首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

The uptake, translocation, and human bioaccessibility of metals originating from atmospheric fine particulate matters (PM) after foliar exposure is not well understood. Lettuce (Lactuca sativa L.) plants were exposed to micronic PbO, CuO, and CdO particulate matters (PMs) by the foliar pathway and mature plants (6 weeks old) were analyzed in terms of: (1) metal accumulation and localization on plant leaf surface, and metal translocation factor (TF) and global enrichment factor (GEF) in the plants; (2) shoot growth, plant dry weight (DW), net photosynthesis (Pn), stomatal conductance (Gs), and fatty acid ratio; (3) metal bioaccessibility in the plants and soil; and (4) the hazard quotient (HQ) associated with consumption of contaminated plants. Substantial levels of metals were observed in the directly exposed edible leaves and newly formed leaves of lettuce, highlighting both the possible metal transfers throughout the plant and the potential for human exposure after plant ingestion. No significant changes were observed in plant biomass after exposure to PbO, CuO, and CdO-PMs. The Gs and fatty acid ratio were increased in leaves after metal exposure. A dilution effect after foliar uptake was suggested which could alleviate metal phytotoxicity to some degree. However, plant shoot growth and Pn were inhibited when the plants are exposed to PbO, and necrosis enriched with Cd was observed on the leaf surface. Gastric bioaccessibility of plant leaves is ranked: Cd?>?Cu?>?Pb. Our results highlight a serious health risk of PbO, CuO, and CdO-PMs associated with consumption of vegetables exposed to these metals, even in newly formed leaves in the case of PbO and CdO exposure. Finally, the study highlights the fate and toxicity of metal rich-PMs, especially in the highly populated urban areas which are increasingly cultivated to promote local food.

  相似文献   

2.
Rybak A  Messyasz B  Lęska B 《Chemosphere》2012,89(9):1066-1076
We analyzed the ability of freshwater taxa of the genus Ulva (Ulvaceae, Chlorophyta) to serve as bioindicators of metal in lakes and rivers. Changes in heavy metal (Ni, Cd and Pb) and alkaline earth metal (Ca and Mg) concentrations in freshwater Ulva thalli were investigated during the period from June to August 2010. The study was conducted in two ecosystems in Western Poland, the Malta lake (10 sites) and the Nielba river (six sites). Three components were collected for each sample, including water, sediment and Ulva thalli. The average concentrations of metals in the water sample and in the macroalgae decreased in the following order: Ca > Mg > Ni > Pb > Cd. The sediment revealed a slightly altered order: Ca > Mg > Pb > Ni > Cd. Ca and Mg were found at the highest concentrations in thalli due to the presence of carbonate on its surface. Among the examined heavy metals in thalli, Ni was in the highest concentration, and Cd found in the lowest concentration. There were statistically significant correlations between the levels of metals in macroalgae, water and sediment. Freshwater populations of Ulva exhibited a greater efficiency to bioaccumulate nickel as compared to species derived from marine ecosystems.  相似文献   

3.
Metal uptake and its effect on foliar metallothionein 2b (MT2b) mRNA levels were studied in hybrid aspen (Populus tremula × tremuloides) in field conditions. The trees were planted on a site contaminated with several metals, including cadmium (mean 5.1 mg kg−1), chromium (80 mg kg−1), copper (180 mg kg−1), nickel (81 mg kg−1), vanadium (240 mg kg−1) and zinc (520 mg kg−1). Of the ten trace elements analyzed, only Cd and Zn accumulated in the leaves with maximal foliar concentrations of 35 and 2400 mg kg−1 (dry weight), respectively. There was a strong correlation between Cd and Zn concentrations and bioaccumulation factors (concentration in plant/soil) in the leaves, branches and roots, suggesting similar transport mechanisms for these two metals. The levels of MT2b correlated with Cd and Zn concentrations in the leaves, demonstrating that increased MT2b expression is one of the responses of hybrid aspen to chronic metal exposure.  相似文献   

