首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fixation of heavy metals in the slag produced during incineration of sewage sludge will reduce emission of the metals to the atmosphere and make the incineration process more environmentally friendly. The effects of incineration conditions (incineration temperature 500-1100°C, furnace residence time 0-60min, mass fraction of water in the sludge 0-75%) on the fixation rates and species partitioning of Cd, Pb, Cr, Cu, Zn, Mn and Ni in slag were investigated. When the incineration temperature was increased from 500 to 1100°C, the fixation rate of Cd decreased from 87% to 49%, while the fixation rates of Cu and Mn were stable. The maximum fixation rates for Pb and Zn and for Ni and Cr were reached at 900 and 1100°C, respectively. The fixation rates of Cu, Ni, Cd, Cr and Zn decreased as the residence time increased. With a 20min residence time, the fixation rates of Pb and Mn were low. The maximum fixation rates of Ni, Mn, Zn, Cu and Cr were achieved when the mass fraction of water in the sludge was 55%. The fixation rate of Cd decreased as the water mass fraction increased, while the fixation rate of Pb increased. Partitioning analysis of the metals contained in the slag showed that increasing the incineration temperature and residence time promoted complete oxidation of the metals. This reduced the non-residual fractions of the metals, which would lower the bioavailability of the metals. The mass fraction of water in the sludge had little effect on the partitioning of the metals. Correlation analysis indicated that the fixation rates of heavy metals in the sludge and the forms of heavy metals in the incinerator slag could be controlled by optimization of the incineration conditions. These results show how the bioavailability of the metals can be reduced for environmentally friendly disposal of the incinerator slag.  相似文献   

2.
The fates of radioactive cadmium, strontium, cesium, cobalt, arsenic, mercury, zinc, and copper spiked into sewage sludge were determined when the sludge was gasified by a process that maximizes production of char from the sludge (ChemChar process). For the most part the metals were retained in the char product in the gasifier. Small, but measurable quantities of arsenic were mobilized by gasification and slightly more than 1% of the arsenic was detected in the effluent gas. Mercury was largely mobilized from the solids in the gasifier, but most of the mercury was retained in a filter composed of char prepared from the sludge. The small amounts of mercury leaving the gasification system were found to be associated with an aerosol product generated during gasification. The metals retained in the char product of gasification were only partially leachable with 50% concentrated nitric acid.  相似文献   

3.
Acidic bioleaching of heavy metals from sewage sludge   总被引:2,自引:0,他引:2  
The overall objective of this study was to evaluate the use of controlled bio-acidification prior to land application as a decontamination process to remove heavy metals from sludge. The sulfur-oxidizing bacteria were naturally available in the sludge samples and were activated by providing sulfur and aeration at 28°C–30°C. Activation resulted in bio-acidification to pH 2 within 5–11 days. Successive inoculation of fresh sludges with 5% acidified samples reduced the acidification time to 2–3 days in most samples. Bio-acidification resulted in dissolving significant quantities of heavy metals from all sludge types tested. The maximum solubilization results were: 86%–97% for Ni; 48%–98% for Pb; 26%–71% for Cr; 18%–91% for Zn; 16%–90% for Cu; 7%–60% for Cd. Limited metal solubilization results were observed in the various control samples that accompanied the bio-acidified samples. The leaching results in the control samples were limited to 2%–19% for Ni, 0%–7% for Pb, 0%–5% for Cr, 0.3%–4% for Zn, 0.2%–4% for Cu and 0%–3% for Cd. The results confirmed that Ni and Pb were the easiest metals to dissolve from the various sludge types. On the other hand, the lowest solubilization results were observed for Cu and Cd, and moderate solubilization results were achieved for Cr. The bio-acidification process resulted in moderate gains in terms of improving the suitability of tested sludges for land application. Received: April 19, 1999 / Accepted: November 4, 1999  相似文献   

