共查询到20条相似文献,搜索用时 15 毫秒
1.
R E Dickson M D Coleman P Pechter D Karnosky 《Environmental pollution (Barking, Essex : 1987)》2001,115(3):319-334
To study the impact of ozone (O3) and O3 plus CO2 on aspen growth, we planted two trembling aspen clones, differing in sensitivity to O3 in the ground in open-top chambers and exposed them to different concentrations of O3 and O3 plus CO, for 98 days. Ozone exposure (58 to 97 microl l(-1)-h. total exposure) decreased growth and modified crown architecture of both aspen clones. Ozone exposure decreased leaf, stem, branch, and root dry weight particularly in the O3 sensitive clone (clone 259). The addition of CO2 (150 microl l(-1) over ambient) to the O3 exposure counteracted the negative impact of O3 only in the O3 tolerant clone (clone 216). Ozone had relatively little effect on allometric ratios such as, shoot/root ratio, leaf weight ratio, or root weight ratio. In both clones, however, O3 decreased the shoot dry weight, shoot length ratio and shoot diameter. This decrease in wood strength caused both current terminals and long shoots to droop and increased the branch angle of termination. These results show that aspen growth is highly sensitive to O3 and that O3 can also significantly affect crown architecture. Aspen plants with drooping terminals and lateral branches would be at a competitive disadvantage in dense stands with limited light. 相似文献
2.
Justin M. McGrath 《Environmental pollution (Barking, Essex : 1987)》2010,158(4):1023-1028
Early spring leaf out is important to the success of deciduous trees competing for light and space in dense forest plantation canopies. In this study, we investigated spring leaf flush and how long-term growth at elevated carbon dioxide concentration ([CO2]) and elevated ozone concentration ([O3]) altered leaf area index development in a closed Populus tremuloides (aspen) canopy. This work was done at the Aspen FACE experiment where aspen clones have been grown since 1997 in conditions simulating the [CO2] and [O3] predicted for ∼2050. The responses of two clones were compared during the first month of spring leaf out when CO2 fumigation had begun, but O3 fumigation had not. Trees in elevated [CO2] plots showed a stimulation of leaf area index (36%), while trees in elevated [O3] plots had lower leaf area index (−20%). While individual leaf area was not significantly affected by elevated [CO2], the photosynthetic operating efficiency of aspen leaves was significantly improved (51%). There were no significant differences in the way that the two aspen clones responded to elevated [CO2]; however, the two clones responded differently to long-term growth at elevated [O3]. The O3-sensitive clone, 42E, had reduced individual leaf area when grown at elevated [O3] (−32%), while the tolerant clone, 216, had larger mature leaf area at elevated [O3] (46%). These results indicate a clear difference between the two clones in their long-term response to elevated [O3], which could affect competition between the clones, and result in altered genotypic composition in future atmospheric conditions. 相似文献
3.
Screening of bean cultivars for their response to ozone as evaluated by visible symptoms and leaf chlorophyll fluorescence 总被引:7,自引:0,他引:7
Guidi L Di Cagno R Soldatini GF 《Environmental pollution (Barking, Essex : 1987)》2000,107(3):349-355
Fourteen Italian cultivars of Phaseolus vulgaris were exposed to a single pulse of ozone (O(3), 150 nl l(-1)) or to filtered air (<3 nl l(-1)) for 3.5 h. O(3) sensitivity was assessed by recording the extent of visible symptoms, effects on chlorophyll (Chl) content and changes in Chl a fluorescence parameters. This paper reports the results of an initial screening of 14 bean cultivars that was used to select a small number of cultivars for further work. Seven cultivars showed visible symptoms of injury in the range of 2-60 h after the end of the O(3) fumigation. O(3) significantly depressed total Chl content in most cultivars and a significant correlation was found between Chl content and visible symptoms. Most cultivars showed a significant change in the F(v)/F(m) ratio, even when there were no visual symptoms. There was no relationship between the extent of visual symptoms and quenching coefficients, indicating that these parameters were of no use in the determination of sensitivity to O(3) stress. 相似文献
4.
