共查询到19条相似文献,搜索用时 78 毫秒
1.
2.
本文在贵阳市市中心区和郊区设置两个采样点位,采集春季和冬季PM_(10)、PM_(2.5)样品,在封闭溶样装置中采用HF和王水消解,利用电感耦合等离子体质谱法测定颗粒物中铂族元素的含量,研究了大气颗粒物中铂族元素的污染特征。结果表明,市中心区样品中铂族元素的浓度大于郊区,其含量与交通密度有关;与Pt和Rh相比,颗粒物中Pd的浓度更高,Pd具有较大的溶解性,可能会给人类健康带来更严重的危害;颗粒物中铂族元素的浓度呈现季节性变化,冬季大于春季。与国外其他城市相比,贵阳市大气颗粒物中铂族元素的污染程度较低,但这种潜在的重金属污染应引起重视。 相似文献
3.
北京市中心城区道路尘土中铂族元素的污染特征 总被引:1,自引:1,他引:1
为研究北京市中心城区铂族元素(PGEs)的污染状况,于2009年12月采集了二环道路尘土样品.样品经王水消解和阳离子交换树脂分离纯化后,采用电感耦合等离子体质谱法(ICP-MS)测定了道路尘土中PGEs的含量.结果表明,二环道路尘土中,Pd的含量为17.40~458.75 ng.g-1(平均值为126.66 ng.g-1),Pt的含量为10.04~182.89 ng.g-1(平均值为65.25ng.g-1),Rh的含量为4.00~68.04 ng.g-1(平均值为22.67 ng.g-1).与国内外其它城市相比,Pt含量偏低,Pd和Rh含量处于中等水平.总体而言,近几年道路尘土中Pd含量有了较大幅度的升高.中心城区的PGEs平均含量从大到小的顺序为:西二环≈东二环>北二环>南二环,主要受机动车流量控制.不同粒径的道路尘土中PGEs含量不同,0.125~0.25 mm粒径范围内尘土中的PGEs含量最高,而粒径<0.063 mm的尘土中PGEs含量较低.采用粒径<0.063 mm尘土中的PGEs含量来评价整个道路尘土中的PGEs含量容易导致结果偏低,从而低估其在环境的污染水平. 相似文献
4.
根据样品中被测元素的特点,采用硝酸-氢氟酸-高氯酸-硼酸-硝酸和硝酸体系,对电路板中金属元素进行消解,用电感耦合等离子体原子发射光谱法对电路板中的金属元素含量进行定量分析。该方法具有简单、准确的特点,可以快速分析电路板中的金属元素含量。 相似文献
5.
6.
建立电感耦合等离子体质谱法(ICP-MS)测定金山湖水中可溶性锂、钛、钒、铬、铁、镓、锗、锆、铌、钌、钯、铟、锡、碲、铪、钨、铱、铂、铋19种元素的分析方法。仪器进行自动调谐和质量校正优化参数后,样品经0.45μm滤膜过滤,并在线添加钪、铑、铼内标进行定量分析,并在KED模式下测定钛、钒、铬、铁以消除质谱干扰。质量控制中测定相关系数均大于0.9993,检出限0.01~0.25μg/L,相对标准偏差均小于5%,样品加标回收率80.6%~108%,表明质量控制均满足实验要求。该方法快捷方便、灵敏度高,对可溶性痕量元素的测定更加准确可靠。 相似文献
7.
碱融-电感耦合等离子体法测定大气颗粒物膜中铝、硅的含量研究 总被引:1,自引:0,他引:1
铝(Al)和硅(Si)作为颗粒物源分析的指示性元素,不易被酸消解出来,需采用碱融法进行前处理.样品膜于99.9%纯度银坩埚中灰化后用氢氧化钠融熔,酸溶液提取,将被测元素转化为可溶性盐.此种前处理方式可解决大气颗粒物滤膜中Al、Si易产生的溶解不完全等问题.当采样体积为150 m3,试样定容体积为50.0mL时,本方法所计算出的Al、Si元素的检出限分别为0.096 μg/m3、0.123 μg/m3,加标回收率在87.2%~105%之间,可以满足测定准确的需要,且设备简单,操作简便,适合批量样品的测定. 相似文献
8.
电感耦合等离子体质谱法是20世纪80年代发展的分析技术,具有灵敏度高,干扰少,重现性好,分析效率高等特点,是目前分析重金属元素最先进的技术。本文建立了硝酸-电感耦合等离子体质谱法测定生活污水的新方法。 相似文献
9.
高效液相色谱-电感耦合等离子体质谱联用测定生物样品中的有机汞 总被引:1,自引:0,他引:1
建立了酸提取-高效液相色谱-电感耦合等离子体质谱联用技术(HPLC-ICP-MS)测定生物样品中甲基汞、乙基汞、苯基汞等3种有机汞的分析方法。鱼肉和贝类样品经盐酸消解,苯萃取,硫代硫酸钠溶液反萃取后,采用醋酸铵/L-半胱氨酸缓冲盐及甲醇体系组成的流动相按一定比例进行梯度洗脱,经前处理的生物样品在液相色谱中经C18柱分离后,进入电感耦合等离子体质谱检测其甲基汞、乙基汞和苯基汞的浓度。3种有机汞化合物均在0.50~50.0μg/L范围内呈现良好的线性关系,线性相关系数(r)均大于0.9998。方法检出限为0.010~0.038mg/kg;3种有机汞样品加标的RSD均小于12.2%;两个水平的加标回收率在50.8~129%。 相似文献
10.