4.
A bacterial isolate producing siderophore under iron limiting conditions, was isolated from mangroves of Goa. Based on morphological, biochemical, chemotaxonomical and 16S rDNA studies, the isolate was identified as Bacillus amyloliquefaciens NAR38.1. Preliminary characterization of the siderophore indicated it to be catecholate type with dihydroxy benzoate as the core component. Optimum siderophore production was observed at pH 7 in mineral salts medium (MSM) without any added iron with glucose as the carbon source. Addition of NaCl in the growth medium showed considerable decrease in siderophore production above 2% NaCl. Fe+2 and Fe+3 below 2 μM and 40 μM concentrations respectively, induced siderophore production, above which the production was repressed. Binding studies of the siderophore with Fe+2 and Fe+3 indicated its high affinity towards Fe+3. The siderophore concentration in the extracellular medium was enhanced when MSM was amended with essential metals Zn, Co, Mo and Mn, however, decreased with Cu, while the concentration was reduced with abiotic metals As, Pb, Al and Cd. Significant increase in extracellular siderophore production was observed with Pb and Al at concentrations of 50 μM and above. The effect of metals on siderophore production was completely mitigated in presence of Fe. The results implicate effect of metals on the efficiency of siderophore production by bacteria for potential application in bioremediation of metal contaminated iron deficient soils especially in the microbial assisted phytoremediation processes.  相似文献   

5.
Trivedi N  Gupta V  Kumar M  Kumari P  Reddy CR  Jha B 《Chemosphere》2011,83(5):706-712
The organic solvent tolerant bacteria with their physiological abilities to decontaminate the organic pollutants have potentials to secrete extracellular enzymes of commercial importance. Of the 19 marine bacterial isolates examined for their solvent tolerance at 10 vol.% concentration, one had the significant tolerance and showed a relative growth yield of 86% for acetone, 71% for methanol, 52% for benzene, 35% for heptane, 24% for toluene and 19% for ethylacetate. The phylogenetic analysis of this strain using 16S rDNA sequence revealed 99% homology with Bacillus aquimaris. The cellulase enzyme secreted by this strain under normal conditions showed an optimum activity at pH 11 and 45 °C. The enzyme did show functional stability even at higher pH (12) and temperature (75 °C) with residual activity of 85% and 95% respectively. The enzyme activity in the presence of different additives were in the following order: Co+2 > Fe+2 > NaOCl2 > CuSO4 > KCl > NaCl. The enzyme stability in the presence of solvents at 20 vol.% concentration was highest in benzene with 122% followed by methanol (85%), acetone (75%), toluene (73%) and heptane (42%). The pre-incubation of enzyme in ionic liquids such as 1-ethyl-3-methylimidazolium methanesulfonate and 1-ethyl-3-methylimidazolium bromide increased its activity to 150% and 155% respectively. The change in fatty acid profile with different solvents further elucidated the physiological adaptations of the strain to tolerate such extreme conditions.  相似文献   

6.
The amount of toxic metal accumulated by an organism is often taken as an indicator of potential toxicity. We investigated this relationship in the freshwater snail, Lymnaea stagnalis, exposed to 500 μg l−1 Al over 30 days, either alone or in the presence of phosphate (500 μg l−1 P) or a fulvic acid surrogate (FAS; 10 mg l−1 C). Behavioural activity was assessed and tissue accumulation of Al quantified. Lability of Al within the water column was a good predictor of toxicity. FAS increased both Al lability and behavioural dysfunction, whereas phosphate reduced Al lability, and completely abolished Al-induced behavioural toxicity. Tissue accumulation of Al was not linked to toxicity. Higher levels of Al were accumulated in snails exposed to Al + P, compared to those exposed to Al alone, whereas FAS reduced Al accumulation. These findings demonstrate that the degree of tissue accumulation of a metal can be independent of toxicity.  相似文献   

7.
Wang C  Zhang S  Wang P  Hou J  Qian J  Ao Y  Lu J  Li L 《Chemosphere》2011,84(1):136-142
In this study, the alterations in nutrient elements content, reactive oxygen species level and antioxidant response were studied in leaves of Vallisneria natans (Lour.) Hara exposed to salicylic acid (SA, 10 or 100 μM), or Pb (50 μM) or their combinations for 4 d. No significant alterations in Mn and Ca content were observed but content of Cu, Zn, Fe and P decreased in plants exposed to SA alone. SA application inhibited the uptake of Pb and partially reversed Pb-induced the alterations in Mn, Ca and Fe content in leaves of V. natans exposed to 50 μM Pb. The decreased chlorophyll (a + b) and increased malondialdehyde and O2− and H2O2 content were detected in plants exposed to 100 μM SA, 50 μM Pb, 10 μM SA + 50 μM Pb or 100 μM SA + 50 μM Pb. Application SA partially inhibited Pb-induced the increase of malondialdehyde, O2− and H2O2 content. 100 μM SA decreased the activity of NADH oxidase and the content of non-protein thiols, carotenoids and ascorbic acid and increased the content of dehydroascorbate in plants treated with or without Pb. SA alone decreased the ascorbate peroxidase activity and increased the catalase and peroxidase activity, while SA application increased catalase activity but had no significant effect on ascorbate peroxidase and peroxidase activity in V. natans exposed to Pb. The results indicate that SA involves in the regulation of Pb uptake, nutrient balance and oxidative stress.  相似文献   