Bender J Muntifering RB Lin JC Weigel HJ 《Environmental pollution (Barking, Essex : 1987)》2006,142(1):109-115
Interspecific plant competition has been hypothesized to alter effects of early-season ozone (O3) stress. A phytometer-based approach was utilized to investigate O3 effects on growth and nutritive quality of Poa pratensis grown in monoculture and in mixed cultures with four competitor-plant species (Anthoxanthum odoratum, Achillea millefolium, Rumex acetosa and Veronica chamaedrys). Mesocosms were exposed during April/May 2000-2002 to charcoal-filtered air+25 ppb O3 (control) or non-filtered air+50 ppb O3 (elevated O3). Biomass production was not affected by O3, but foliar injury symptoms were observed in May 2002. Early-season O3 exposure decreased relative food value of P. pratensis by an average of 8%, which is sufficient to have nutritional implications for its utilization by herbivores. However, forage quality response to O3 was not changed by interspecific competition. Lack of injury and nutritive quality response in P. pratensis harvested in September may reflect recovery from early-season O3 exposure. 相似文献
5.
J. Neil Cape Richard Hamilton Mathew R. Heal 《Atmospheric environment (Oxford, England : 1994)》2009,43(5):1116-1123
The reaction of ozone (O3) with α-pinene has been studied as a function of temperature and relative humidity and in the presence of wax surfaces that simulate a leaf surface. The objective was to determine whether the presence of a wax surface, in which α-pinene could dissolve and form a high surface concentration, would lead to enhanced reaction with O3. The reaction of O3 itself with the empty stainless steel reactor and with aluminium and wax surfaces demonstrated an apparent activation energy of around 30 kJ mol?1 for all the surfaces, similar to that observed in long-term field measurements of O3 fluxes to vegetation. However, the absolute reaction rate was 14 times greater for aluminium foil and saturated hydrocarbon wax surfaces than for stainless steel, and a further 5 times greater for beeswax than hydrocarbon wax. There was no systematic dependence on either relative or absolute humidity for these surface reactions over the range studied (20–100% RH). Reaction of O3 with α-pinene occurred at rates close to those predicted for the homogeneous gas-phase reaction, and was similar for both the empty reactor and in the presence of wax surfaces. The hypothesis of enhanced reaction at leaf surfaces caused by enhanced surface concentrations of α-pinene was therefore rejected. Comparison of surface decomposition reactions on different surfaces as reported in the literature with the results obtained here demonstrates that the loss of ozone at the earth's surface by decomposition to molecular oxygen (i.e. without oxidative reaction with a substrate) can account for measured ‘non-stomatal’ deposition velocities of a few mm s?1. In order to quantify such removal, the effective molecular surface area of the vegetation/soil canopy must be known. Such knowledge, combined with the observed temperature-dependence, provides necessary input to global-scale models of O3 removal from the troposphere at the earth's surface. 相似文献
6.
Asko Noormets Olevi Kull Mark E. Kubiske 《Environmental pollution (Barking, Essex : 1987)》2010,158(4):992-999
The effect of elevated CO2 and O3 on apparent quantum yield (?), maximum photosynthesis (Pmax), carboxylation efficiency (Vcmax) and electron transport capacity (Jmax) at different canopy locations was studied in two aspen (Populus tremuloides) clones of contrasting O3 tolerance. Local light climate at every leaf was characterized as fraction of above-canopy photosynthetic photon flux density (%PPFD). Elevated CO2 alone did not affect ? or Pmax, and increased Jmax in the O3-sensitive, but not in the O3-tolerant clone. Elevated O3 decreased leaf chlorophyll content and all photosynthetic parameters, particularly in the lower canopy, and the negative impact of O3 increased through time. Significant interaction effect, whereby the negative impact of elevated O3 was exaggerated by elevated CO2 was seen in Chl, N and Jmax, and occurred in both O3-tolerant and O3-sensitive clones. The clonal differences in the level of CO2 × O3 interaction suggest a relationship between photosynthetic acclimation and background O3 concentration. 相似文献
7.
Vollenweider P Ottiger M Günthardt-Goerg MS 《Environmental pollution (Barking, Essex : 1987)》2003,124(1):101-118
Ozone injury to natural vegetation is being increasingly surveyed throughout the northern hemisphere. There exists a growing list of species showing visible 'ozone-like' symptoms which needs to be validated. This study presents the results from a test survey of ozone injury to forest vegetation in the light exposed sites of five Swiss level II plots, for the new ICP-Forests protocol. With AOT40 from 14 to 28 ppm-h in 2000, ten out of 49 woody plant species displayed typical symptoms, and four showed untypical symptoms. Symptom origin was investigated in nine and validated in seven species, using morphological, histological and cellular markers of oxidative stress and ozone-induced plant response. Independent of taxonomic position, ozone effects were characterized by the induction of oxidative stress in the mesophyll resulting in discrete and light-dependent hypersensitive-like responses and in accelerated cell senescence. The presented combination of cellular and morphological markers allows differential diagnosis of visible ozone injury. 相似文献
8.