北京大气PM10中水溶性金属盐的在线观测与浓度特征研究 总被引:1,自引:0,他引:1
研究了北京大气可吸入气溶胶(PM10)中水溶性金属盐的变化特征,并对其来源进行了分析.钠盐、钾盐、镁盐和钙盐浓度的变化范围分别为:0.5~1.4、0.5~2.5、0.1~0.5和0.6~5.8 μg/m3,不同水溶性金属盐最高值和最低值出现季节不同.水溶性金属盐没有明显的采暖期和非采暖期的差异,说明冬季采暖不是它们的主要来源.海盐和土壤源是北京大气PM10中Na 的主要来源,K 的主要来源包括秸秆燃烧和生物质排放,土壤源是Mg2 和Ca2 的重要来源.水溶性金属盐的日变化规律不同.降水对Na 、K 、Mg2 、Ca2 的清除分别为10%~70%、20%~80%、10%~77%、5%~80%. 相似文献
11.
采用电感耦合等离子体质谱仪测定水中的钴,在0μg/L~300μg/L范围内线性良好,相关系数均达到0.9999。该法对钴标准样品测定的结果在保证值范围。对三份不同浓度水样分别进行测定,其结果的RSD为0.2%~1.2%,空白水样的加标回收率在99%~107%之间。通过对水样的分析,符合标准要求,ICP-MS质谱仪具有灵敏度高,检出限低,取样量少,线性范围宽等特点,能快速测出水中的微量重金属元素含量。 相似文献
12.
13.
ICP-AES测定南宁市大气颗粒物中重金属含量 总被引:3,自引:1,他引:3
采用石英滤纸和隔膜真空泵自制采样装置,对南宁市区的居民区、校园区、商业区和工业区进行连续10d的大气采样,所得样品经微波消解后,用电感耦合等离子体发射光谱法(ICP-AES)同时测定铬、铁、铜、锌、砷、镉和铅七种重金属元素含量以检测南宁市空气质量,同时考察了仪器工作参数对测定结果的影响。实验表明:在选定的实验条件下,各元素的检出限低,准确性和精密度良好。样品测定结果表明,大气环境中重金属污染物以Fe、Zn和Pb为主;工业区,商业区,居民区重金属含量高于校园区。重金属平均浓度最大值为:Cr(0.06027μg/m)3、Fe(1.8541μg/m)3、Cu(0.02214μg/m)3、Zn(0.3666μg/m)3、As(0.02272μg/m)3、Cd(0.004733μg/m)3、Pb(0.1843μg/m)3,低于我国(TJ36-96)《居住区大气中的有害物质最高容许量》中规定值,说明南宁市空气质量良好。 相似文献
14.
15.
16.
通过大气环流向海洋大气边界层传输的人为源和陆源物质,明显改变了海洋气溶胶中痕量金属的组成.但基于开阔海域岛屿连续观测研究海洋气溶胶中痕量金属元素组成及其来源的研究较少.2010年3—5月在我国台湾北部东海海域彭佳屿岛采集了60个TSP(总悬浮颗粒物)样品,采用电感耦合等离子体质谱仪(ICP-MS)分析了19种痕量金属(Al、Fe、Ti、Y、Mn、Ba、Sr、Co、Cr、V、Ni、Tl、Zn、Sn、Pb、As、Cd、Sb、Se)的质量浓度.基于TSP中Al浓度、气团后向轨迹分析和美国国家宇航局CALIPSO卫星星载激光雷达扫描图像,将采集的TSP分为非沙尘TSP(不受沙尘影响的TSP)和沙尘TSP(受沙尘影响的TSP).沙尘TSP中所有痕量金属的浓度都高于非沙尘TSP,表明沙尘对彭佳屿岛TSP中痕量金属有贡献.结合富集因子、相关性分析和PMF模型研究结果表明,彭佳屿岛春季非沙尘TSP中Al、Fe、Ti和Y主要来源于地壳矿物,Mn、Ba、Sr、Co和Cr同时受地壳矿物和人为源的影响;沙尘TSP中Al、Fe、Ti、Y、Mn、Ba、Sr、Co和Cr主要来源于地壳矿物.V和Ni在彭佳屿岛春季非沙尘TSP中主要来源于燃料油燃烧,而在沙尘TSP中同时受燃料油燃烧和地壳矿物的影响.非沙尘TSP和沙尘TSP中,Tl、Zn、As、Sn、Pb、Cd、Sb和Se的来源相似.Tl主要源于交通和煤燃烧,Zn、Sn、Pb、Cd和Sb同时来源于交通、煤和燃料油燃烧,As主要来源于煤燃烧,Se则主要来源于煤和燃料油燃烧.研究显示,人为源释放到大气中的Tl、Zn、As、Sn、Pb、Cd、Sb和Se可以通过大气环流长距离传输至开阔海域. 相似文献
17.
18.
采用微波消解、电感耦合等离子体质谱(ICP-MS)法同时直接测定了PM2.5中23种无机元素的浓度,并对消解方法、ICP-MS工作参数及条件进行了优化和选择。该方法的检出限为0.01~10.00 ng/mL,定量检出限为0.04~40.00 ng/mL。采用该方法测定了2017年10月—2018年1月秋冬季唐山市3个监测点位的PM2.5滤膜样品,结果表明:地壳元素中Si浓度最高,为2.30 μg/m3,大多元素浓度在采暖前高于采暖后;重金属元素中Zn浓度最高,为0.48 μg/m 3,大多元素浓度在本次观测的11月和12月较高;所测元素浓度与其他文献数据具有可比性,说明该方法适用于环境大气PM2.5中的无机多元素分析测试。 相似文献