4.
As a result of a demonstration project partly sponsored by the United States Environmental Protection Agency in cooperation with the Indianapolis Center for Advanced Research, the City of Indianapolis, Indiana, realized a 34% fuel savings for sewage sludge incineration. At the same time, sludge throughput was increased 10%. In addition to these proven savings, operational downtime for repairs was reduced, maintenance costs were reduced, and air pollution was reduced. The air pollution reduction allowed Indianapolis to cancel a $3,000,000 construction program for air pollution abatement.Other cities incinerating sewage sludge in the United States that have initiated the fuel efficient mode of operation have saved even more fuel than Indianapolis. Nashville, Tennessee, reduced its fuel usage 40%; Buffalo, New York, reduced its fuel usage 47% from design expectations; Hartford, Connecticut, reduced its fuel usage 51 %; and Jacksonville, Florida has reduced its fuel usage over 50%.These savings result from installing additional instrumentation and controls (often not required at newer facilities), modifying the incinerator operating methods, and training the operators to operate the facilities more efficiently. At Indianapolis, it cost $20,000 per incinerator for instrumentation and operator training. This was an older plant and required a maximum amount of new controls and instrumentation; however, the payback for this $20,000 was less than three months due to the reduction in fuel use based on an oil price of $0.264 per litre ($1.00 per gallon). In the other cities where instrumentation controls were adequate, the cost for developing the now operating mode and training the operators averaged $75,000 per city.  相似文献   

5.
This study investigates the characteristic of heavy metals (Pb, Zn, Cu, Cd, Cr, Ni and As) in biochar derived from sewage sludge at different pyrolysis temperatures (300, 400, 500, 600 and 700 °C). The heavy metal concentrations, chemical speciation distribution, leaching toxicity, and bio-available contents were investigated using ICP-OES after microwave digestion, a sequential extraction procedure recommended by the Community Bureau of Reference (BCR), an improved nitric acid–sulphuric acid method, and diethylenetriamine pentaacetic acid (DTPA) extraction method, respectively. The results showed that a great percentage of the heavy metals remained in biochar, the concentrations of heavy metals in biochar (except Cd in B7) were higher than that in sludge, and the enrichment of the heavy metals in biochar enhanced with the pyrolysis temperature. Although the effect of pyrolysis temperature on the chemical speciation distribution, the leaching toxicity and the bio-available contents of heavy metals in biochar was inconsistent, the potential risk of biochar on soil and groundwater contamination was lower than sewage sludge.  相似文献   

6.
In this paper, emission and distribution behavior of six heavy metals (As, Cd, Cr, Ni, Pb, and Hg), particulate matter and mass distribution of mercury within the different streams of a fluidized bed sewage sludge incinerator are presented. At the inlet of air pollution control devices (APCDs); Cd, Cr, Ni and Pb were mainly enriched in coarse particles; comparatively As content was higher in fine particles (<PM2.5). The concentration of heavy metals in total particulate matter and PM2.5, at the inlet of APCDs, were in the order of Cr > Ni > Pb > As > Cd. Mercury was almost always distributed in flue gas. Metals, other than mercury, were efficiently removed in APCDs and their concentrations in bottom ash, with fly ash being higher, whereas for that in wastewater, then waste sand was lesser. Overall mercury removal efficiency of APCDs was 98.6 %. More than 83.3 % of mercury was speciated into oxidized form at the inlet of APCDs, attributed by higher chlorine content in sludge. Mercury was mainly distributed in wastewater (78.4 %), wastewater from a spray dry reactor (16.8 %), fly ash in a hopper (3.4 %) and flue gas (1.4 %). This result is one of the first for data to be obtained; more experiments are required to control emission from such sources.  相似文献   

7.
Sewage sludge contains trace amounts of mercury, and sewage sludge incineration is a major source of mercury emissions. However, relatively few studies have reported on mercury emissions from sewage sludge incineration. Consequently, data on emissions from sewage sludge incinerators must be updated to estimate current emissions of mercury. In this study, we examined mercury emissions and speciation using continuous mercury analyzers in two incinerators. The mercury concentrations in stack gas from facilities A and B were 36.6 and 21.1???g/Nm3, respectively. As a result, the emission rate was calculated to be 0.282?C0.750?g/ton-dry sludge. Considering the total amount of sewage sludge incinerated in Japan, the mercury emissions from sewage sludge incinerators were estimated to be 0.49?C1.31?tons/year.  相似文献   

8.
9.
Knowledge of the behaviour of heavy metals in the combustion process is a most important factor in selecting disposal alternatives for waste materials. Accordingly, in this work, the vaporization behaviour of highly concentrated heavy metals (Pb, Zn, Cu and Cr) in tannery sludge were investigated experimentally. The sludge was spiked with various chlorine compounds (i.e. PVC, FeCl3, CaCl2 and NaCl) and pre-treated with phosphoric acid in order to evaluate the capacity of enhancement and weakening of the volatility of the heavy metals contained in tannery sludge. The experimental results show that the vaporization percentages increased with increasing ratio of Cl/sludge and temperature, and the accelerating and increasing effect of the addition of chlorides on the vaporization percentage of heavy metals was dependent on the release capacity of chlorine radicals. The vaporization percentages of lead and zinc increased by 15-20%, whereas those of copper and chromium increased by only about 3 and 10% at 800 degrees C. However, heavy metals were not expected to be completely released in the combustion process in spite of the high ratio of Cl/sludge. Alternately, heavy metals contained in tannery sludge can be immobilized effectively by pre-treatment with phosphoric acid. When the 85% phosphoric acid accounted for 10% of dry basis of tannery sludge, the phosphate-treated sludge showed the lowest vaporization percentage of about 3-15% with formation of Ca18Cu3(PO4)14, Ca9Cr(PO4)7, Ca19Zn2(PO4)14 and PbMgP2O7 in the bottom ash.  相似文献   