Percy KE Nosal M Heilman W Dann T Sober J Legge AH Karnosky DF 《Environmental pollution (Barking, Essex : 1987)》2007,147(3):554-566
The United States and Canada currently use exposure-based metrics to protect vegetation from O(3). Using 5 years (1999-2003) of co-measured O(3), meteorology and growth response, we have developed exposure-based regression models that predict Populus tremuloides growth change within the North American ambient air quality context. The models comprised growing season fourth-highest daily maximum 8-h average O(3) concentration, growing degree days, and wind speed. They had high statistical significance, high goodness of fit, include 95% confidence intervals for tree growth change, and are simple to use. Averaged across a wide range of clonal sensitivity, historical 2001-2003 growth change over most of the 26 Mha P. tremuloides distribution was estimated to have ranged from no impact (0%) to strong negative impacts (-31%). With four aspen clones responding negatively (one responded positively) to O(3), the growing season fourth-highest daily maximum 8-h average O(3) concentration performed much better than growing season SUM06, AOT40 or maximum 1h average O(3) concentration metrics as a single indicator of aspen stem cross-sectional area growth. 相似文献
9.
Impacts of elevated atmospheric O3 and/or CO2 on three clones of aspen (Populus tremuloides Michx.) and birch (Betula papyrifera Marsh.) were studied to determine, whether or not elevated CO2 ameliorates O3-induced damage to leaf cells. The plants were exposed for 3 years at the Aspen FACE exposure site in Wisconsin (USA) prior to sampling for ultrastructural investigations on 19 June 1999. In the aspen clones, elevated CO2 increased chloroplast cover index, leaf and spongy mesophyll layer thickness, intercellular air space volume in mesophyll, amount of starch in chloroplasts and cytoplasmic lipids but decreased the number of plastoglobuli in chloroplasts. In contrast, elevated O3 decreased chloroplast cover index, starch content, and the proportion of cytoplasm and intercellular space in mesophyll, and increased the proportion of vacuoles, the amount of condensed vacuolar tannins and the number of plastoglobuli. Ozone also caused structural thylakoid injuries (dilation, distortion) and stromal condensation in chloroplasts, which was ameliorated by elevated CO2 by 5-66% in aspen clones and by 2-10% in birch. Birch ultrastructure was less affected by elevated CO2 or O3 stress compared to aspen. In the most O3-sensitive aspen clone, thinner leaves and cell walls, lower proportion of cell wall volume, and higher volume for vacuoles was found compared to more-tolerant clones. 相似文献
10.
R L Lindroth B J Kopper W F Parsons J G Bockheim D F Karnosky G R Hendrey K S Pregitzer J G Isebrands J Sober 《Environmental pollution (Barking, Essex : 1987)》2001,115(3):395-404
Atmospheric chemical composition affects foliar chemical composition, which in turn influences the dynamics of both herbivory and decomposition in ecosystems. We assessed the independent and interactive effects of CO2 and O3 fumigation on foliar chemistry of quaking aspen (Populus tremuloides) and paper birch (Betula papyrifera) at a Free-Air CO2 Enrichment (FACE) facility in northern Wisconsin. Leaf samples were collected at five time periods during a single growing season, and analyzed for nitrogen. starch and condensed tannin concentrations, nitrogen resorption efficiencies (NREs), and C:N ratios. Enriched CO2 reduced foliar nitrogen concentrations in aspen and birch; O3 only marginally reduced nitrogen concentrations. NREs were unaffected by pollution treatment in aspen, declined with 03 exposure in birch, and this decline was ameliorated by enriched CO2. C:N ratios of abscised leaves increased in response to enriched CO2 in both tree species. O3 did not significantly alter C:N ratios in aspen, although values tended to be higher in + CO2 + O3 leaves. For birch, O3 decreased C:N ratios under ambient CO2 and increased C:N ratios under elevated CO2. Thus, under the combined pollutants, the C:N ratios of both aspen and birch leaves were elevated above the averaged responses to the individual and independent trace gas treatments. Starch concentrations were largely unresponsive to CO2 and O3 treatments in aspen. but increased in response to elevated CO2 in birch. Levels of condensed tannins were negligibly affected by CO2 and O3 treatments in aspen, but increased in response to enriched CO2 in birch. Results from this work suggest that changes in foliar chemical composition elicited by enriched CO2 are likely to impact herbivory and decomposition, whereas the effects of O3 are likely to be minor, except in cases where they influence plant response to CO2. 相似文献
11.
