐完全降解.体系中的溶解氧会抑制高氯酸盐的降解.此外,还考察了生物膜柱反应器连续处理高氯酸盐模拟废水的效果,结果表明完全降解高氯酸盐的最小停留时间为6 h.  相似文献   

14.
为解决微污染水体因低碳氮比而导致脱氮效率差的问题,本文选择聚丁二酸丁二醇酯(PBS)、聚ε-己内酯(PCL)和聚乳酸(PLA)3种生物可降解聚合物,对比其作为填充床反应器的膜载体与反硝化固相碳源的反硝化效果。结果表明:在进水TN质量浓度维持在1 4.31~1 9.21 mg/L,HRT为1.0 h时,PBS填充床的TN平均去除率为94.95%,优于PC L.的84.46%,PLA未能维持良好去除率;PBS与PCL.填充床的平均反硝化速率(以NO_3-N计)分别为1 2.1 4、1 0.11 mg/(L·h),二者出水溶解性有机碳(DOC)先上升后降低至1.3 mg/L,表明二者可被微生物降解,是良好的反硝化固相碳源;PBS与PCL.填充床出水NO_2-N浓度0.1 0 mg/L,NH_3-N浓度0.45 mg/L,出水效果良好,不会造成二次污染;3种固体碳源反应前后质量下降不明显,表明其化学结构未发生显著变化;电子扫描显微镜(SEM)扫描显示PBS和PCL反应表面空隙率较高,反应后被腐蚀痕迹明显,表明二者适合作为生物膜载体供微生物附着生长,PLA表面变化不明显。  相似文献   

15.
光合细菌对2,4,6-三氯苯酚的降解特性研究   总被引:3,自引:1,他引:2       下载免费PDF全文
研究了混合光合细菌PSB-DR在不同光照、接种量和pH值下对2,4,6-三氯苯酚(2,4,6-TCP)的生物降解特性,确定了PSB-DR生物降解2,4,6-TCP的优化控制条件.结果表明,光照培养下,接种量30%,初始pH值7.0时2,4,6-TCP降解效率最高.在此条件下,50mg/L的2,4,6-TCP经5d后降解率达到82.3%.培养基中醋酸钠的加入对2,4,6-TCP降解有明显的抑制作用.PSB-DR静息细胞对2,4,6-TCP的降解符合高浓度底物抑制的酶促反应类型,其降解动力学参数rmax=1.746h-1,Km=38.333mg/L,Ki=260.87mg/L.  相似文献   

16.
扑热息痛高效降解菌的选育及其生物强化效果   总被引:6,自引:0,他引:6  
从制药厂废水生物处理系统活性污泥中经长期富集培养,分离、筛选得到5株扑热息痛高效降解菌。在扑热息痛浓度为1000mg/L的选择性培养基中,菌析Pl在摇床培养20h后,细胞数达到10^9/mL,对扑热息痛的降解率达到96.30%。在生物降解性能预测实验中,菌株Pl对含扑热息痛废水COD的去除率也明显高于其它来源的增生物,为了实现降解菌的资源化应用,试验将所分离得的各扑热息痛降解菌制成混合菌液投加于处理含扑热息痛等多种复杂的污染物废水的组合生物膜法和SBR法废水处理装置中,考察投菌量与生物强化效果的关系,结果发现:在投菌量为处理系统有效容积的0.20%(V/V),进水COD在440.33-1036.77mg/L之间波动时,生物强化效果显著。  相似文献   

17.
为了研究环境激素4-t-OP(对叔辛基酚)的生物降解,从扬州市汤汪生活污水处理厂二沉池污泥中筛选得到1株能以4-t-OP为唯一碳源进行生长的降解菌株,标示为TW30,16S rRNA测试其为不动杆菌属(Acinetobacter sp.),通过摇瓶试验测试其降解活性.结果表明:在40℃、初始pH为6.0、ρ(4-t-OP)为5 mg/L的无机盐培养基中,5 d后降解率可达99.03%;降解过程满足一级反应模型,降解速率常数(k)为0.875 d-1,半衰期(t1/2)为0.8 d.这说明TW30是一株高效的4-t-OP降解菌.此外,培养温度的升高和额外Ca2+、Mn2+的加入可以提高TW30降解4-t-OP的效率,而在5~25 mg/L范围内提高初始ρ(4-t-OP)以及额外加入磷酸盐、NH4+、Mg2+、Fe2+、Na+、Zn2+、Cu2+等无机盐和葡萄糖、CH3COO-等碳源则会降低降解率.   相似文献   