8.
Shao MF  Zhang T  Fang HH  Li X 《Chemosphere》2011,85(1):1-6
Copepods have been widely used to evaluate toxicity of metals present in marine environments. However, a technical difficulty is to understand the possible routes of metal uptake and to identify in which tissues or organs metals are being accumulated. Traditional techniques are hard to be employed once each organ has to be analyzed separately. Autoradiography is an alternative technique to circumvent this limitation, since metal distribution in tissues can be visualized and quantified, even in small organisms like copepods. In the present study, accumulation and distribution of 64Cu in the copepod Calanus hyperboreus was studied using autoradiography. Copepods were exposed for 2 h to copper (2.3 mg L−1; 1.08 MBq 64Cu mg−1 Cu) and then allowed to depurate for 2 h in clean seawater. Total 64Cu was determined by gamma-spectrometry after a metal exposure and a depuration period. 64Cu distribution was determined based on images generated by autoradiography. Metal accumulation was observed on all external surfaces of the copepods, being accumulated mostly on the ventral region, followed by dorsal, urossoma and internal regions. After depuration, radioactivity levels had a decrease in the sum of external body surface. Our results show that copper uptake by C. hyperboreus is fast and that a non-negligible proportion of the accumulated metal can reach internal tissues, which may lead to detrimental physiological effects. Moreover, whole-body autoradiography was demonstrated to be an efficient technique to study copper accumulation and body distribution in a very small organism such as the copepod C. hyperboreus.  相似文献   

9.
Hojaji E 《Chemosphere》2012,89(3):319-326
The binding behavior of lignin for Pb, Cu, Co, Mn, Cd and Ni was studied using the diffusive gradients in thin films technique (DGT). Samplers with different structures of diffusive gel were used in the well-stirred systems containing known concentrations of metals along with (a) 10, 20 and 40 μM lignin and; (b) 0.64 and 6.47 μM Suwannee river fulvic acid + 40 μM lignin at an ionic strength of 0.01 M (NaNO3) and pH = 7. Diffusion coefficients of lignin complexes in acrylamide gels were estimated and found to be less than 5% of the equivalent coefficients for the uncomplexed metal ions. These values were used to calculate concentrations of labile metals from DGT measurements in solutions, where lignin could discriminate metals in the order of Pb+2 > Cu+2 > Cd+2 > Ni+2 > Co+2 > Mn+2. Stability constants (Log K) were calculated using Visual MINTEQ II and WHAM V software. The K values were compared with the stability constants from titration of Pb and Cd with 10 μM lignin aqueous samples and with those of humic substances in natural waters. The constants obtained from measurement of complexing capacities might bias the real corresponding values unless two line regression analyses on titration data are considered. The DGT study of fractionation of metal species at varying ratios indicated that the proportion of organic complexes decreased with increasing ratios and gradually more metals were exchanged with inorganic phases. Speciation of Pb and Cd is affected by the concentrations of FA, Cd is dominantly bound with FA while Pb is evenly partitioned between the ligands. The comprehensive knowledge of metal-lignin complexes sheds some light on in situ operational speciation information that can be achieved by DGT.  相似文献   