Seedlings of Jeffrey pine (Pinus jeffreyi) and giant sequoia (Sequoiadendron gigantea) were more susceptible to leaf chemical changes following exposure to acid mist (pH 3.4-2.0) or acid mist/ozone combinations, than to ozone alone (0.1-0.2 microl/litre), when plants were exposed to alternating doses of these pollutants for 6-9 weeks. Under acid mist treatment, leaves exhibited higher levels of nitrogen and sulfur, two elements applied in acid mist. In addition, levels of foliar sodium, and, in the case of giant sequia, potassium, as well, increased under acid mist treatment. Iron and manganese were also mobilized, resulting in significant increases in these elements in pine, and decreases in manganese in giant sequoia foliage. The acid treatment also reduced chlorophyll b concentrations in pine, and, to a less significant extent, in giant sequoia. Calcium, magnesium, barium and strontium were differentially accumulated in giant sequoia compared to Jeffrey pine. Under acid mist treatment, all of these elements (except strontium) declined in concentration in giant sequoia, with calcium showing the most significant trend. The more extensive changes in leaf chemistry induced by acid mist are consistent with earlier observations of significant changes in spectral reflectance of these seedlings after 3 weeks of fumigation. Limited foliage samples collected from these two species in 1985 and 1986 in Sequoia/Kings Canyon National Parks in the southern Sierra Nevada do not in themselves indicate any clearcut or severe effects of ozone alone on leaf chemistry of these species, but a mild influence of nitrate-laden acid deposition, possibly in combination with ozone, is consistent with the rise in nitrogen and lignin levels in Jeffrey pine on sites observed to have moderate visible injury symptoms. No firm conclusions about effects of pollutants on leaf chemistry in these field sites is possible without further study. 相似文献
12.
Jäggi M Saurer M Volk M Fuhrer J 《Environmental pollution (Barking, Essex : 1987)》2005,134(2):209-216
Stable carbon isotope ratios (delta(13)C) and leaf conductance (g(s)) were measured (2002, 2003) in Holcus lanatus L., Plantago lanceolata L. Ranunculus friesianus (Jord.), and Trifolium pratense L. at two levels of ozone (O(3)) with or without irrigation. In non-irrigated control plots, R. friesianus showed the least negative delta(13)C, and the smallest response to the treatments. Irrigation caused more negative delta(13)C, especially in H. lanatus. Irrespective of irrigation, O(3) increased delta(13)C in relationship to a decrease in g(s) in P. lanceolata and T. pratense. The strongest effect of O(3) on delta(13)C occurred in the absence of irrigation, suggesting that under field conditions lack of moisture in the top soil does not always lead to protection from O(3) uptake. It is concluded that in species such as T. pratense plants can maintain stomatal O(3) uptake during dry periods when roots can reach deeper soil layers where water is not limiting. 相似文献
13.
Alessandra De Marco Elena Paoletti 《Environmental pollution (Barking, Essex : 1987)》2010,158(2):536-542
Which is the best standard for protecting plants from ozone? To answer this question, we must validate the standards by testing biological responses vs. ambient data in the field. A validation is missing for European and USA standards, because the networks for ozone, meteorology and plant responses are spatially independent. We proposed geostatistics as validation tool, and used durum wheat in central Italy as a test. The standards summarized ozone impact on yield better than hourly averages. Although USA criteria explained ozone-induced yield losses better than European criteria, USA legal level (75 ppb) protected only 39% of sites. European exposure-based standards protected ≥90%. Reducing the USA level to the Canadian 65 ppb or using W126 protected 91% and 97%, respectively. For a no-threshold accumulated stomatal flux, 22 mmol m−2 was suggested to protect 97% of sites. In a multiple regression, precipitation explained 22% and ozone explained <0.9% of yield variability. 相似文献
14.