18.
印染废水中的壬基酚聚氧乙烯醚(nonylphnol polyethylene ether, NPEO)在生化处理过程中会产生雌激素活性更强的壬基酚(NP)等中间产物,导致处理后印染废水内分泌干扰毒性升高.为探索以NPEO和NP为降解靶点进行菌群生物强化脱毒的可行性,分别以NPEO和NP驯化富集印染活性污泥,并将得到的降解菌群以单独和组合投加方式进行生物强化试验,考察强化控毒效果.结果表明:(1)NPEO降解菌群(NPEB)和NP降解菌群(NPB)中的优势菌均为Proteobacteria,二者对10 mg/L NPEO和NP的48 h去除率均高于98%.(2)单独或组合投加5 mg/L的NPEB和NPB至混合液悬浮固体浓度(MLSS)为500 mg/L的活性污泥体系,均能显著提升活性污泥对不同浓度(10和1 mg/L) NPEO的降解性能,大幅缩短NPEO降解过程中雌激素活性的变化周期,并使体系的雌激素活性维持在较低水平.(3)当降解体系中加入1 000 mg/L葡萄糖作为额外碳源时,NPB的强化性能被完全抑制,而NPEB在降解性能受抑的情况下仍能增强活性污泥的NPEO降解速率并缩短控...  相似文献   

19.
生物阳极及其反转为生物阴极降解氯霉素   总被引:1,自引:1,他引:0  
孔德勇  梁斌  云慧  王爱杰  任南琪 《环境科学》2015,36(4):1352-1358
为了探讨生物阳极能否降解氯霉素以及生物阳极反转为生物阴极后能否替代生物阴极,通过驯化生物阳极降解氯霉素和生物阳极反转为生物阴极的实验,表明生物阳极经过长期氯霉素浓度梯度增加(5~80 mg·L-1)的驯化,具有较好产电能力的同时,对氯霉素也具有一定的降解能力(k=0.098 5).生物阳极反转为生物阴极后并将电位恒定在-0.40 V vs.SHE时,该生物阴极相对于反转前生物阳极的电位(-0.20 V vs.SHE)有了明显的降低,导致微生物活性受到一定的影响,但阴极生物膜仍具有较强的催化降解氯霉素的能力,其还原降解速率常数k为0.264 3,明显高于非生物阴极对照(k=0.160 9).生物阳极反转生物阴极的模式不仅实现了氯霉素的硝基还原,而且发生了芳香胺产物侧链的完全脱氯和羰基还原反应.  相似文献   

20.
李强  赵越  田雪  熊思  卢晓维  林爱军 《环境科学研究》2015,28(12):1917-1922
为降低PAHs对微生物的毒性,促进PAHs的降解,采用TPPB技术(two-phase patitioning bioreactor,两相分配生物反应器)对芘进行降解,研究了不同有机相(硅油、十二烷、十一醇、癸烷、十六烷、十八烷)、ρ(芘)、φ(有机相)和扰动速率对芘降解的影响. 结果表明:当φ(有机相)为10.0%、ρ(芘)为100~1 000 mg/L时,T0(纯水相)及T1(水-硅油)、T2(水-癸烷)、T3(水-十二烷)、T4(水-十一醇)、T5(水-十六烷)和T6(水-十八烷)体系中芘的降解率分别为92.5%~13.9%、69.3%~20.1%、79.6%~23.3%、81.9%~26.9%、86.7%~28.1%、87.7%~34.1%、89.6%~27.4%. ρ(芘)较低时,TPPB抑制了芘的降解;ρ(芘)较高时,TPPB则能促进芘的降解. 6种有机相中,十六烷对芘降解的促进效果最优. 最优φ(有机相)的确定和ρ(芘)有关,ρ(芘)为200 mg/L时,最优φ(十八烷)、φ(十六烷)、φ(十一醇)分别为5.0%、2.5%和5.0%;ρ(芘)为1 000 mg/L时,其均为20.0%. 液体扰动速率的提高能促进芘的降解,液体扰动速率为50~200 r/min时,T6和T5体系中的芘的降解率分别为50.1%~75.6%和54.1%~79.1%. 研究显示,TPPB技术是一种潜在治理高浓度PAHs污染的有效途径,TPPB的优化是多种影响因素综合作用的结果.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号