10.
Tolerance to Cu, Cd, Ni and Zn was investigated in a population of the pioneer species Plantago arenaria growing in a metallurgical landfill. Tolerance levels were compared with those of two other pioneer species (Coniza sumatrensis and Verbascum densiflorum) growing in the same location, and with a control population taken from an uncontaminated site. Results showed that the metalliferous population of P. arenaria was more tolerant to metal toxicity than C. sumatrensis and V. densiflorum. Comparisons with literature data confirmed that the metalliferous population of P. arenaria was highly tolerant to Cu, moderately tolerant to Cd and Ni, but not particularly tolerant to Zn. The control population of P. arenaria responded the same as the metalliferous one excepted for Cu, for which it was much more sensitive. This suggested that multi-metal tolerances in the metalliferous population of P. arenaria resulted both from constitutive and adaptative traits, depending on the metal. To check whether P. arenaria was able to cope with high internal metal levels, accumulation patterns were evaluated in pot experiments. Results showed that metals accumulated in roots and leaves, at levels proportional to soil content. Metal content was much higher in roots than in leaves and the leaf:root concentration ratio was kept constant over a wide range of soil metal contents. This suggested that metal tolerance was related to the ability to retain metal ions in roots and to tightly control their translocation to leaves. Finally metal tolerance in P. arenaria is discussed in relation to its pioneer and xerophytic characteristics.  相似文献   

11.
Concentrations of Zn and Cd were measured in fruitbodies of ectomycorrhizal (ECM) fungi and leaves of co-occurring accumulator aspen. Samples were taken on three metal-polluted sites and one control site. Fungal bioconcentration factors (BCF = fruitbody concentration: soil concentration) were calculated on the basis of total metal concentrations in surface soil horizons (BCFtot) and NH4NO3-extractable metal concentrations in mineral soil (BCFlab). When plotted on log-log scale, values of BCF decreased linearly with increasing soil metal concentrations. BCFlab for both Zn and Cd described the data more closely than BCFtot. Fungal genera differed in ZnBCF but not in CdBCF. The information on differences between fungi with respect to their predominant occurrence in different soil horizons did not improve relations of BCF with soil metal concentrations. Aspen trees accumulated Zn and Cd to similar concentrations as the ECM fungi. Apparently, the fungi did not act as an effective barrier against aspen metal uptake by retaining the metals.  相似文献   

12.
Cubukcuoglu B  Ouki SK 《Chemosphere》2012,86(8):789-796
This study aims to evaluate the potential of low grade MgO (LGMgO) for the stabilisation/solidification (S/S) of heavy metals in steel electric arc furnace wastes. Relevant characteristics such as setting time, unconfined compressive strength (UCS) and leaching behaviour assessed by acid neutralisation capacity (ANC), monolithic and granular leaching tests were examined in light of the UK landfill Waste Acceptance Criteria (WAC) for disposal. The results demonstrated that all studied mix designs with Portland cement type 1 (CEM1) and LGMgO, CEM1-LGMgO 1:2 and 1:4 at 40% and 70% waste addition met the WAC requirements by means of UCS, initial and final setting times and consistence. Most of the ANC results met the WAC limits where the threshold pH values without acid additions were stable and between 11.9 and 12.2 at 28 d.Granular leaching results indicate fixation of most of the metals at all mix ratios. An optimum ratio was obtained at CEM1-LGMgO 1:4 at 40% waste additions where none of the metals leaching exceeded the WAC limits and hence may be considered for landfill disposal.The monolithic leaching test results showed that LGMgO performed satisfactorily with respect to S/S of Zn, as the metal component present at the highest concentration level in the waste exhibited very little leaching and passed the leaching test requirement at all mix ratios studied. However, its performance with respect to Pb, Cd and Cr was less effective in reducing their leaching suggesting a higher cumulative rate under those leaching regimes.  相似文献   

13.
Previous studies have demonstrated that the commercial feed of aquacultured fish contains trace amounts of toxic and essential metals which can accumulate in tissues and finally be ingested by consumers. Recently rising temperatures, associated to the global warming phenomenon, have been reported as a factor to be taken into consideration in ecotoxicology, since temperature-dependent alterations in bioavailability, toxicokinetics and biotransformation rates can be expected. Sparus aurata were kept at 22 °C, 27 °C and 30 °C for 3 months in order to determine the temperature effect on metallothionein induction and metal bioaccumulation from a non-experimentally contaminated commercial feed. A significant temperature-dependent accumulation of cadmium (Cd), copper (Cu), mercury (Hg), zinc (Zn), lead (Pb) and iron (Fe) was found in liver, together with that of manganese (Mn), Fe and Zn in muscle. Hg presented the highest bioaccumulation factor, and essential metal homeostasis was disturbed in both tissues at warm temperatures. An enhancement of hepatic metallothionein induction was found in fish exposed to the highest temperature.  相似文献   