Vollenweider P Woodcock H Kelty MJ Hofer RM 《Environmental pollution (Barking, Essex : 1987)》2003,125(3):467-480
Leaf ozone symptoms in natural ecosystems are increasingly reported but ozone effects on tree growth and the mediation of site conditions are still little documented. This study tests two hypotheses: (1) leaf injury in black cherry is associated with decline in radial growth, (2) symptoms are more prevalent on mesic sites. On sites supporting black cherry across Massachusetts, tree growth and leaf ozone injury were surveyed in 1996 using a randomized plot network established in the 1960s. Forty-seven percent of 120 trees sampled for ozone symptoms were symptomatic with generally low levels of injury. Over a 31-year period symptomatic trees had 28% lower stem growth rates than asymptomatic trees. Ozone symptom expression was enhanced in well growing stands on moister, cooler and more elevated sites. Ozone appeared to increase environmental stress and had a more pronounced effect on growth in better growing black cherry stands. This complicates management decisions as thinning increases growth and moisture availability. 相似文献
15.
Novak K Schaub M Fuhrer J Skelly JM Hug C Landolt W Bleuler P Kräuchi N 《Environmental pollution (Barking, Essex : 1987)》2005,136(1):33-45
Seasonal trends in leaf gas exchange and ozone-induced visible foliar injury were investigated for three ozone sensitive woody plant species. Seedlings of Populus nigra L., Viburnum lantana L., and Fraxinus excelsior L. were grown in charcoal-filtered chambers, non-filtered chambers and open plots. Injury assessments and leaf gas exchange measurements were conducted from June to October during 2002. All species developed typical ozone-induced foliar injury. For plants exposed to non-filtered air as compared to the charcoal-filtered air, mean net photosynthesis was reduced by 25%, 21%, and 18% and mean stomatal conductance was reduced by 25%, 16%, and 8% for P. nigra, V. lantana, and F. excelsior, respectively. The timing and severity of the reductions in leaf gas exchange were species specific and corresponded to the onset of visible foliar injury. 相似文献
16.
Gerosa G Marzuoli R Bussotti F Pancrazi M Ballarin-Denti A 《Environmental pollution (Barking, Essex : 1987)》2003,125(1):91-98
During the summer of 2001, 2-year-old Fraxinus excelsior and Fagus sylvatica plants were subjected to ozone-rich environmental conditions at the Regional Forest Nursery at Curno (Northern Italy). Atmospheric ozone concentrations and stomatal conductance were measured, in order to calculate the foliar fluxes by means of a one-dimensional model. The foliar structure of both species was examined (thickness of the lamina and of the individual tissues, leaf mass per area, leaf density) and chlorophyll a fluorescence was determined as a response parameter. Stomatal conductance was always greater in Fraxinus excelsior, as was ozone uptake, although the highest absorption peaks did not match the peaks of ozone concentration in the atmosphere. The foliar structure can help explain this phenomenon: Fraxinus excelsior has a thicker mesophyll than Fagus sylvatica (indicating a greater photosynthesis potential) and a reduced foliar density. This last parameter, related to the apoplastic fraction, suggests a greater ability to disseminate the gases within the leaf as well as a greater potential detoxifying capacity. As foliar symptoms spread, the parameters relating to chlorophyll a fluorescence also change. PI (Performance Index, Strasser, A., Srivastava, A., Tsimilli-Michael, M., 2000. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus, M., Pathre, U., Mohanty, P., (Eds.) Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Taylor & Francis, London, UK, pp. 445-483.) has proved to be a more suitable index than Fv/Fm (Quantum Yield Efficiency) to record the onset of stress conditions. 相似文献
17.
Bioconcentration of zinc and cadmium in ectomycorrhizal fungi and associated aspen trees as affected by level of pollution 总被引:1,自引:0,他引:1
Krpata D Fitz W Peintner U Langer I Schweiger P 《Environmental pollution (Barking, Essex : 1987)》2009,157(1):280-286
Concentrations of Zn and Cd were measured in fruitbodies of ectomycorrhizal (ECM) fungi and leaves of co-occurring accumulator aspen. Samples were taken on three metal-polluted sites and one control site. Fungal bioconcentration factors (BCF = fruitbody concentration: soil concentration) were calculated on the basis of total metal concentrations in surface soil horizons (BCFtot) and NH4NO3-extractable metal concentrations in mineral soil (BCFlab). When plotted on log-log scale, values of BCF decreased linearly with increasing soil metal concentrations. BCFlab for both Zn and Cd described the data more closely than BCFtot. Fungal genera differed in ZnBCF but not in CdBCF. The information on differences between fungi with respect to their predominant occurrence in different soil horizons did not improve relations of BCF with soil metal concentrations. Aspen trees accumulated Zn and Cd to similar concentrations as the ECM fungi. Apparently, the fungi did not act as an effective barrier against aspen metal uptake by retaining the metals. 相似文献
18.