10.
Research and experimental studies were carried out in relation to reduction of hazardous elements contained in sewage sludge incineration ash. A questionnaire survey was conducted in 69 Japanese municipalities with sewage sludge incineration facilities. Selenium content in bag filter ash and ceramic filter ash was relatively higher than that in ash of cyclone and electrostatic precipitators. It was assumed that selenium vaporized in the furnace was due to adsorb in the fly ash on filter when passing through the low-temperature filter. To reduce high boiling point heavy metals in the ash, sewage sludge and incineration ash were heated up using a small muffle furnace. As the result, the chrome and nickel contents were reduced. A decrease in the surface area of ash and the reduction of elements occurred at the same time in sewage sludge and incineration ashes tested in this study.  相似文献   

11.
采用自制动态吸附柱考察了碱渣层对重金属离子(Cu2+、Zn2+和Cd2+)的吸附截留能力.实验结果表明,在高浓度和高水力负荷条件下,碱渣对Cu2+、Zn2+和Cd2+的最大吸附量分别可达194.451,24.245,11.036 mg/g,穿透时间均达 60 h 以上,饱和吸附时间超过 80 h.通过 Testier ...  相似文献   

12.
Journal of Material Cycles and Waste Management - The chemical states of arsenic contained in 4 kinds of sewage sludge incineration ash and insolubilized materials are analyzed using a leaching...  相似文献   

13.
With the increase in the number of municipal solid waste incineration (MSWI) plants constructed in China recently, great attention has been paid to the heavy metal leaching toxicity of MSWI residues. In this study, the effects of various parameters, including extractant, leaching time, liquid-to-solid ratio, leachate pH, and heavy metal content, on the release properties of Cd, Cr, Cu, Ni, Pb, and Zn from MSWI bottom ash were investigated. Partial least-squares analysis was employed to highlight the interrelationships between the factors and response variables. Both experimental research and geochemical modeling using Visual MINTEQ software were conducted to study the pH-dependent leaching behavior of these metals in fresh and weathered bottom ash, considering precipitation/dissolution and surface complexation reactions (adsorption by hydrous ferric oxide and amorphous aluminum oxide/hydroxide). The results showed that leachate pH was the predominant factor influencing heavy metal leachability. The leaching of Cu, Pb, and Zn was mainly controlled by precipitation/dissolution reactions, whereas surface complexation had some effect on the leaching of Cr, Cd, and Ni for certain pH ranges. The modeling results aggreed well with the experimental results. Part of this work was presented at the Fourth International Conference on Combustion, Incineration/Pyrolysis and Emission Control (i-CIPEC)  相似文献   

14.
通过对一例垃圾焚烧发电厂渗滤液处理站污泥进行鉴定,表明该部分污泥不属于危险固废,可以纳入焚烧炉与生活垃圾一起处理.鉴别结果为促进固体废物循环利用及同类企业合理处置渗滤液处理站污泥提供了借鉴.  相似文献   

15.
The sewage sludge cake (SSC) used in this study was provided by a K-wastewater treatment plant in Kyonggi-Do, Korea. The characteristics of the SSC, such as particle size, water content, and composition were analyzed. Both the Korea extraction test (KET) and the toxicity characteristic leaching procedure (TCLP) were used to estimate whether the SSC was hazardous. In thermal experiments, the temperature was varied in the range 400° to 900°C and the heating time was varied from 1 to 6 h. The effects of thermal treatment temperature and time were evaluated by turbidity tests on the resultant SSC. On a dry basis, SSC mainly consisted of combustible content (60.2%) and phosphorous (25.9%). The turbidity of SSC was initially estimated in terms of the sedimentation time. The turbidity of SSC decreased exponentially from 9873 FAU at 0 h to 986 FAU at 6 h, so that the sedimentation time of SSC was established as 6 h. From the results of the thermal treatment at 600°C, thermal time can be determined by 2h because the turbidity of SSC is decreased dramatically within 1h and is stabilized after 2h. The turbidity of SSC decreased when the thermal treatment temperature increased from 400° to 900°C. The turbidity after thermal treatment at 400°C for 2 h was 29 FAU and this became almost 10 FAU at 600°C. The SSC was not hazardous, because KET and TCLP analysis produced values that were smaller than the regulatory levels. Hence, it was concluded that SSC can be stabilized by thermal treatment and can be used as a recycled material.  相似文献   