14.
Growth performance and heavy metal uptake by willow (Salix viminalis) from strongly and moderately polluted calcareous soils were investigated in field and growth chamber trials to assess the suitability of willow for phytoremediation. Field uptakes were 2-10 times higher than growth chamber uptakes. Despite high concentrations of cadmium (≥80 mg/kg) and zinc (≥3000 mg/kg) in leaves of willow grown on strongly polluted soil with up to 18 mg Cd/kg, 1400 mg Cu/kg, 500 mg Pb/kg and 3300 mg Zn/kg, it is unsuited on strongly polluted soils because of poor growth. However, willow proved promising on moderately polluted soils (2.5 mg Cd/kg and 400 mg Zn/kg), where it extracted 0.13% of total Cd and 0.29% of the total Zn per year probably representing the most mobile fraction. Cu and Pb are strongly fixed in calcareous soils.  相似文献   

15.
A Cd and Zn contaminated soil was mixed and equilibrated with an uncontaminated, but otherwise similar soil to establish a gradient in soil contamination levels. Growth of Thlaspi caerulescens (Ganges ecotype) significantly decreased the metal concentrations in soil solution. Plant uptake of Cd and Zn exceeded the decrease of the soluble metal concentrations by several orders of magnitude. Hence, desorption of metals must have occurred to maintain the soil solution concentrations. A coupled regression model was developed to describe the transfer of metals from soil to solution and plant shoots. This model was applied to estimate the phytoextraction duration required to decrease the soil Cd concentration from 10 to 0.5 mg kg−1. A biomass production of 1 and 5 t dm ha−1 yr−1 yields a duration of 42 and 11 yr, respectively. Successful phytoextraction operations based on T. caerulescens require an increased biomass production.  相似文献   

16.
Alyssum discolor biomass was collected from serpentine soil and was used for removal of metal ions. The plant species grown on serpentine soils are known to be rich with metals ions and thus have more capability for accumulating heavy metals. Native and acid-treated biomass of A. discolor (A. discolor) were utilized for the removal of Ni(II) and Cu(II) ions from aqueous solutions. The effects of contact time, initial concentration, and pH on the biosorption of Ni(II) and Cu(II) ions were investigated. Biosorption equilibrium was established in about 60 min. The surface properties of the biomass preparations were varied with pH, and the maximum amounts of Ni(II) and Cu(II) ions on both A. discolor biomass preparations were adsorbed at pH 5.0. The maximum biosorption capacities of the native, and acid-treated biomass preparations for Ni(II) were 13.1 and 34.7 mg g−1 and for Cu(II) 6.15 and 17.8 mg g−1 dry biomass, respectively. The biosorption of Ni(II) and Cu(II) ions from single and binary component systems can be successfully described by Langmuir and Freundlich isotherms. When the heavy metal ions were in competition, the amounts of biosorbed metal ions on the acid treated plant biomass were found to be 0.542 mmol g−1 for Ni(II) and 0.162 mmol g−1 for Cu(II), the A. discolor biomass was significantly selective for Ni(II) ions. The information gained from these studies was expected to indicate whether the native, and acid-treated forms can have the potential to be used for the removal and recovery of Ni(II) ions from wastewaters.  相似文献   

17.
Soil amendments based on crop nutrient requirements are considered a beneficial management practice. A greenhouse experiment with maize seeds (Zea mays L.) was conducted to assess the inputs of metals to agricultural land from soil amendments. Maize seeds were exposed to a municipal solid waste (MSW) compost (50 Mg ha−1) and NPK fertilizer (33 g plant−1) amendments considering N plant requirement until the harvesting stage with the following objectives: (1) determine the accumulation of total and available metals in soil and (2) know the uptake and ability of translocation of metals from roots to different plant parts, and their effect on biomass production. The results showed that MSW compost increased Cu, Pb and Zn in soil, while NPK fertilizer increased Cd and Ni, but decreased Hg concentration in soil. The root system acted as a barrier for Cr, Ni, Pb and Hg, so metal uptake and translocation were lower in aerial plant parts. Biomass production was significantly enhanced in both MSW and NPK fertilizer-amended soils (17%), but also provoked slight increases of metals and their bioavailability in soil. The highest metal concentrations were observed in roots, but there were no significant differences between plants growing in amended soil and the control soil. Important differences were found for aerial plant parts as regards metal accumulation, whereas metal levels in grains were negligible in all the treatments.  相似文献   