《Atmospheric environment (Oxford, England : 1994)》2007,41(38):8811-8817
The effect of ozone on leaf gas diffusion was investigated by analyzing the stable oxygen isotopic signatures (δ18O) in leaves of Holcus lanatus L., Plantago lanceolata L., Ranunculus friesianus (Jord.), and Trifolium pratense L. grown in temperate, semi-natural grassland. Dried material from plants exposed to ambient or elevated ozone levels in a long-term free-air experiment was sampled in 2002 and 2003. A general increase in δ18O in elevated ozone indicated increased limitation to gas diffusion, which was strongest during the driest and warmest period in 2003. In three out of four species, the increase in δ18O paralleled an increase in δ13C measured earlier in the same samples, meaning that the dominant effect of ozone was on gas diffusion and not on CO2 fixation. Only in R. friesianus, ozone affected both processes simultaneously. It is concluded that elevated ozone not only affects productivity, but also the water status of important component species of grassland communities. 相似文献
19.
Interactive effects of elevated ozone and carbon dioxide on growth and yield of leaf rust-infected versus non-infected wheat 总被引:2,自引:0,他引:2
Spring wheat (Triticum aestivum L. cv. Turbo) was grown from seedling emergence to maturity (129 days) in chambers simulating the physical climate and ozone pollution of a field site in Northern Germany from 1 April to 31 July with a mean 1-h daily maximum of 61.5-62.4 nl l(-1) ozone compared to a constant low level of 21.5-22.8 nl l(-1) ozone. The two ozone levels were combined with either a current (374.1-380.2 microl l(-1)) or enriched (610.6-615.0 microl l(-1)) CO(2) atmosphere. Additionally, a leaf rust epidemic (Puccinia recondita f. sp. tritici) was induced at tillering stage by repeated re-inoculations with the inoculum formed on the plants. Leaf rust disease was strongly inhibited by ozone, but largely unaffected by elevated CO(2). Ozone damage on leaves was strongly affected by CO(2) and infection. On infected plants, ozone lesions appeared 2-4 weeks earlier and were up to fourfold more severe compared to non-infected plants. Elevated CO(2) did not delay the onset of ozone lesions but it significantly reduced the severity of leaf damage. It also enhanced the photosynthetic rate of flag leaves and increased the water use efficiency, biomass formation and grain yield. The relative increases in growth and yield induced by CO(2) were much larger on ozone-stressed than on non-stressed plants. Both ozone and fungal infection reduced biomass formation, number of grains per plant, thousand grain weight and grain yield; however, adverse effects of leaf rust infection were more severe. Elevated CO(2) largely equalized the negative effects of ozone on the photosynthetic rate, growth and yield parameters, but was not capable of compensating for the detrimental effects of fungal infection. The data imply that the impact of ozone in the field cannot be estimated without considering the predisposing effects deriving from fungal infections and the compensating effects deriving from elevated CO(2). 相似文献
20.
Elena Paoletti Anna Maria Ferrara Júlia Cerveró María José Sanz 《Environmental pollution (Barking, Essex : 1987)》2009,157(3):865-870
Ozone-like visible injury was detected on Hibiscus syriacus plants used as ornamental hedges. Weekly spray of the antiozonant ethylenediurea (EDU, 300 ppm) confirmed that the injury was induced by ambient ozone. EDU induced a 75% reduction in visible injury. Injury was more severe on the western than on the eastern exposure of the hedge. This factor of variability should be considered in ozone biomonitoring programmes. Seeds were collected and seedlings were artificially exposed to ozone in filtered vs. not-filtered (+30 ppb) Open-Top Chambers. The level of exposure inducing visible injury in the OTC seedlings was lower than that in the ambient-grown hedge. The occurrence of visible injury in the OTC confirmed that the ozone sensitivity was heritable and suggested that symptomatic plants of this deciduous shrub population can be successfully used as ozone bioindicators. EDU is recommended as a simple tool for diagnosing ambient ozone visible injury on field vegetation. 相似文献