16.
A thermodynamic calculation was carried out to predict the behavior and speciation of heavy metals (HMs), Pb, Zn, Cu, and Cd, during municipal solid waste (MSW) incineration with the different moisture levels. The calculation was based on the minimization of the total Gibbs free energy of the multi-components and multi-phases closed system reaching chemical equilibrium. The calculation also indicated the reaction directions and tendencies of HMs components. The impacts of chlorine additives (No PVC, 1%PVC, and 5%PVC) and moisture on the behavior of HMs were investigated at different temperature levels in the system (750 °C, 950 °C, and 1150 °C). Furthermore, because the incineration temperature falls down with the increase in moisture in waste, the co-influence of moisture and temperature in combusting MSW on the HMs was also studied with the given chlorine (as 1%PVC + 0.5%NaCl). The results showed that in the non-chlorine system, the impact of the moisture on Pb, Zn, and Cu was not significant, and the ratio of compound transformation was less than 10%, except the Cd compounds at 950 °C and 1150 °C. In the system with low chlorine (as 1%PVC) at constant temperature, the chlorides of HMs (Cd, Pb, Zn, and Cu) transferred to oxides, and when the content of chlorine rose up (as 5%PVC), the ratio of the chlorides of HMs (Cd, Pb, Zn, and Cu) transferring to oxides fell down noticeably. When the moisture varied together with the temperature, the Zn and Cu compounds transferred from chlorides to oxides with increase in moisture as well as decrease in temperature. At the temperature of 700–1000 °C, the impact of temperature on Pb and Cd was little and the moisture was the main factor; while at the temperature of 1000–1200 °C, the impact of increase in moisture and decrease in temperature on Pb and Cd was almost equal and reversed.  相似文献   

17.
An original integrated drying and incineration technique is proposed to dispose of sewage sludge with moisture content of about 80% in a circulating fluidized bed. This system combines a bubbling fluidized bed dryer with a circulating fluidized bed incinerator. After drying, sewage sludge with moisture less than 20% is transported directly and continuously from the fluidized bed dryer into a circulating fluidized bed incinerator. Pilot plant results showed that integrated drying and incineration is feasible in a unique single system. A 100 t/d Sewage Sludge Incineration Demonstration Project was constructed at the Qige sewage treatment plant in Hangzhou City in China. The operational performance showed that the main operation results conformed to the design values, from which it can be concluded that the scale-up of this technique is deemed both feasible and successful.  相似文献   

18.
The characterization of PCDD/Fs and heavy metals in the flue gas and fly ash of Harbin municipal solid waste (MSW) incineration plant, located in the northeast of China, was investigated in this study. The MSW was treated in a twin internal fluidized (TIF) bed incinerator. The results indicate that the emission of PCDD/Fs into the environment is 0.02 ng I-TEQ/m3 and the level of PCDD/Fs in the fabric filter fly ash is 0.7982 ng I-TEQ/g. The leachability levels of Pb, Cd and Hg in the fly ash are below the limits of environmental protection standard in China. However, the contents of Cu, Zn, and Hg are high in the fly ash. This suggests that the fly ash is a hazardous waste that requires special treatment and disposal. The practice of more than four years of operation shows that the TIF bed incinerator is very suitable and practical for China.  相似文献   

19.
Pollutant fluxes from municipal solid waste (MSW) incinerators are of a certain concern, especially gaseous emissions from the stack, which constitute the major effluent from the plant. In this work, heavy metals in soil and vegetation sampled in different sites around the plant are compared with those found in the gaseous emissions from an incinerator: the suspected source and environmental matrices are observed together, in order to detect a possible relationship of cause and effect, using statistical methods. The incinerator examined, regarding dimension and technology, can be considered a typical Italian one. Heavy metal concentrations in soil and vegetation show a clear dependence on sampling year; similar behaviour can be found in emission fluxes referring to the same years. A dependence on the distance from the incinerator is also apparent. This study supplies a methodological approach that can be easily extended and applied to other suspected contamination sources.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号