18.
Kumar A  Prasad MN  Sytar O 《Chemosphere》2012,89(9):1056-1065
Talinum species have been used to investigate a variety of environmental problems for e.g. determination of metal pollution index and total petroleum hydrocarbons in roadside soils, stabilization and reclamation of heavy metals (HMs) in dump sites, removal of HMs from storm water-runoff and green roof leachates. Species of Talinum are popular leaf vegetables having nutrient antinutrient properties. In this study, Talinum triangulare (Jacq.) Willd (Ceylon spinach) grown hydroponically were exposed to different concentrations of lead (Pb) (0, 0.25, 0.5, 0.75, 1.0 and 1.25 mM) to investigate the biomarkers of toxicity and tolerance mechanisms. Relative water content, cell death, photosynthetic pigments, sulphoquinovosyldiacylglycerol (SQDG), anthocyanins, α-tocopherol, malondialdehyde (MDA), reactive oxygen species (ROS) glutathione (GSH and GSSG) and elemental analysis have been investigated. The results showed that Pb in roots and shoots gradually increased as the function of Pb exposure; however Pb concentration in leaves was below detectable level. Chlorophylls and SQDG contents increased at 0.25 mM of Pb treatment in comparison to control at all treated durations, thereafter decreased. Levels of carotenoid, anthocyanins, α-tocopherol, and lipid peroxidation increased in Pb treated plants compared to control. Water content, cells death and elemental analysis suggested the damage of transport system interfering with nutrient transport causing cell death. The present study also explained that Pb imposed indirect oxidative stress in leaves is characterized by decreases in GSH/GSSG ratio with increased doses of Pb treatment. Lead-induced oxidative stress was alleviated by carotenoids, anthocyanins, α-tocopherol and glutathione suggesting that these defense responses as potential biomarkers for detecting Pb toxicity.  相似文献   

19.
Characterization of bacterial communities at heavy-metal-contaminated sites   总被引:2,自引:0,他引:2  
The microbial community in soil samples from two long-term contaminated sites was characterized by using culture-dependent and culture-independent methods. The two sites investigated contained high amounts of heavy metals and were located in the upper Silesia Industrial Region in southern Poland. The evaluation of the aerobic soil microbial population clearly demonstrated the presence of considerable numbers of viable, culturable bacteria at both sites. A high fraction of the bacterial population was able to grow in the presence of high amounts of metals, i.e. up to 10 mM Zn2+, 3 mM Pb2+ or 1 mM Cu2+. Site 1 contained significantly (P < 0.05) lower bacterial numbers growing in the presence of 10 mM Zn2+ than site 2, while the opposite was observed for bacteria tolerating 1 mM Cu2+. This coincided with the contents of these two metals at the two sites. Ecophysiological (EP) indices for copiotrophs (r-strategists) and oligotrophs (K-strategists) pointed to high bacterial diversity at both sites. Fluorescence in situ hybridization (FISH) analysis indicated that Actinobacteria and Proteobacteria represent the physiologically active fraction of bacteria at the two sites. Shannon diversity (H′) indices for FISH-detected bacterial phylogenetic groups were not significantly different at the two sites.  相似文献   

20.
Lourie E  Gjengedal E 《Chemosphere》2011,85(5):759-764
The article presents a new approach that can be used for the purification of water contaminated by heavy metals. The treatment of peat with microalgae showed to be an effective way of increasing metal uptake by peat. Metal sorption was studied for a multimetal solution containing Cu, Cd, Ni, Zn, Cd, and Pb. Cu and Pb were found to be the metals having the highest affinity to peat. Water hardness has a strong effect on the uptake of borderline metals (Cd, Ni, Zn, Cd) from a solution. The use of algae for peat treatment resulted in less time to reach an equilibrium (24 h vs. 72 h for pure peat), and the effect of water hardness (Ca2+) on metal uptake was considerably reduced. Both peat and algal-treated peat were able to take up metals from rather acidic solutions (pH 3.0). pH had less influence on the metal uptake compared with water hardness. The affinity of heavy metals to peat was the following: Pb > Cu > Ni > Cd > Zn > Co. It slightly changed to Pb > Cu > Ni > Cd ≈ Co ≈ Zn when the combined sorbent, peat treated with microalga, was applied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号